用户名: 密码: 验证码:
影响海水鱼虾对植物蛋白利用的抗营养因子和蛋氨酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以大西洋鲑(Salm)、大菱鲆(Scophthalmus maximus L)为实验对象,探讨植物蛋白源中抗营养因子对肉食性鱼健康的作用机制。同时以凡纳滨对虾(Litopenaeus vannanei)、大菱鲆为实验对象,探讨在含有植物蛋白源的饲料中补充不同形式的必需氨基酸对其生长和饲料利用率的影响。为提高鱼虾对植物蛋白源的利用提供理论基础。本论文共包括以下内容:
     1.大豆皂甙对大西洋鲑(Salmo salar,L)生长、消化酶和肠道健康的剂量效应
     本实验研究目的是探讨大豆皂甙对大西洋鲑(Salmo salar, L)生长、消化酶和肠道健康的剂量效应。配制两种基础饲料:鱼粉基础饲料(FM)和植物蛋白基础饲料(PM)。每种基础饲料中添加0、2、4、6和10g kg-1的大豆皂甙,共制备10种饲料。实验用大西洋鲑初始体重为442±33g,放养在20个玻璃钢桶中,每两个桶投喂一种实验饲料。养殖周期为10周。养殖结束后检测实验饲料对实验鱼体体重以及肠道健康的影响,包括:食糜胰蛋白酶活性、刷状缘膜酶活性以及肠道形态结构。植物蛋白饲料组的生长显著低于鱼粉饲料组(P<0.05)。大豆皂甙对鱼粉组大西洋鲑生长的影响表现出先上升后下降的变化(R2=0.953,P<0.001)。随着大豆皂甙添加剂量的提高,对大西洋鲑的造成如下负面影响:1)后肠刷状缘膜酶活性的下降;2)后肠胰蛋白酶活性的上升;3)上皮细胞的过量增殖。当大豆皂甙的添加剂量高于6g kg-1时,在两种基础饲料中都引起了大西洋鲑后肠炎症的发生。
     2.植物蛋白源和大豆皂甙对大西洋鲑(Salmo salar, L)肠道与肝脏脂肪积累、脂蛋白代谢和甾醇代谢的影响
     植物蛋白的使用造成了鱼类脂肪代谢的改变。本研究的目的是进一步探讨饲料中添加植物蛋白源以及大豆皂甙对大西洋鲑肠道和肝脏脂肪代谢的影响。配制两种基础饲料:鱼粉基础饲料(FM)和植物蛋白基础饲料(PM)。每种基础饲料中添加10gkg-1的大豆皂甙,共制备4种实验用饲料。实验用大西洋鲑初始体重为442±24g,放养在8个玻璃钢桶中,每两个桶投喂一种实验饲料。养殖周期为10周。实验结果表明植物蛋白的添加引起了大西洋鲑生长的下降、幽门盲囊和肝脏内脂肪积累的增多以及血液胆固醇水平的下降(P<0.05)。植物蛋白的添加还引起了肠道和肝脏内脂肪吸收、脂蛋白合成(载脂蛋白、脂肪酸转运载体、微粒体三酰转移蛋白、胆碱激酶、胆碱磷酸胞苷酰基转移酶A)和胆固醇合成(3羟基3甲基戊二酰辅酶A还原酶)过程中关键基因及其转录调控因子(甾醇调节因子结合蛋白2和过氧化物酶体增殖物激活受体)基因的上调。大豆皂甙的添加引起了大西洋鲑体内胆固醇和胆酸盐的下降。分子数据表明大豆皂甙引起了肝脏内胆酸盐生物合成限速蛋白酶基因(胆固醇7-羟化酶)、肝脏X受体蛋白基因以及胆酸盐转运蛋白基因的下调。基础饲料和大豆皂甙对于血清胆固醇水平具有显著的交互作用(P<0.05)。总之,本研究表明植物蛋白源的添加造成了大西洋鲑脂蛋白合成能力和胆固醇合成能力的提高。这可能是由于脂肪运输和胆固醇代谢的损伤所引起的。大豆皂甙具有降低胆固醇和胆酸盐含量的作用。分子数据表明大豆皂甙引起了大西洋鲑肝脏胆酸盐合成和分泌能力的下降。
     3.大豆皂甙、大豆异黄酮和植物甾醇对早期生长阶段大西洋鲑(Salmo salar, L)幼鱼的影响
     本研究通过14周的养殖实验探讨豆粕中常见的抗营养因子对早期生长阶段大西洋鲑的影响。检测指标包括:生长、消化酶活力、肠道和肝脏组织学以及骨骼发育情况。以鱼粉组饲料作为参照组(FM),在参照组中添加2gkg-1的大豆皂甙(SAP)、1.5gkg-1大豆异黄酮(IFL)、0.3g kg-1的植物甾醇(PHS)以及这三者的混合物(MIX),共制备5种等氮等能的饲料。每种饲料作为一个处理投喂给初次摄食的大西洋鲑仔鱼(初始体重约为0.18g),每个处理设三个重复。相比鱼粉组饲料,大豆皂甙的添加引起了实验鱼生长的提高,但是大豆异黄酮引起了生长的显著下降(P<0.05)。IFL组大西洋鲑前肠的麦芽糖酶活性显著低于FM组,胰蛋白酶活力显著高于鱼粉组(P<0.05)。肠道胆酸盐含量、亮氨酸氨基肽酶和淀粉酶活性在各处理组之间没有显著差异(P>0.05)。肠道组织形态学在各处理组之间没有出现显著差异(P>0.05)。IFL组肝脏细胞显著缩小,糖原含量显著减少。饲料处理具有提高鱼体骨骼发育畸形率的趋势(P<0.10)。PHS组和IFL组表现出最高的和次高的畸形率,分别为5.1%和4.3%。总之,本研究的结果表明大豆异黄酮对早期生长阶段大西洋鲑幼鱼的生长、肠道功能、肝脏组织和骨骼发育产生了负面影响。
     4.β-伴大豆球蛋白和大豆球蛋白对大菱鲆(Scophthalmus maximus L)生长、消化酶和免疫反应的影响
     本实验的研究目的是探讨β-伴大豆球蛋白和大豆球蛋白对大菱鲆(Scophthalmus maximus L)生长、消化酶和免疫反应的影响。以粗蛋白含量为48%和粗脂肪含量为12%的基础饲料作为对照组。在基础饲料中添加60gkg-1的p-伴大豆球蛋白(7S)、60g kg-1热处理的p-伴大豆球蛋白(H7S)、60gkg-1的大豆球蛋白(11S)和60g kg-1热处理的大豆球蛋白(HllS)。每种饲料作为一个处理投喂给初始体重约为6.80g的大菱鲆,每个处理设三个重复。7S处理组的大菱鲆特定生长率显著低于对照组,而饲料系数则显著高于对照组(P<0.05)。另外,7S的添加显著降低了大菱鲆肠道不同部位(幽门盲囊、中肠和后肠)消化酶活性,包括淀粉酶、脂肪酶和麦芽糖酶活性(P<0.05)。另外,7S处理组的大菱鲆后肠的酸性磷酸酶活性和溶菌酶活性显著低于其它处理组(P<0.05)。综上所述,β-伴大豆球蛋白(7S)的添加引起了大菱鲆生长、饲料利用率、消化酶活性的下降,并引起了后肠的免疫学反应。而热处理组后的7S以及大豆球蛋白并没有对大菱鲆产生上述负面影响。在本研究中,p-伴大豆球蛋白的免疫原性可能与加热处理过程有关。
     5.晶体蛋氨酸和蛋氨酸寡肽对于凡纳滨对虾(Litopenaeus vannanei)生长和饲料利用率的影响
     本研究探讨了晶体蛋氨酸(CMet)和蛋氨酸寡肽(OMet)对凡纳滨对虾(Litopenaeus vannanei)生长和饲料利用的影响。以凡纳滨对虾商业配方饲料作为对照组。以豆粕和花生粕的混合物作为替代蛋白源替代30%和60%的鱼粉。为平衡蛋氨酸水平,分别在30%的替代组中添加0.1%的晶体蛋氨酸(SPP30-CMet)或0.1%的蛋氨酸寡肽(SPP30-OMet),分在60%的替代组中添加0.2%的晶体蛋氨酸(SPP60-CMet)或0.2%的蛋氨酸寡肽(SPP60-OMet)。蛋氨酸来源显著影响了凡纳滨对虾的生长、体组成成分和肝体比(HSI)(P<0.05)。 SPP60-CMet处理组对虾的生长和虾体粗蛋白含量显著低于对照组,而肝体比显著高于对照组(P<0.05)。添加蛋氨酸寡肽的处理组与对照组之间没有显著差异(P>0.05)。SPP30-OMet处理组对虾的饲料效率和蛋白质效率显著高于SPP30-CMet处理组(P<0.05)。本研究表明相比晶体蛋氨酸,蛋氨酸寡肽能够更好的促进凡纳滨对虾对植物蛋白的利用。
     6.晶体蛋氨酸和蛋氨酸寡肽对于大菱鲆(Scophthalmus maximus L)餐后血清游离氨基酸水平、生长和饲料利用率的影响
     本研究通过8周的养殖实验探讨晶体蛋氨酸(CMet)(?)蛋氨酸寡肽(OMet)对大菱鲆(Scophthalmus maximus L)餐后血清氨基酸水平的影响(实验I)以及在高植物蛋白含量饲料中对大菱鲆生长和饲料利用率的影响(实验II)。在实验I中,配制蛋氨酸缺乏饲料并作为基础饲料,蛋氨酸含量为1.0%。为平衡饲料中的蛋氨酸,在基础饲料中添加0.5%的晶体蛋氨酸或蛋氨酸寡肽制备两种饲料,分别命名为CMet-0.5和OMet-0.5。每种饲料投喂给平均体重为35.8g的大菱鲆幼鱼,投喂周期为1周。在投喂后3h、6h、9h和12h取血清样品检测血液中的游离氨基酸含量。实验结果表明OMet-0.5处理组的大菱鲆血液蛋氨酸水平与大部分检测的氨基酸具有类似的餐后变化形式。而CMet-0.5处理组的大菱鲆血液蛋氨酸相比其它检测的氨基酸具有更早的吸收高峰值。在实验II中,除了CMet-0.5和OMet-0.5饲料外,在基础饲料中添加0.25%和1.0%的晶体蛋氨酸或蛋氨酸寡肽配制其它4种等氮等脂的饲料。将6种实验饲料投喂给初始体重为6.8g的大菱鲆幼鱼,投喂周期为8周。实验结果表明,蛋氨酸寡肽相比晶体蛋氨酸能够更好的促进大菱鲆的生长和饲料利用率。高浓度的蛋氨酸对大菱鲆的生长起到了负面的影响。
The present studies were conducted to do basic research on how to improve plant meal utilization by fish and shrimp. Atlantic salmon (Salmo salar) and turbot (Scophthalmus maximus L) were used as experimental subjects to investigate the effects of anti-nutrients in plant meal on the health of these two carnivorous fish species. Studies were also conducted to investigate the effects of supplementation of different forms of essential amino acids on growth and feed utilization in white shrimp (Litopenaeus vannanei) and turbot fed with high levels of plant meal. The studies are summarized as follows:
