用户名: 密码: 验证码:
不合理施肥引起的稻田生态系统退化机理及其施肥修复效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探明不合理施肥导致的稻田生态系统的退化机理及针对不合理施肥导致的退化稻田生态系统的修复技术,开展了以下3方面的研究:第一,利用设立在不同水稻土条件下的长期定位施肥肥效监测试验,研究各种施肥模式下稻田土壤肥力质量的演变规律;第二,通过盆栽试验,以湖南具有代表性的健康水稻土——红黄泥和河潮泥为供试土壤,研究了不合理施肥引起的稻田生态系统退化的动力学特征;第二,通过盆栽试验,研究了不同施肥措施对因长期缺施氮磷钾肥、长期缺施磷肥、长期缺施钾肥导致的退化水稻土的修复效应。所得主要研究结果如下。
     长期不同施肥定位试验结果证明:(1)长期不施肥使土壤全量氮磷钾、有效态氮磷钾含量下降,而施用化肥、有机肥则会提高土壤全量氮磷钾、有效态氮磷钾含量上升,且增施有机肥促进全量和有效态氮磷钾养分的增加。(2)与长期不施肥比较,长期施肥处理使含钙相对较低的黄泥田、河沙泥、红黄泥中交换性钙含量显著提高,尤以OM3O处理的效果最明显;使含钙较高的青灰泥、白鳝泥、紫潮泥中交换性钙含量显著降低,尤以NPK处理降低最明显。而长期施肥处理使含镁较多的黄泥田、河沙泥、青灰泥、白鳝泥、紫潮泥的交换性镁下降,而使含镁较少的红黄泥交换性镁含量显著上升。NPK处理使含硫较高的黄泥田、青灰泥、白鳝泥、紫潮泥有效硫含量升高,使含硫较低的红黄泥有效硫含量降低;OM3O、OM6O使所有试验水稻土有效硫含量升高。施用钙镁磷肥和有机肥能够提高土壤有效硅含量。(3)与长期不施肥比较,长期施肥使黄泥田、红黄泥、河沙泥有效硼含量升高,而对青灰泥、白鳝泥、紫潮泥有效硼影响不明显;长期NPK处理使土壤有效铜含量降低,而长期配施有机肥使土壤有效铜升高;施肥使黄泥田、河沙泥、青灰泥、白鳝泥土壤有效铁含量升高,使红黄泥、紫潮泥土壤有效铁含量较低;除新化河沙泥外,长期有机无机肥配合施用使供试土壤有效锌含量升高,而长期NPK处理使含锌较高的黄泥田、河沙泥、青灰泥土壤有效锌含量降低,使含锌较低的红黄泥、白鳝泥、紫潮泥土壤有效锌含量升高;除使紫潮泥、新化的河沙泥有效锰含量显著升高外,长期NPK处理对其他供试土壤有效锰影响不显著,而长期有机无机肥配合施用使河沙泥、紫潮泥有效锰含量显著提高,红黄泥、白鳝泥有效锰含量显著降低,但对青灰泥、黄泥田有效锰影响不显著。(4)长期NPK处理对土壤的阳离子交换量影响不大,而长期配施有机肥处理明显增大土壤的阳离子交换量,且随着有机肥施用量的增加,土壤CEC值均增加。(5)NPK处理提高红黄泥(临澧点)、青灰泥(武岗点)中粘粒含量,降低其他土壤中粘粒含量;OM3O降低青灰泥(武岗点)和紫潮泥(南县点)粘粒含量,提高其他土壤中粘粒含量;OM6O提高黄泥田(桃江点)和河沙泥(宁乡点)中粘粒含量提高,降低其他土壤中粘粒含量。施肥对粉粒的影响与对粘粒相反。(6)NPK提高黄泥田(桃江点)、河沙泥(宁乡点)、青灰泥(武岗点)、紫潮泥(南县点)细砂粒含量,降低红黄泥、河沙泥、白鳝泥中细砂粒含量。OM3O提高黄泥田(桃江点)、河沙泥(宁乡点)、红黄泥(临澧点)、紫潮泥(南县点)中细砂粒含量,降低河沙泥(新化点)、白鳝泥、青灰泥中细砂粒含量;OM6O提高河沙泥(宁乡点)中细砂粒含量,降低其余土壤中细砂粒含量。施肥对粗砂粒的影响与之相反。(7)供试土壤小于20um的颗粒中,河沙泥(宁乡点)以高岭石为主,水云母其次,其他土壤均以水云母为主,高岭石其次,1.4nm矿物最少。不同处理之间,白鳝泥中CK处理水云母含量与NPK处理接近,比OM6O显著降低;其他土壤中CK处理使小于20um的土壤颗粒中水云母含量明显高于NPK、OM6O处理或与NPK、OM6O处理相近。各供试土壤NPK处理的高岭石、1.4nm矿物含量的变化与水云母呈相反趋势。
     不合理施肥引起的稻田生态系统退化的动力学特征是:(1)重施氮肥首先使水稻植株生长受阻,同时改变土壤微生物种群结构,从而直接使水稻产量降低,稻田土壤生产力受损,并产生一系列不良次级反应:水稻生理活动减弱减少了根系分泌量,同时也降低了土壤Eh,使稻田土壤细菌、放线菌数量降低,MBC、MBN以及MBP含量下降,微生物保肥、供肥能力降低,从而土壤微生物生态系统功能弱化。与此同时,由于水稻对氮肥的利用效率下降,氮素流失加重,对环境产生严重影响。(2)重施有机肥由于氮磷钾养分供给平缓,水稻生长并未受阻,稻谷产量稳定,土壤有效N、P、K养分以及有机质含量稳步提高;同时,水稻的正常生长以及有机肥的输入提高了土壤微生物数量及微生物生物量C、N、P含量,增强了土壤微生物活度,从而强化了土壤微生物有效养分库的功能。但有机肥的过量输入使土壤中水溶性大、中、微量养分含量迅速增加,加速了水稻土大、中、微量养分的流失,并对环境造成严重危害。(3)不施肥处理由于土壤氮磷钾养分耗竭,水稻生长受阻,生物量小,根系分泌量少,微生物数量及微生物生物量C、N、P含量降低,微生物生态系统功能下降,土壤肥力降低。但因为土壤养分耗竭,大中微量养分的流失程度很小,全部都在安全范围内。