     1. Dietary saponin dose response in Atlantic salmon (Salmo salar):. Effects on growth, digestive enzyme, and gut health.
     The goal of the current work was to examine the dose response of purified soya-saponins on growth, digestive physiology and gut health in Atlantic salmon (Salmo salar, L). Two basal diets were formulated:a fish meal based diet (FM) and a plant meal based diet (PM). Each basal diet was produced without or with soya-saponin supplementation (2,4,6or10g kg-1). Each diet was fed to duplicate tanks of Atlantic salmon (initial weight442±33g; mean±SD). The feeding trial lasted10weeks. At termination fish were sampled to analyze growth and intestinal responses, including chyme trypsin activity, tissue brush border enzyme activity and histology. Fish fed the PM based diets had lower final weights compared to fish fed the FM based diets. Saponins significantly influenced the growth performance of FM fed fish, showing higher growth at low (2-4g kg-1) saponin levels but lower growth at high (6-1Og kg-1) levels (R2=0.953,.P<0.001). Increasing dietary soya-saponin concentration caused:1) Decreased enterocyte brush border enzyme activity in the distal intestine;2) Increased trypsin activity in digesta from the distal intestine;3) Increased enterocyte proliferation in distal intestine. Inflammation was observed in the distal intestine associated with high levels (6-10g kg-1) of dietary soya-saponin, regardless of the basal diet formulation.
     2. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation, lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.).
     Altered lipid metabolism has been shown in fish fed with plant protein sources. This study aimed at gaining further insight into how intestinal and hepatic lipid absorption and metabolism are modulated by plant meal and soya-saponin inclusion in salmon feed. Post-smolt Atlantic salmon (initial weight442±24g; mean±SD) were fed one of four diets based on fish meal or plant meal, with or without1.0%soya-saponin for10weeks. Plant meal inclusion resulted in decreased growth performance, excessive accumulation of lipid droplets in pyloric caeca and liver and reduced plasma levels of cholesterol. Intestinal and hepatic gene expression profiling revealed up-regulation of genes involved in lipid absorption and lipoprotein synthesis (apolipoproteins, fatty acid transporters, microsomal triglyceride transfer protein, acyl-coA cholesterol acyltransferase, choline kinase, choline-phosphate cytidylyltransferase A), cholesterol synthesis (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and associated transcription factors (sterol regulatory element binding protein2and peroxisome proliferator activated receptor gamma). Soya-saponin inclusion resulted in reduced body pools of cholesterol and bile salts. Hepatic gene expression of the rate-limiting enzyme in bile acid biosynthesis (cyp7a1) as well as the transcription factor liver X receptor and the bile acid transporter (abcb11) were down-regulated by soya-saponin inclusion. Significant interaction was observed between plant meal and soya-saponin inclusion in plasma cholesterol level. In conclusion, gene expression profiling suggested that the capacity for lipoprotein assembly and cholesterol synthesis were up-regulated by plant meal exposure, probably as a compensatory mechanism for excessive lipid accumulation and reduced plasma cholesterol levels. Soya-saponin inclusion had hypocholesterolemic effects on Atlantic salmon, accompanied by decreased bile salt metabolism.
     3. Effects of diet supplementation of soya-saponins, isoflavones and phytosterols on Atlantic salmon(Salmo salar, L) at early growth stage.
     A14-week trial was conducted to investigate the effects of antinutritional factors (ANFs) commonly present in soybean ingredients, singly and in combination, on Atlantic salmon (Salmo salar L.). Fry performance, including growth, digestive enzyme activities, intestinal and liver histology, and skeletogenesis were evaluated. The experimental diets consisted of a reference control fish meal diet (FM), and four diets based on the FM diet supplemented with2g kg-1soya-saponins (SAP),1.5g kg-1isoflavones (IFL),0.3g kg-1phytosterols (PHS) or a mixture of these (MIX). Each diet was randomly allocated to triplicate groups of fish fry (approximately0.18g) from start-feeding. Fish fed the SAP diet showed significantly higher growth performance than those fed FM, while the IFL treatment significantly decreased final body weight and specific growth rate (P<0.05). For digestive enzyme activities, fish fed the IFL diet had significantly lower maltase activity and higher trypsin activity in proximal intestine than fish fed the FM diet (P<0.05). No significant difference among the treatment groups was observed either in intestinal bile acids concentration or in activities of leucine aminopeptidase or amylase. Nor was intestinal histomorphology affected. Histological differences were observed in the liver of fish fed the IFL diet, characterized by reduced size of the hepatocytes due mainly to reduction in glycogen content. Dietary treatments tended to change the incidence of skeletal deformities in salmon fry (P<0.10). Fish fed the PHS and IFL diets showed the highest frequencies (5.1and4.3%, respectively) of deformities among the five treatments, In conclusion, the results indicate that purified isoflavones may negatively affect growth performance, intestinal function, liver metabolism and bone formation of salmon fry.
     4. Effects of β-conglycinin and glycinin on growth, digestive enzymes and immune responses in juvenile turbot (Scophthalmus maximus L).
     The study was conducted to investigate the effects of β-conglycinin and glycinin on growth, digestive enzymes and immune responses in turbot (Scophthalmus maximus L). The basal diet was formulated to contain48%crude protein and12%crude lipid, and was used as the control. The other four diets were supplemented with6.0%β-conglycinin (diet7S),6.0%heat treated β-conglycinin (diet H7S),6.0% glycinin (diet11S) and6.0%heat treated glycinin (diet H11S), respectively. Each diet was randomly allocated to triplicate groups of fish (initial average weight of6.80g) for4weeks. Fish fed7S diet showed significantly lower specific growth rate (SGR) and higher feed conversion rate (FCR) than the others (P<0.05). Furthermore, it had reduced digestive enzyme activities (amylase activity, lipase activity, maltase activity and alkaline phosphatase activity) in different gastrointestinal (GI) sections (pyloric caeca, mid-intestine and distal intestine). Additionally, fish fed7S diet showed significantly higher acid phosphatase activity and lysozyme activity in distal intestine compared with fish fed the other diets (P<0.05). In conclusion, P-conglycinin (7S) significantly decreased the growth, feeding efficiency, digestive enzyme activities and induced the immunological responses in distal intestine of turbot. These changes were not observed in the fish fed heat treated7S diet. Glycinin (11S) had no significant influence on the health of turbot. Immunogenicity of β-conglycinin (7S) in turbot may be relative to its heat processing.
     5. Effects of dietary crystalline methionine or oligo-methionine on growth performance and feed utilization of white shrimp(Litopenaeus vannanei) fed high plant protein diets.
     An eight-week feeding experiment was conducted to investigate the effects of dietary crystalline methionine (CMet) or oligo-methionine (OMet) on growth performance and feed utilization of white shrimp, Litopenaeus vannanei. A practical diet was used as control diet. The other four isonitrogenous and isolipid diets replacing30%and60%fish meal by a mixture of soybean meal and peanut meal (SPP) were formulated. To balance the methionine content,0.1%CMet (SPP30-CMet) or0.1%OMet (SPP30-OMet) was added in30%fish meal replacing diets and0.2%CMet (SPP60-CMet) or0.2%OMet (SPP60-OMet) was added in60%fish meal replacing diets. Methionine source significantly affected growth performance, body compositions and hepatosomatic indices (HSI) of white shrimps (P<0.05). Shrimps in SPP60-CMet treatment showed significantly lower weight gain, crude protein content in whole body and significantly higher HSI than those in control (P<0.05). However, no significant difference in these indices was observed between control and OMet supplemented treatments (P>0.05), Shrimps in SPP30-OMet treatment showed significantly higher feed efficiency ratio and protein efficiency ratio than those in SPP30-CMet treatment (P<0.05). The present study indicated that compared with the CMet, dietary OMet resulted in better growth and feed efficiency of L. vannanei fed high plant protein diets.
     6. Effects of dietary crystalline methionine or oligo-methionine on postprandial plasma free amino acid level, growth performance and feed utilization of turbot (Scophthalmus maximus L) fed high plant protein diets.
     Two experiments were conducted to investigate the effects of dietary crystalline methionine (CMet) or oligo-methionine (OMet) on postprandial plasma free amino acid level (experimental I), growth performance and feed utilization of turbot (Scophthalmus maximus L) fed high plant protein diets (experimental Ⅱ). In experimental I, a methionine deficient diet (1.0%methionine) was formulated and used as basal diet. To balance the methionine content,0.5%crystalline methionine (CMet-0.5) or0.5%oligo-methionine (OMet-0.5) was added. Each diet was fed to triplicate groups of turbot (approximately35.8g) for a week. Plasma samples were collected3h,6h,9h and12h postprandially to analyze free amino acid concentration. The plasma methionine level of fish fed the OMet-0.5diet showed similar postprandial change pattern with most of the other assayed amino acids. However, in CMet-0.5treatment, the time observed for peak level of plasma methionine was earlier than that of any other assayed amino acids. In experimental II, exclusive of two diets used in Experimental I, another four isonitrogenous and isoenergetic diets with0.25%and1.0%of crystalline methionine (named as CMet-0.25and CMet-1.0) or oligo-methionine (named as OMet-0.25and OMet-1.0) were prepared. Each diet was fed to triplicate groups of turbot (approximately6.8g) for8weeks. The results showed that oligo-methionine could improve the growth performance and feed utilization of turbot compared with crystalline methionine. High supplementation of methionine showed negative effect on the growth performance of turbot.
引文
Alam, M.S., Teshima, S., Koshio, S., Ishikawa, M., Uyan,O., Hcrnandcz., L.H.H., Michael, F.R., 2005. Supplemental effects of coated methionine and/or lysine to soy protein isolate diet for juvenile kuruma shrimp, Marsupenaeus japonicus. Aquaculture,248,13-19.
    Al-Habori, M., Raman, A.,1998. Antidiabetic and hypocholesterolaemic effects of fenugreek (Review). Phytother. Res.12,233-242.
    Amaya, E. A., Davis, D. A., Rouse, D. B.,2007. Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture,262, 393-401.
    Aringer, L., Eneroth, P., Nordstrom, L.,1979. Side-chain cleavage of 4-cholesten-3-one, 5-cholesten-3 alpha-ol, beta-sitosterol, and related sterols in endocrine tissues from rat and man. J. Steroid Biochem.11,1271-1285.
    Arndt, R.E., Hardy, R.W., Sugiura, S.H., Dong, F.M.,1999. Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon, Oncorhynchus kisutch. Aquaculture 180,129-145.
    Arnesen, P., Brattas, L.E., Olli, J.J., Krogdahl, A.,1990. Soybean carbohydrates appear to restrict the utilization of nutrients by Atlantic salmon (Salmo salar L.). In:Takeda, M., Watanabe, T. (Eds.) The Current Status of Fish Nutrition in Aquaculture. Tokyo Univ. Fisheries, Tokyo, Japan, pp.273-280.
    Austreng, E., Storebakken, T., Asgard, T,1987. Growth rate estimates for cultured Atlantic salmon and rainbow trout. Aquaculture 60,157-160.
    Baeverfjord, G., Krogdahl, A.,1996. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine:a comparison with the intestines of fasted fish. J. Fish Dis.19,375-387.
    Bakke-McKellep, A.M., Glover, C., Krogdahl, A.,2011. Feeding, digestion and absorption of nutrients. In The multifunctional gut of fish, vol.30, pp.57-110 [M Grosel, AP Farrel and CJ Brauner, editors] Elsevier, Amsterdam.
    Bakke-McKellep, A.M., Froystad, M.K., Lilleeng, E., Dapra, F., Refstie, S., Krogdahl, A., Landsverk, T.,2007a. Response to soy:T-cell-like reactivity in the intestine of Atlantic salmon, Salmo salar L. J. Fish Dis.30,13-25.
    Bakke-McKellep, A.M., Penn, M. H., Salas, P.M., Refstie, S., Sperstad, S., Landsverk, T., Ringo, E., Krogdahl, A.,2007b. Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Brit. J. Nutr.,97,699-713.
    Bakke-McKellep, A.M., Fr(?)ystad, M.K., Lilleeng, E., Dapra, F., Refstie, S., Krogdahl, A.& Landsverk, T.,2007c. Response to soy:T-cell-like reactivity in the intestine of Atlantic salmon, Salmo salar L. J. Fish. Dis.,30,13-25.
    Bakke-McKellep, A.M., Penn, M.H., Chikwati, E., Hage, E., Cai, C., Krogdahl, A.,2008. In vitro effects of various anti-nutritional factors on intestinal glucose absorption and histology in Atlantic salmon. Book of Abstracts from XIII ISFNF-International Symposium on Fish Nutrition and Feeding, June 1-5 2008, Florianopolis, Brazil.
    Bakke-McKellep, A.M., Press, C.M., Krogdahl, A., Landsverk, T.,2000. Changes in immune and enzyme histochemical phenotypes of cells of the intestinal mucosa of Atlantic salmon(Salmo salar L.) with soybean-meal induced enteritis. J. Fish Dis.23,115-127.
    Bakke-McKellep, A.M., Refstie, S., Stefansson, S.O., Vanthanouvong, V., Roomans, G., Hemre, G.I., Krogdahl, A.,2006. Effects of dietary soybean meal and photoperiod cycle on osmoregulation following seawater exposure in Atlantic salmon smolts. J. Fish Biol.69,1396-1426.
    Bakke-McKellep, A.M., Sanden, M., Danieli, A., Acierno, R., Hemre, G.I., Maffia, M., Kroghdahl, A.,2008. Atlantic salmon(Salmo salar L.) parr fed genetically modified soybeans and maize: Histological, digestive, metabolic, and immunological investigations. Res. Vet. Sci.84,395-408.
    Balogum, A.M., Ologhobo, A.D.,1989. Growth performance and nutrient utilization of fingerling Clarias gariepinus (Burchell) fed raw and cooked soybean diets. Aquaculture 76,119-126.
    Banwell, J.G., Abramowsky, C.R., Weber, F., Howard, R., Boldt, D.H.,1984. Phytohemagglutinin-induced diarrheal disease. Digest. Dis. Sci.29,921-929.
    Banwell, J.G., Howard, R., Kabir, I., Adrian, T.E., Diamond, R.H., Abramowsky, C.,1993. Small intestinal growth caused by feeding red kidney bean phytohemagglutinin lectins to rats. Gastroenterol.104,1669-1677.
    Bardocz, S., Brown, D.S., Grant, G., Pusztai, A., Stewart, J.C., Palmer, R.M.,1992. Effect of the beta-adrenoceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Brit. J. Pharmacol.106,476-482.
    Bardocz, S., Grant, G., Ewen, S.W.B., Duguid, T.J., Brown, D.S., Englyst, K., Pusztai, A.,1995. Reversible effect of phytohaemagglutinin on the growth and metabolism of rat gastrointestinal tract. Gut 37,353-360.
    Bardocz, S., Grant, G., Pusztai, A., Franklin, M.F., Carvalho, A.F.F.U. de,1996. The effect of phytohaemagglutinin at different dietary concentrations on the growth, body composition and plasma insulin of the rat. Brit. J. Nutr.76,613-626.
    Berg-Lea, T., Brattas, L.-E., Krogdahl, A. Soybean proteinase inhibitors affect nutrient digestion in rainbow trout. In:Recent Advances of Research in Antinutritional Factors in Legume Seeds (ed. by J. Huisman, T.F.B. van der Pool & I. Liener),1989, pp.99-102. Pudoc, Wageningen.
    Berhow, M.A., Wagner, E.D., Vaughn, S.F., Plewa, M.J.,2000. Characterization and antimutagenic activity of soybean saponins. Mutation Research 448,11-22.
    Black, D.D.,2007. Development and physiological regulation of intestinal lipid absorption I. Development of intestinal lipid absorption:cellular events in chylomicron assembly and secretion. Am. J. Physiol.293, G519-G524.
    Boberg, K.M., Skrede, B., Skrede, S.,1986. Metabolism of 24-ethyl-4-cholesten-3-one and 24-ethyl-5-cholesten-3 beta-1 ol (Sitosterol) after intraperitoneal injection in the rat. Scand. J. Lab Invest. Suppl.184,47-54.
    Bohe, M.,1987. Pancreatic and granulocytic endoproteases in faecal extracts from patients with active ulcerative colitis. Scand. J. Gastroenterol.22,59-64.
    Bonaldo, A., Parma, L., Mandrioli, L., Sirri, R., Fontanillas, R., Badiani, A., Gatta, P.P.,2011. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture 318,101-108.
    Boonyaratpalin, M., Suraneiranat, P., Tunpibal, T.,1998. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture 161,67-78.