     不同施肥技术对长期缺肥水稻土的修复效应是:通过平衡施肥,水稻正常生长,一方面提高了水稻产量,另一方面也使土壤微生物生态系统形成良性循环:由于水稻生理活动旺盛,其根系分泌量大,泌氧多,土壤微生物数量、微生物活度以及微生物生物量C、N、P显著提高,从而强化了微生物的保肥供肥能力,增强了土壤微生物生态系统功能。从土壤肥力和微生物生态系统质量的修复效果看,各施肥处理皆显著提高土壤有机质、有效态氮磷钾含量以及微生物有益特征指标,尤以水稻专用肥配施有机肥(ZYM)处理综合效果最佳。从养分流失看,修复处理大、中、微量养分流失虽比不施肥处理加重,但修复处理下水稻一生中大部分时段养分流失仍维持在安全范围内,其中以ZYM处理流失程度最轻。
     不同施肥技术对长期缺施钾肥水稻土的修复效应是:通过补施钾肥及有机肥的平衡施肥措施,水稻正常生长,一方面提高了水稻产量,另一方面也使土壤微生物生态系统形成良性循环:由于水稻生理活动旺盛,其根系分泌量大,泌氧多,各修复处理下稻田土壤细菌数量、微生物活度、MBC、MBP及MBN含量显著提高,从而强化了微生物的保肥供肥能力,增强了微生物生态系统功能。从土壤肥力和微生物生态系统质量的修复效果看,各修复处理皆显著提高速效钾含量以及微生物有益特征指标,其中以NPKSi、NPhKM处理综合效果最佳。从养分流失看,修复处理大、中、微量元素养分流失虽比不施钾肥处理加重,但修复处理下水稻一生中大部分时段养分流失仍维持在安全范围内,其中以NPKSi、NPKM处理流失程度最轻。
     不同施肥技术对长期缺施磷肥水稻土的修复效应是:通过补施磷肥及有机肥的平衡施肥措施,水稻正常生长,一方面提高了水稻产量,另一方面也使土壤微生物生态系统形成良性循环:由于水稻生理活动旺盛,其根系分泌量大,泌氧多,各修复处理下稻田土壤细菌数量、MBP及MBN含量显著提高,从而强化了土壤微生物的保肥供肥能力,增强了土壤微生物生态系统功能。从土壤肥力和微生物生态系统质量的修复效果看,各修复处理皆显著提高有效磷含量以及微生物有益特征指标,其中以增施磷肥配施有机肥(NKhPM)处理综合效果最佳。从养分流失看,修复处理大、中、微量元素养分流失虽比不施钾肥处理加重,但修复处理下水稻一生中大部分时段养分流失仍维持在安全范围内,其中以NKhPM处理流失程度最轻。
     基于以上的修复效果,建议缺肥土壤的修复以施用水稻专用肥及适量的有机肥为佳,缺钾稻田土壤的修复以平衡施肥配施硅肥及适量的有机肥为佳,缺磷稻田土壤的修复以增施磷肥及适量的有机肥为佳。
The degradation of paddyfield ecosystem due to unreasonable fertilization is becoming a serious problem which may impact the rural economy and sustainable agriculture. To prove up the mechanism of paddyfield ecosystem's degradation and the techniques for restoring paddyfield ecosystem degraded, a studying task was set up with three aspects: the first was the experiment that carried out under unreasonable fertilization; the second was ones for restoring paddy soils' degradation due to either deficiency of all of nitrogen, phosphorous, and potassium, or deficiency of phosphorous, or deficiency of potassium; the last was to study the regularity of paddy soil quality's change under various fertilization based on seven experimental sites in Hunan province for long time. The main results were summarized as follows.