    Borlongan, I.G., Eusebio, P.S., Welsh, T.,2003. Potential of feed pea (Pisum sativum) meal as a protein source in practical diets for milkfish (Chanos chanos Forsskal). Aquaculture 225,89- 98.
    Braat, H., Peppelenbosch, M.P., Hommes, DW.,2006. Immunology of Crohn's disease. Ann. N. Y. Sci.1072,135-154.
    Bradford, M.M.,1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72,248-254.
    Brown, M.S., Goldstein, J.L.,1997. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89,331-340.
    Bureau, D.P., Harris, A.M., Cho, C.Y.,1998. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon(Oncorhynchus tshawytscha) and rainbow trout(Oncorhynchus mykiss). Aquaculture 161,27-43.
    Burrells, C., Williams, P.D., Southgate, P.J., Crampton, V.O.,1999. Immunological, physiological and pathological responses of rainbow trout(Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet. Immunol. Immunopathol.72,277-288.
    Bustos, D., Negri, G., De Paula, J.A., Di Carlo, M., Yapur, V., Facente, A., De Paula, A.,1998. Colonic proteinases:increased activity in patients with ulcerative colitis. Medicina (B. Aires) 58,262-264.
    Buttle, L.G., Burrells, A.C., Good, J.E., Williams, P.D., Southgate, P.J., Burrells, C.,2001. The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Vet. Immunol. Immunopathol.80,237-244.
    Calvert, G.D., Blight, L.,1981. A trial of the effects of soya-bean flour and soya-bean saponin on plasma lipids, fecal bile acids and neutral sterols in hypercholesterlaemic men. Br. J. Nutr.45, 277-281.
    Chang, H.C., Doerge, D.R.,2000. Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol. Appl. Pharmacol.168,244-252.
    Chawla A, Repa JJ, Evans RM, et al.2001. Nuclear receptors and lipid physiology:opening the X-files. Science 294,1866-1870.
    Chen, F., Hao, Y., Piao, X.S., Ma, X., Wu, G.Y., Qiao, S.Y., Li, D.F., Wang, J.J.,2010. Soybean-derived β-conglycinin affects proteome expression in pig intestinal cells in vivo and in vitro. J. Anim. Sci.89,743-753.
    Chen, W., Ai, Q.H., Mai, K.M., Xu, W., Liufu, Z.G., Zhang, W.B., Cai, Y.H.,2011. Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture 318,95-100.
    Chi, S.Y., Tan, B.P., Lin, H.Z., Mai, K.S., Ai, Q.H., Wang, X.J., Zhang, W.B., Xu, W. & Liufu, Z.G.,2011. Effects of supplementation of crystalline or coated methionine on growth performance and feed utilization of the pacific white shrimp, Litopenaeus vannamei. Aquac. Nutr.17,el-e9.
    Chiji, H., Harayama, K., Kiriyama, S.,1990. Effects of feeding rats low protein dies containing casein or soy protein isolate supplemented with methionine or oligo-L-methionine. J. Nutr., 120,166-171.
    Chikwati E, Venold FF, Penn MH, Rohloff, J., Refstie, S., Guttvik, A., Hillestad, M., Krogdahl, A., 2012. Interaction of soyasaponins with plant ingredients in diets for Atlantic salmon, Salmo salar L. Br. J. Nutr.107,1570-1590.
    Choi, D.H., Jang, H.N., Ha, D.M., Kim, J.W., Oh, C.H., Choi, S.H.,2007. Cloning and expression of partial Japanese flounder(Paralichthys olivaceus) IgD. J. Biochem. Mol. Biol.40,459-466.
    Christensen, H.R., Bruun, S.W., Fr(?)ki(?)r, H.,2003. Antigenic specificity of serum antibodies in mice fed soy protein. Int. Arch. Allergy. Immunol.132,58-67.
    Cleland, J.L., Kensil, C.R., Lim, A., Jacobsen, N.E., Basa, L., Spellman, M., Wheeler, D.A., Wu, J.Y., Powell, M.F.,1996. Isomerization and formulation stability of the vaccine adjuvant QS-21. J. Pharm. Sci.85,22-28.
    Cowey, C.B.,1995. Protein and amino acid requirements:a critique of methods. J. Appl. Ichthyol., 11,199-204.
    D'Souza, N., Skonberg, D.I., Camire, M.E., Guthrie, K.E., Malison, J., Lima, L.,2005. Influence of dietary genistein levels on tissue genistein deposition and on the physical, chemical, and sensory quality of rainbow trout, Oncorhynchus mykiss. J. Agric. Food Chemistry.53,3631-3636.
    Dabrowski, K., Lee, K.J., Rinchard, J.,2003. The smallest vertebrate, teleoset fish, can utilize synthetic dipeptide based diets. J. Nutr.,133,4225-4229.
    Dabrowski, K.Y., Zhang, Y.F., Kwasek, K., Hliwa, P., Ostaszewska, T.,2010. Effects of protein-, peptide- and free amino acid-based diets in fish nutrition. Aquac. Res.,41,668-683.
    Dahlquist, A.,1970. Assay of intestinal disaccharidases. Enzym. Biol. Clin.11,52-66.
    Dapra, F., Geurden, I., Corraze, G.,2011. Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout(Oncorhynchus mykiss). Aquaculture 319,377-384.
    Deak, N.A., Murphy, P.A., Johnson, L.A.,2007. Characterization of fractionated soy proteins produced by a new simplified procedure. J. Amer. Oil Chem. Soc.84,137-149.
    Demonte, A., Carlos, I.Z., Lourenco, E.J., Dutra de Oliveira, J.E.,1997. Effect of pH and temperature on the immunogenicity of glycinin(Glycine max L.). Plant Food Hum. Nutr.50, 63-69.
    Dezfuli, B.S., Arrighi, S., Domeneghini, C., Bosi, G.,2000. Immunohistochemical detection of neuromodulators in the intestine of Salmo trutta L. naturally infected with Cyathocephalus truncatus Pallas (Cestoda). J. Fish Dis.23,265-273.
    Divi, R.L., Chang, H.C., Doerge, D.R.,1997. Anti-thyroid isoflavones from soybean:isolation, characterization, and mechanisms of action. Biochem. Pharmacol.54,1087-1096.
    Drover VA, Ajmal M, Nassir F, Dvidson, N.O., Nauli, A.M., Sahoo, D., Tso, P., Abumarad, N.A. 2005. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Invest.115,1290-1297.
    Erlanger, B.F., Kokowsky, N., Cohen, W.,1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophy.95,271-278.
    Espe, M., Lied, E.,1994. Do Atlantic salmon(Salmo salar) utilize mixtures of free amino acids to the same extent as intact protein sources for muscle protein synthesis? Comp. Biochem. Phys., 107,249-254.
    Espe, M., Njaa, L.R.,1991. Growth and chemical composition of Atlantic salmon(Salmo salar) given a fish meal diet or a corresponding free amino acid diet. Fisk. Dir. Skr. Ser. Emaering,6, 260-266.
    Espe, M., Hevr(?)y, E.M., Liaset, B., Lemme, A., El-Mowafi, A.,2008. Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture,274,132-141.
    Espe, M., Lemme, A., Petri, A., El-Mowafi, A.,2006. Can Atlantic salmon(Salmo salar) grow on diets devoid of fish meal? Aquaculture,255,255-262.
    Field, F.J., Mathur, S.N.,1995. Intestinal lipoprotein synthesis and secretion. Prog. Lipid. Res.34, 185-198.
    Fontagne S, Burtaire L, Corraze G, et al.,2000. Effects of dietary medium-chain triacylglycerols (tricaprylin and tricaproin) and phospholipid supply on survival, growth and lipid metabolism in common carp (Cyprinus carpio L.) larvae. Aquaculture 190,289-303.
    Fontagne S, Geurden I, Escaffre, AM, et al.,1998. Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture 161,213-223.
    Forster, I., Dominy, W., Obaldo, L., Tacon., A.,2003. Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone,1931). Aquaculture,219,655-670.
    Fountoulaki, E., Alexis, M.N., Nengas, I., Venou B.,2005. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquaculture Res.36,1243-1251.
    Fox, J.M.A., Lawrance, A.L. & Chan L.E.,1995. Dietary requirements for lysine by juvenile Penaeus vannamei using intact and free amino amino acid sources. Aquaculture 131,279-290.
    Francis, G., Kerem, Z., Makkar, H.P.S., Becker, K.,2002a. The biological action of saponins in animal system:a review. Brit. J. Nutri.88,587-605.
    Francis, G., Makkar, H.P.S., Becker, K.,2002b. Dietary supplementation with a Quillaja saponin mixture improves growth performance and metabolic efficiency in common carp(Cyprinus carpio L.). Aquaculture 203,311-320.
    Francis, G., Makkar, H.P.S., Becker, K.,2001a. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199,197-227.
    Francis, G., Makkar, H.P.S., Becker, K.,2001b. Effects of Quillaja saponins on growth, metabolism, egg production, and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C 129,105-114.
    Francis, G., Makkar, H.P.S., Becker, K.,2005. Quillaja saponin-a natural growth promoter for fish. Anim. Feed Sci. Technol.121,95-100.
    Gadaleta RM, van Mil SWC, Oldenburg B, et al.,2010. Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta Mol Cell Biol Lipids 1801,683-692.
    Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W.,2007. Expanding the utilization of sustainable plant products in aquafeeds:a review. Aquac. Res.38, 551-579.
    Geay, D., Ferraresso, S., Zambonino-Infante, J.L. et al.,2011. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rate with the plant-based diet. BMC Genomics 12,522-539.
    Gee, J.M., Wortley, G.M., Johnson, I.T., Price, K.R., Rutten, A.A.J.J., Houben, G.F., Penninks, A.H.,1996. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations in vitro. Toxicol. In Vitro 10,117-128.
    Gestetner, B., Birk, Y., Tencer, Y.,1968. Soybean saponins fate of ingested soybean sponins and pysiological apect of their hemolytic activity. J. Agric. Food Chem.16,1031-1035.
    Glencross, B.D., Boujard, T., Kaushik, S.J.,2003. Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 219, 703-713.
    Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S.,2006. Protein sensors for membrane sterols. Cell 124,35-46.
    Gomes, E.F., Rema, P., Kaushik, S.J.,1995. Replacement of fishmeal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss):digestibility and growth performance. Aquaculture 130,177-186. J. Fish Dis.28,317-330.
    Grant, G., Henderson, L.T., Edwards, J.E., Ewan, E.C., Bardocz, S., Pusztai, A.,1997. Kidney bean and soy bean lectins cause enzyme secretion by pancreatic acini in vitro. Life Sciences 60, 1589-1595.
    Greer, F., Pusztai, A.,1985. Toxicity of kidney bean (Phaseolus vulgaris) in rats:changes in intestinal permeability. Digestion 32,42-46.
    Guo, P.G., Piao, X.S., Ou, D.Y., Li, D.F., Hao, Y.,2007. Characterization of the antigenic specificity of soybean protein p-conglycinin and its effects on growth and immune function in rats. Arch. Anim. Nutr.61,189-200.
    Haard, N.F., Dimes, L.E., Arndt, R.E., Dong, F.M.,1996. Estimation of protein digestibility:Ⅳ. Digestive proteinases from the pyloric caeca of Coho salmon(Oncorhynchus kisutch) fed diets containing soybean meal. Comp. Biochem. Physiol. Part B 115,533-540.
    Hara, H., Kiriyama, S.,1991. Absorptive behavior of oligo-L-methionine and dietary proteins in a casein or soybean protein diet:porto-venous differences in amino acid concentrations in unrestrained rats. J.Nutr.121,638-645.
    Hardy, R.H.,1990. Aquaculture's rapid growth requirements for alternate protein sources. Feed Mana.50,25-28.
    Hardy, R.W., Kissil, G.W.M.,1997. Trends in aquaculture feeding. Feed Mix 5,31-34.
    Harper, A.E., Benevenga, N.J. & Wholehueter, R.M.,1970. Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev.50,428-558.
    Hart, S., Bharadwaj, A.S., Brown, P.B.,2010. Soybean lectins and trypsin inhibitors, but not oligosaccharides or the interaction of factors, impact weight gain of rainbow trout (Oncorhyncus my kiss). Aquaculture 306,310-314.
    Harwood, H.J. Jr, Chandler, C.E., Pellarin, L.D., et al.,1993. Pharmacologic consequences of cholesterol absorption inhibition:alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin b-tigogenin cellobioside (CP-88818; tiqueside). J. Lipid Res.34,377-395.
    Hasan, F., Shah, A.A., Hameed, A.,2009. Methods for detection and characterization of lipases:a comprehensive review. Biotechnol. Adv.27,782-798.
    Hauler, R.C., Carter, C.G., Edwards, S.J.,2007. Feeding regime does not influnce lysine utilization by Atlantic salmon, Salmo salar L., parr. Aquaculture 273,545-555.
    Hawkins, J.V., Emmel, E.L., Feuer, J.J., Nedelman, M.A., Harvey, C.J., Klein, H.J., Rozmiarek, H., Kennedy, A.R., Lichtenstein, G.R., Billings, P.C.,1997. Protease activity in a hapten-induced model of ulcerative colitis in rats. Dig. Dis. Sci.42,1969-1980.
    Henderson, R.J., Tocher, D.R.,1987. The lipid composition and biochemistry of freshwater fish. Progr. Lipid Res.26,281-347.
    Hernandez, C., Olvera-Novoa, M.A., Aguilar-Vejar, K., Gonzalez-Rodriguez, B., Parra, I.A.,2008. Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 277,244-250.
    Huisman, J., Van der Poel, A.F.B., Van Leeuwen, P., Verstegen, M.W.A.,1990. Comparison of growth, nitrogen metabolism and organ weights in piglets and rats fed on diets containing Phaseolus vulgaris beans. Brit. J. Nutr.64,743-753.
    Iqbal, J., Hussain, M.M.,2009. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab.296, 1183-1194.
    Ireland, P.A., Dziedzic, S.Z., Kearsley, M.W.,1986. Saponin content of soya and some commercial soya products by means of high performance liquid chromatography of the sapogenins. J. Sci. Food Agric.34,694-698.
    Iwashita, Y., Suzuki, N., Matsunari, H., Sugita, T., Yamamoto, T.,2009. Influence of soya saponin, soya lectin, and cholyltaurine supplemented to a casein-based semipurified diet on intestinal morphology and biliary bile status in fingerling rainbow trout Oncorhynchus mykiss. Fish Sci. 75,1307-1315.
    Iwashita, Y., Suzuki, N., Yamamoto, T., Shibata, J., Isokawa, K., Soon, A.H.,Ikehata, Y., Furuita, H., Sugita, T.,2008. Supplement effect of cholytaurine and soybean lecithin to a soybean meal-based fish meal-free diet on the hepatic and intestinal morphology of rainbow trout Oncorhynchus mykiss. Fish Sci.74,1083-1095.
    Jenkins, K.J. Atwal, A.S.,1994. Effects of dietary saponin on fecal bile acids and neutral sterols, and availability of vitamins A and E in the chick. J. Nutr. Biochem.5,134-138.
    Johnson, I.T., Gee, J.M., Price, K., Curl, C., Fenwick, G.R.,1986. Influence of saponins on gut permeability and active nutrient transport in vitro. J. Nutr.116,2270-2277.
    Jordinson, M., Deprez, P.H., Playford, R.J., Heal, S., Freeman, T.C., Alison, M., Calam, J.,1996. Soybean lectin stimulates pancreatic exocrine secretion via CCK-A receptors in rats. Am. J. Physiol.270,653-659.
    Jordinson, M., Playford, R.J., Calam, J.,1997. Effects of a panel of dietary lectins on cholecystokinin release in rats. Am. J. Physiol.273,946-950.
    Jost, R., Brambilla, E., Monti, J.C.,1980. Papain catalyzed oligomerization of a-amino acids. Synthesis and characterization of water-insoluble oligomers of L-Methionine. Helv. Chim. Acta.63,375-384.
    Kakade, M.L., Hoffa, D.E., Liener, I.E.,1973. Contribution of trypsin inhibitors to deleterious effects of unheated soybeans fed to rats. J. Nutr.103,1772-1778.
    Kasai, T., Tanaka, T., Kiriyama, S.,1996. Polymerization degree of oligomethionine to determine its bioavailability when added to a low-protein diets. Biosci. Biotech. Biochem.60,828-834.
    Kaushik, S.J.,1998. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquat. Living Resour.11,355-358.
    Kaushik, S.J., Cravedi, J.P., Lalles, J.P., Sumpter, J., Fauconneau, B., Laroche, M.,1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133,257-274.
    Kelso, E.B., Lockhart, J.C., Hembrough, T., Dunning, L., Plevin, R., Hollenberg, M.D., Sommerho, C.P., McLean, J.S., Ferrell, W.R.,2006. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther.316, 1017-1024.
    Keppens, S.,1995. Effect of genistein on both basal and glucagon-induced levels of cAMP in rat hepatocytes. Biochem. Pharmacol.50,1303-1304.
    King, T.P., Pusztai, A., Grant, G., Slater, D.,1986. Immunogold localization of ingested kidney bean (Phaseolus vulgaris) lectins in epithelial cells of the rat small intestine. Histochem. J.18, 413-420.
    Knott, R.M., Grant, G., Bardocz, S., Pusztai, A., Carvalho, A.F.F.U. de, Hesketh, J.E.,1992. Alterations in the level of insulin receptor and GLUT-4 mRNA in skeletal muscle from rats fed a kidney bean diet. Int. J. Biochem.24,897-902.
    Knudsen, D., Uran, P., Arnousm A, et al.,2007. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. J. Agric. Food Chem.55, 2261-2267.
    Knudsen, D., Fredrik, J., Sundh, H., Sundell, K., Koppe, W.,2007. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Bri. J. Nutr.1-10.
    Knudsen, D., Jutfelt, F., Sundh, H.,2008. Dietary soya saponin increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br. J. Nutr.100,120.
    Kortner, T.M., Gu, J.N., Krogdahl, A., et al.,2013. Transcriptional regulation of cholesterol and
    bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Br.J.Nutr.109,593-604.
    Kortner, T.M., Skugor, S., Penn, M.H., et al.,2012. Dietary soyasaponin supplementation to pea protein concentrate reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon (Salmo salar L.). BMC Vet. Res.8,101.
    Kortner, T.M., Valen, E.C., Kortner, H., et al.,2011. Candidate reference genes for quantitative real-time PCR (qPCR) assays during development of a diet-related enteropathy in Atlantic salmon (Salmo salar L.) and the potential pitfalls of uncritical use of normalization software tools. Aquaculture 318,355-363.
    Krogdahl, A., Penn, M., Thorsen, J., et al.,2010. Important antinutrients in plant feedstuffs for aquaculture:an update on recent findings regarding responses in salmonids. Aquacult. Res.41, 333-344.
    Krogdahl, A., Bakke-McKellep, A.M., Baeverfjord, G.,2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.).Aquacult. Nutr.9,361-371.
    Krogdahl, A., Bakke-McKellep, A.M., R(?)ed, K.H., Baeverfjord, G.,2000. Feeding Atlantic salmon (Salmo salar L.) soybean products:Effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquacult. Nutr.6,77-84.
    Krogdahl, A., Berg-Lea, T., Olli J.J.,1994. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhyncus mykiss). Comp. Biochem. Physiol.A,107A,215-219.
    Krogdahl, A., Penn, M., Thorsen, J., Refstie, S., Bakke, A.M.,2010. Important antinutrients in plant feedstuffs for aquaculture. An update on recent findings regarding mechanism of responses in salmonids. Aqua. Res.41,333-344.
    Krogdahl, A., Roem, A., Baeverfjord, G.,1995. Effects of soybean saponin, raffinose and soybean alcohol extract on nutrient digestibilities, growth and intestinal morphology in Atlantic salmon. Proceedings of the International Conference of Aquaculture '95 and the Satellite Meeting Nutrition and Feeding of Cold Water Species, pp.118-119. Ghent, Belgium, European Aquaculture Society. European Aquaculture Society Special Publication no.23.
    L'Hocine, L., Boye, J.I.,2007. Allergenicity of soybean:New developments in identification of allergenic proteins, cross-reactivities and hyposallergenization technologies. Crit. Rev. Food Sci. Nutr.47,127-143.
    Laemmli, U.K.,1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227,680-685.
    Lalles, J.P., Deval, E., Poneet, C.,1991. Mean retention time of dietary residues within the gastrointestinal tract of the young ruminant:a comparison of non-compartmental (algebraic) and compartmental (modelling) estimation methods. Anim. feed Sci. Tech.35,139-159.
    Leaver MJ, Villeneuve LAN, Obach A, et al.,2008. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genom.9, 299.
    Lehtinen, K.J., Mattsson, K., Tana, J., EngstroKm, C., Lerche, O., Hemming, J.,1999. Effects of wood-related sterols on the reproduction, egg survival and off-spring of brown trout, Salmo trutta lacustris (L.). Ecotoxicol. Environ. Saf.42,40-49.
    Li, T.G., Chiang, J.Y.L.,2009. Regulation of bile acid and cholesterol metabolism by PPARs. Ppar Res.501739.
    Li, D.F., Nelssen, J.L., Reddy, P.G., Blecha, F., Klemm, R., Goodband, R.D.,1991. Interrelationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs. Anim. Sci.69,4061-4069.
    Liener, I.,1980. Toxic Constituents of Plant Foodstuffs. Academic Press, New York.
    Lilleeng, E., Froystad, M.K., Ostby, G.C., Valen, E.C., Krogdahl, A.,2007. Effects of diet containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp. Biochem. Physiol.147A,25-36.
    Liu, Y.J., Tian, L.X., Liu, D.H.,2002. Influence of practical diet supplemented with free or coated lysine on the growth, plasma free amino acids and protein synthesis rate in the muscle of Ctenopharyngodon idellus (in Chinese with English Abstract). J. Fish China,26,252-258.
    Malinow, M.R., Mclaughlin, P., Papworth, L., Stafford, C., Kohler, G.O., Livingston, A.L. Cheeke, P.R.,1977. Effect of alfalfa saponins on intestinal cholesterol absorption in rats. Am. J. Clin. Nutr.30,2061-2067.
    Mansbach, Ⅱ C.M., Gorelick, F.,2007. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am. J. Physiol.293,645-650.
    Mansfield, G.S., Desai, A.R., Nilson, S.A., Van Kessel, A.G., Drew, M.D., Hill, J.E.,2010. Characterization of rainbow trout (Oncoyhynchus mykiss) intestinal microbiota and inflammatory marker gene expression in a recirculating aquaculture system. Aquaculture,307, 95-104.
    Masumoto, T., Bista, J.D., Itoh, Y., Hosokawa, H., Shimeno, S.,1999. Bioavailability of modified forms of methionine in yellowtail and rainbow trout. Bull. Mar. Sci. Fish. Kochi Univ.19,43-48.
    Mato, J.M., Alvarez, L., Ortiz, P., Pajares, M.A.,1997. S-Adenosylmethionine synthesis: Molecular mechanisms and clinical implications. Pharmacol. Ther.,73,265-280.
    Matsuura, M.,2001. Saponin in garlic as modifiers of the risk of cardiovascular disease. J. Nutr. 131,1000-1005.
    Mattsson, K., Tana, J., Engstrom, C., Hemming, J., Lehtinen, K.J.,2001. Effects of wood related sterols on the offspring of the viviparous blenny, Zoarces viviparus L. Ecotoxicol. Environ. Saf. 49,122-130.
    Minghetti, M., Leaver, M.J., Tocher, D.R.,2011. Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1.Biochim.Biophys.Acta.1811,194-202.
    Moghadasian, M.H.,2000. Pharmacological properties of plant sterols. In vivo and in vitro observations. Life Sci.67,605-615.
    Moghadasian, M.H., Frohlich, J.J.,1999. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis:clinical and experimental evidence. American J. Med.107,588-594.
    Morais S, Taggart JB, Guy DR, et al.,2011. Hepatic transcriptome analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon. BMC Genom.13,410.
    Mulero, I., Sepulcre, M.P., Meseguer, J., Garcia-Ayala, A., Mulero, V.,2007. Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. PNAS 104,19434-19439.
    Mulimani, V.H., Thippeswamy, S., Ramalingam,1997. Enzymatic degradation of oligosaccharides in soybean flours. Food Chemistry 59,279-282.
    Muller, P.Y., Janovjak, H., Miserez, A.R., et al.,2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32,1372-1374,1376,1378,1379.
    Murray, H.M., Leggiadro, C.T., Douglas, S.E.,2007. Immunocytochemical localization of pleurocidin to the cytoplasmic granules of eosinophilic granular cells from the winter flounder gill. J. Fish Biol.70,336-345.
    Niot I, Poirier H, Tran TT, et al.,2009. Intestinal absorption of long-chain fatty acids:evidence and uncertainties. Prog. Lipid Res.48,101-115.
    Nogowski, L., Nowak, K.W., Kaczmarek, P., Mackowiak, P.,2002. The influence of coumestrol, zearalenone, and genistein administration on insulin receptors and insulin secretion in ovariectomized rats. J. Recept. Signal Transduct. Res.22,449-457
    Oakenfull, D.G., Sidhu, G.S.,1990. Could saponin be a useful treatment for hypercholesterolemia? Eur. J. Clin. Nutr.44,79-88.
    Oakenfull, D.G.,1986. Aggregation of bile acids and saponin in aqueous solution. Aust. J. Chem. 39,1671-1683.
    O'Doherty, P., Kakis, G., Kuksis, A.,1973. Role of luminal lecithin in intestinal fat absorption. Lipids 8,249-255.
    Oleszek, W.A.,2002. Chromatographic determination of plant saponins. J. Chromatogr. A 967, 147-162.
    Oliveira, J.T.A. de, Pusztai, A., Grant, G.,1988. Changes in organs and tissues induced by feeding of purified kidney bean (Phaseolus vulgaris) lectins. Nutr. Res.8,943-947.
    Olli, J.J., Krogdahl, A.,1995. Dehulled solvent-extracted soybean meal as a protein source in diets for Atlantic salmon Salmo salar L.. Aquaculture Res.26,167-174.
    Olli, J.J., Krogdahl, A.,1994. Nutritive value of four soybean products as protein sources in diets for Rainbow trout (Oncorhyncus mykiss, Walbaum) reared in fresh water. Acta Agricultura Scandinavica,44:185-192.
    Olli, J.J., Krogdahl, A., Ingh, T., Brattas, L.E.,1994. Nutritive value of four soybean products in diets for Atlantic salmon. Acta. Agr. Scand. Sect. A:Anim. Sci.44,50-60.
    Olli, J.J., Krogdahl, A., Vabena, A.,1995. Dehulled solvent-extracted soybean meal as a protein source in diets for Atlantic salmon Salmo salar L.. Aquaculture Res.26,167-174.
    Olsen, R., Dragnes, B.T., Myklebust, R., et al.2003. Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout Oncorhynchus mykiss Walbaum. Fish Physiol. Biochem.29,181-192.
    Olsen, R.E., Myklebust, R., Kaino, T., et al.,1999. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem.21,35-44.
    Ortego, L.S., Hawkins, W.E., Walker, W.W., Krol, R.M., Benson, W.H.,1994. Detection of proliferating cell nuclear antigen in tissues of three small fish species. Biotech. Histochem.,69, 317-323.
    Panserat, S., Hortopan, G.A., Plagnes-Juan, E., et al.,2009. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture 294,123-131.
    Pereira, O., Rosa, E., Pires, M.A., Fontainhas-Fernandes, A.,2002. Brassica by-products in diets of rainbow trout(Oncorhynchus mykiss) and their effects on performance, body composition, thyroid status and liver histology. Anim. Feed Sci. Tech.101,171-182.
    Peres, H., Oliva-Teles, A.,2005. The effect of dietary protein repalcement by crystalline amino acid on growth and nitrogen utilizaiton of turbot Scophthalmus maximus juveniles. Aquaculture, 250,755-764.
    Peres, H., Lim, C., Klesius, P.H.,2003. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus). Aquaculture,225:67-82.
    Peterson, D.W. Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc. Soc. Biol. Med.78,143-147.
    Petruccelli, S., Chirdo, F.G., Anon, M.C.,2005. Immunochemical reactivity of soybean β-conglycinin subunits. Food Agr. Immunol.16,17-28.
    Peumans, W.J., Van Damme, E.J.M.,1995. Lectins as plant defense proteins. Plant Physiol.109, 347-352.
    Pimstone, N.R.,1964. A study of the starch-iodine complex:a modified colorimetric micro determination of amylase in biologic fluids. Chli. Chem.10,891-906.
    Potter, S.M., Jimenez-Flores, R., Pollack, J., et al.,1993. Protein saponin interaction and its influence on blood lipids. J. Agric. Food Chem.41,1287-1291.
    Power, D.M., Llewellyn, L., Faustino, M., Nowell, M.A., Bjomsson, B.T., Einarsdottir, I.E., Canario, A.V., Sweeney, G.E.,2001. Thyroid hormones in growth and development of fish. Comp. Biochem. Physiol. C 130,447-459.
    Pusztai, A., Clarke, E.M.W., Grant, G., King, T.P.,1981. The toxicity of Phaseolus vulgaris lectins: nitrogen balance and immunochemical studies. J. Sci. Food Agric.32,1037-1046.
    Pusztai, A., Ewen, S.W.B., Grant, G., Peumans, W.J., Van Damme, E.J.M., Rubio, L., Bardocz, S., 1990. The relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46,308-316.
    Refstie, S., Korsoen, O.J., Storebakken, T., Baeverfjord, G., Lein, I., Roem, A.J.,2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190,49-63.
    Refstie, S., Landsverk, T., Bakke-McKellep, A.M., Ring(?), E., Sundby, A., Shearer, K.D., Krogdahl, A.,2006. Digestive capacity, intestinal morphology, and microflora of 1-year and 2-year old Atlantic cod(Gadus morhua) fed standard or bioprocessed soybean meal. Aquaculture 261, 269-284.
    Refstie, S., Sahlstrom, S., Brathen, E., Baeverfjord, G., Krogedal, P.,2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon(Salmo salar). Aquaculture 246,331-345.
    Refstie, S., Storebakken, T., Baeverfjord, G. & Roem, A.J.,2001. Long term protein and lipid growth of Atlantic salmon(Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture,193,91-106.
    Refstie, S., Storebakken, T., Roem, A.J.,1998. Feed consumption and conversion in Altantic salmon(Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigenes. Aquaculture 162,301-312.
    Reite, O.B., Evensen,(?).,2006. Inflammatory cells of teleostean fish:A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish Shellfish Immunol.20,192-208.
    Reite, O.B.,1965. A phylogenetical approach to the functional significance of tissue mast cell histamine. Nature 206,1334-1336.
    Reite, O.B.,1972. Comparative physiology of histamine. Physiol. Rev.52,778-819.
    Richard, L., Blanc, P.P., Rigolet, V., Kaushik, S.J., Geurden, I.,2010. Maintenance and growth requiements for nitrogen, lysine and methionine and their utilisation efficiencies in juvenile black tiger shrimp, Penaeus monodon, using a factorial approach. Brit. J. Nutr.103,984-995.
    Ring(?), E., Sperstad, S., Myklebust, R., Refstie, S., Krogdahl, A.,2006. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L). The effects of fish meal, soybean meal and a bioprocessed meal. Aquaculture 261,829-841.
    Rodehutscord, M., Jacobs, S., Pack, M., Pfeffer, E.,1995. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 170 g to supplements of either 1-arginine or 1-threonine in a semipurified diet. J. Nutr.125,249-254.
    Rollin, X., Mambrini, T., Abboudi, T., Larondelle, Y., Kaushik, S.J.,2003. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon(Salmo salar L.) fry. Br. J. Nutr. 90,865-876.
    Romarheim OH, Skrede A, Gao Y, et al.,2006. Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss). Aquaculture 256,354-364.
    Romarheim OH, Skrede A, Penn M, et al.,2008. Lipid digestibility, bile drainage and development of morphological intestinal changes in rainbow trout(Oncorhynchus mykiss) fed diets containing defatted soybean meal. Aquaculture 274,329-338.
    Rombout, J.H.W.M., Lamers, C.H.J., Helfrich, M.H., Dekker, A., Taverne-Thiele, J.J.1985. Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res.,239,519-530.
    Roth, J.,1987. Subcellular organization of glycosylation in mammalian cells. Biochim. Biophys. Acta 906,405-436.
    Rumsey, G.L., Hughes, S.G., Winfree, R.A.,1993. Chemical and nutritional evaluation of soya protein preparations as primary nitrogen sources for rainbow trout(Oncorhynchus mykiss). Anim. Feed Sci. Tech.40,135-151.
    Rumsey, G.L., Siwicki, A.K., Anderson, D.P., Bowser, PR.,1994. Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet. Immunol. lmmunopathol.41,323-339.
    Saini, H.S.,1989. Legume seed oligosaccharides. In:Huisman, J., Van der Poel, A.F.B., Liener, I.E. (Eds) Recent Advances of Research in Antinutritional Factors in Legume Seeds. Pudoc, Wageningen, pp.329-341.
    Sala, R., Santamatria, C.A., Crespo, S.,2005. Growth of organ system of Dent ex dentex (L.) and Paetta maxima (L.) during laval development. J. Fish Biol.66,315-326.
    Sanden, M., Berntssen, M.H.G., Krogdahl, A., Hemre, G.I., Bakke-McKellep, A.M.,2005. An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. J. Fish Dis.,317-330.
    Sanders, D.J., Minter, H.J., Howes, D., Hepburn, P.A.,2000. The safety evalutation of phytosterol esters part 6. The comparative absorption and tissue distribution of phytosterols in the rat. Food Chem. Toxicol.38,485-491.
    Santigosa, E., Rodriganez, M.A.S., Rodiles, A., Barroso, F.G., Alarcon, F.J.,2010. Effect of diet containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus anrata L.). Aquac. Res.,41:187-198.
    Schuhmacher, A.C.W., Gropp, J.M.,1997. Plasma amino acids in rainbow trout(Oncorhynchus mykiss) fed intact protein or crystalline amino acid diet. Aquaculture,151,15-28.
    Schwab, L.W., Kloosterman, W.M.J., Konieczny, J., Loos, K.,2012. Papain catalyzed (co)Oligomerization of of α-amino acids. Polymers 4,710-740.
    Sharon, N., Lis, H.,1990. Legume lectins-a large family of homologous proteins. FASEB J.4, 3198-3208.
    Shi, J., Arunasalam, K., Yeung, D., et al.,2004. Saponin from edible legumes:chemistry, processing, and health benefits. J. Med. Food 7,67-78.
    Shi, Y.B., Wong, J., Puzianowska-Kuznicka, M., Stolow, M.A.,1986. Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis:roles of thyroid hormone and its receptors. Bio. Essays 18,391-399.
    Sire, M.F., Lutton, C., Vernier, J.M.,1981. New views on intestinal absorption of lipids in teleostean fishes:an ultrastructural and biochemical study in the rainbow trout. J. Lipid Res.22, 81-94.
    Sire, M.F., Vernier, J.M.,1992. Intestinal absorption of protein in teleost fish. Comp. Biochem. Phys. A,103,771-781.
    Sjolander, A., Cox, J.C.,1998. Uptake and adjuvant activity of orally delivered saponin and ISCOM (TM) vaccines. Adv. Drug Deliver. Rev.34,321-338.
    Smith, D.M., Tabrett, S.J., Irvin, S.J., Wakeling, J., Glencross, B.D., Harris, D.,2007. Response of the black tiger shrimp, Penaeus monodon to feed containing the lupin alkaloid, gramine. Aquaculture 272,556-563.
    SΦrensen, M., Penn, M., El-Mowafi, A., et al.,2011. Effect of stachyose, raffinose and soya-saponin supplementation on nutrient digestibility, digestive enzymes, gut morphology and growth performance in Atlantic salmon (Salmo salar, L). Aquaculture 314,145-152.
    Southon, S., Johnson, I.T., Gee, J.M., et al.,1988. The effect of Gypsophylla saponin in the diet on mineral status and plasma cholesterol concentration in the rat. Br. J. Nutr.59,49-55.
    Storebakken, T., Refstie, S., Ruyter, B.,2000. Soy products as fat and protein sources in fish feeds for intensive aquaculture. In:Drackley, J.K. (Eds.), Soy in Animal Nutrition. Fed Anim. Sci. Sco., Savoy, IL, USA, pp.127-170.
    Story, J.A., LePage, S.L., Petro, M.S., et al.,1984. Interactions of alfalfa plant and sprout saponin with cholesterol in vitro and in cholesterol-fed rats. Am. J. Clin. Nutr.39,917-929.
    Stroband, H.W.J., van der Veen, F.H.1981. Localization of protein absorption during transport of food in the intestine of the grasscarp, Ctenopharyngodon idella (Val.). J. Exp. Zool.,218,149-156.
    Stroband, H.W.J., Van Der Meer, H., Timmermans, L.P.M.1979. Regional function differenctiation in the gut of the grass carp, Ctenopharyngodon idella (Val.). Histochemistry,64: 235-249.
    Sugano, M., Goto, S., Kimoto, M., et al.,1990. Cholesterol lowering activity of various undigested fractions of soybean protein in rats. J. Nutr.120,977-985.
    Sugano, M., Morioka, H., Kida, Y.,Ikeda, Y.,1978. The distribution of dietary plant sterols in serum lipoproteins and liver subcellular fractions of rats. Lipids 13,427-432.
    Sun, P., Li, D., Dong, B., Qiao, B.D., Ma, X.,2008. Effects of soybean glycinin on performance and immune function in early weaned pigs. Arch. Anim. Nutr.62,313-321.
    Sveinbj(?)rmsson, B., Olsen, R., Paulsen, S.,1996. Immunocytochemical localization of lysozyme in intestinal eosinophilic granule cells (EGCs) of Atlantic salmon, Salmo salar L. J. Fish dis.,19, 349-355.
    Szmola, R., Sahin-Toth, M.,2007. Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin:Identity with Rinderknecht's enzyme Y. Proc. Natl. Acad. Sci. USA 104, 11227-11232.
    Tacon, A.G., Metian, M.,2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds:trends and future prospects. Aquaculture 285,146-158.
    Tacon, A.G.J., Barg, U.C.,1998. Major challenges to feed development for marine and diadromous finfish and crustacean species. In:Tropical Mariculture pp.171-208. Academic press. San Diego.
    Tacon, A.G.J.,1994. Feed ingredients for carnivorous fish species:alternatives to fishmeal and other fishery resources. FAO Fish Circ.881,35.
    Tajiri, H., Klein, R.M., Lebenthal, E., Lee, P.C.,1988. Oral feeding of isolated lectins from red kidney bean stimulates rat small intestinal mucosal DNA synthesis and crypt cell division. Dig. Dis.Sci.33,1364-1369.
    Tarade, K.M., Singhal, R.S., Jayram, R.V., Pandit, A.B.,2006. Kinetics of degradation of saponins in soybean flour (Glycine max.) during food processing. J. Food Eng.76,440-445.
    Tarlton, J.F., Whiting, C.V., Tunmore, D., Bregenholt, S., Reimann, J., Claesson, M.H., Bland, P.W.,2000. The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis of a murine model of colitis. Am. J. Pathol.157,1927-1935.
    Teshima, S., Alam, M.S., Ishikawa, M., Kanazawa, A.,2002. Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicus (Bate). Aquac. Res.33,395-402.
    Teshima, S., Ishikawa, M., Alam, M.S., Koshio, S., Michael, F.R.,2004. Supplemental effects and metabolic fate of crystalline arginine in juvenile shrimp Marsupenaeus japonicus. Comp. Biochem. Physiol.,137,209-217.
    Thorsen, J., Lilleeng, E.,Valen, E.C. Krogdahl, A.,2008. Proteinase-activated receptor-2:two potential inflammatory mediators of the gastrointestinal tract in Atlantic salmon. J. Inflamm. (London) 5,18.
    Tocher, D.R.,2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci.11,107-184.
    Tocher, D.R., Bendiksen, E.A., Campbell, P.J., et al.,2008. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280,21-34.
    Torstensen, B.E., Espe, M., Stubhaug, I., et al.,2011. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br. J. Nutr.106, 633-647.
    Twibell, R.G., Wilson, R.P.,2004. Preliminary evidence that cholesterol improves growth and feed intake of soybean meal-based diets in aquaria studies with juvenile channel catfish, lctalurus punctatus. Aquaculture 236,539-546.
    Uran, P.A., Aydin, R., Schrama, J.W., Verreth, J.A.J., Rombout, J.H.W.M.,2008. Soybean meal-induced uptake block in Atlantic salmon Salmo salar distal enterocytes. J. Fish Bio. 73:2571-2579.
    Uran, P.A., Goncalves, A.A., Taverne-Thiele, J.J., Schrama, J.W., Verreth, J.A.J., Rombout, J.H.W.M.,2008. Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol.25,751-760.
    Uran, P.A., Schrama, J.W., Rombout, J.H.W.M., Taverne-Thiele, J.J., Obach, A., Koppe, W., Verreth, J.A.J.,2009. Time-related changes of the intestinal morphology of Atlantic salmon, Salmo salar L., at two different soybean meal inclusion levels. J. Fish Dis.32,733-744.
    Van den Ingh, T.S.G.A.M., Krogdahl, A., Olli, J., Hendricks, H.G.C.J.M., Koninkx, J.F.J.G.,1991. Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar):a morphological study. Aquaculture 9,297-305.
    Van den Ingh, T.S.G.A.M., Olli, J.J., Krogdahl, A.,1996. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo salar L. J. Fish Dis.19,47-53.
    Venold, F.F., Penn, M.H., Thorsen, J., et al.,2013. Intestinal fatty acid binding protein (fabp2) in Atlantic salmon(Salmo salar):Localization and alteration of expression during development of diet induced enteritis. Comp. Biochem. Physiol. A 164,229-240.
    Venold, F., Chikwati, E., Penn,M., Madibana Molatelo, J., Bakke, A.M., Rohloff, J., Guttvik, A., Hillestad, M., Refstie, S., Krogdahl, A.,2010. The effect of saponin supplementation to plant feeds on the growth performance, digestibility, and retention in Atlantic salmon. XIV International Symposiumon Fish Nutrition and Feeding, Qingdao, China, May 31-June 4,2010. Abstract P342.
    Vilhelmsson, O.T., Martin, S.A.M., Medale, F., et al.,2004. Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr.92,71-80.
    Vincken, J., Heng, L., Groot, A., Gruppen, H.,2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68,275-297.
    Wang, H., Du, J., Lu, S., et al.,2001. Regulation of intestinal apolipoprotein A-I synthesis by dietary phosphatidylcholine in newborn swine. Lipids 36,683-687.
    Wee, K.L., Shu, S.W.,1989. The nutritive value of boiled full-fat soybean in pelleted feed for Nile tilapia. Aquaculture 81,303-314.
    Williams, K., Barlow, C., Rodgers, L.,2001. Efficacy of crystalline and protein-bound amino acid enrichment of diets for barramundi/Asian sea bass (Lates calcarifer Bloch). Aquac. Res.32, 415-429.
    Wilson, M., Bengten, E., Miller, N.W., Clem, L.W., DuPasquier, L., Warr, G.W.,1997. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. PNAS 94,4593-4597.
    Wilson, S., Blaschek, K., deMejia, E.G.,2005. Allergenic proteins in soybean:processing and reduction of P34 allergenicity. Nutr. Rev.63,47-58.
    Winartasaputra, H., Mallet, V.N., Kuan, S.S., Guilbault, G.G.,1980. Fluorometric and colorimetric enzymic determination of triglycerides (triacylglycerols) in serum. Chli. Chem.26,613-617.
    Wu, S., Murphy, P.A., Johnson, L.A., Fratzke, A.R., Reuber, M.A.,1999. Pilot-plant fractionation of soybean glycinin and β-conglycinin. J. Am. Oil Chem. Soc.76,285-293.
    Yamamoto, T., Suzuki, N., Furuita, H., et al.,2007. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fish Sci. 73,123-131.
    Yang, J., Chin, Y.C., Jiang, B., Yu, X., Zhu, G.Z., Chen, Y, Barnard, J., Mei, W.,2009. hnRNP I inhibits notch signaling and regulates intestinal epithelial homeostasis in the zebrafish. PLoS Genet,5:e 1000363.
    Yuan, Y.C., Gong, S.Y., Yang, H.J., Lin, Y.C., Yu, D.H., Luo, Z.,2011. Effects of supplementation of crystalline or coated lysine and/or methionine on growth performance and feed utilization of the Chinese sucker, Myxocyprinus asiaticus. Aquaculture,316,31-36.
    Yun, B., Mai, K.S., Zhang, W.B., et al.,2011. Effects of dietary cholesterol on growth performance, feed intake and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 319,105-110.
    Zaja, R., Munic, V., Klobucar, R.S., et al.,2008. Cloning and molecular characterization of apical efflux transporters (ABCB1, ABCB11 and ABCC2) in rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol.90,322-332.
    Zarate, D.D., Lovell, R.T.,1997. Free lysine (L-lysine.HC1) is utilized for growth less efficiently than protein-bound lysine (soybean meal) in practical diets by young channel catfish (lctalurus punctatus). Aquaculture 159,87-100.
    Zhao, C.Y., Dahlman-Wright, K.,2010. Liver X receptor in cholesterol metabolism. J. Endocrinol. 204,233-240.
    Zhao, Y., Qin, G.X., Sun, Z.W., Zhang, X.D., Bao, N., Wang, T., Zhang, B., Zhang, B.L., Zhu, D., Sun, L.,2008. Disappearance of immunoreactive glycinin and β-conglycinin in the digestive tract of piglets. Arch. Anim. Nutr.62,322-330.
    邓君明.动植物蛋白对牙鲆摄食、生长和蛋白及脂肪代谢的影响.中国海洋大学博士学位论文.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700