     The results of long term fertilization experiment with various fertilizations are as follows. (1) The contents of total and available nitrogen, phosphorus, and potassium under CK (deficiency of fertilizer) were decreased, and that under application of chemical fertilizer and organic manure were increased. Application of organic manure could enhance the content of total and available nitrogen, phosphorous, and potassium. (2) The contents of exchangeable calcium were increased significantly under fertilization treatments, in which the order for increasing exchangeable Ca value in the same soil was: OM30> OM60> NPK> CK, in Yellow clayey earth, Alluvial sandy earth, and Reddish yellow clayey earth, in which content of calcium was less; contrarily, the contents under CK in Blue gray clayey earth, whitish clayey earth, and Purple tidal clayey earth, in which contents of calcium was more, were much higher than that under NPK, OM30, and OM60, in which the exchangeable Ca value negatively correlated to the amount of organic manure applied. The contents of exchangeable magnesium under fertilization treatments decreased in Purple tidal clayey earth, Blue gray clayey earth, Alluvial sandy earth, Yellow clayey earth, and Whitish clayey earth, but increased significantly in Reddish yellow clayey earth. The contents of available sulfur under NPK treatment were more than that under CK in Purple tidal clayey earth, Blue gray clayey earth, Yellow clayey earth, and Whitish clayey earth, which have a high sulfur concentration, and less in Alluvial sandy earth and Reddish yellow clayey earth which have a low sulfur concentration; however, the contents of available sulfur under OM30 and OM60 were increased in all the experimental soils. The contents of available silicon also rose under fertilization treatments in all experimental soils. (3) Compared with CK, the contents of available B, available Cu, and available Zn in the paddy soils under fertilization treatments are either increased through freeing the trace elements from which fixed in soil by increasing organic matter and inputting B, Cu, and Zn with long term fertilization, or decreased through the plants with larger biomass taking in more available B, Cu, and Zn under NPK treatment for long term; the contents of available Fe and Mn rise with the Eh and pH declining in paddy soils and inputting Fe and Mn for fertilizing with organic manure, decline with pH rising and organic matter's adsorption intensifying. (4) The values of CEC were enhanced in various test soil as the amount of organic manure applied increasing. (5) The contents of clay particle were increased in Reddish yellow clay earth and Blue clay earth, and decreased in the other test soils under NPK treatment. Under OM30 treatment, the contents of clay particle were decreased in Blue clay earth and Purple tidal earth, and increased in the other test soils. Under OM60 treatment, the contents of clay particle were enhanced in Yellow clay earth and Alluvial sandy earth, declined in the other test soils. The change of silt content was just reverse. (6) Under NPK treatment, the contents of fine sand were increased in Yellow clay earth, Blue clay earth, Alluvial sandy earth, and Purple tidal clay earth, and decreased in Reddish clay earth and Whitish clay earth. Under OM30 treatment, the contents of fine sand were increased in Yellow clay earth, Alluvial sand earth, Reddish yellow clay earth, and Purple tidal clay earth, decreased in rest test soils. Under OM60 treatment, the content of fine sand in Alluvial sand earth (Lingxiang site) increased, decreased in the rest test soils. The change of coarse grain content was just reverse. (7) In the soil particle which size less than 20 urn, the order of content of various clay mineral was: illite > kaolilite > 1.4nm mineral, in all of experimental soil except Alluvial sandy earth in Linxiang which order of that was: kaolilite> illite> 1.4nm mineral. The contents of illite in soils under CK treatment were higher than that under NPK and OM60 treatment except Whitish clay earth, in which the order of treatment for content of illite increasing was: OM60> NPK> CK. The content of kaolilite and 1.4nm mineral were changed in a reverse trend as illite were in various type of paddy soil.
     The kinetics of degradation of healthy paddyfield ecosystem due to unreasonable fertilization are as follows. (1) The rice growth was interfered and the structure of microbe population was altered through applying excessive nitrogen fertilizer, while the yield of rice was decreased later and the secretion was reduced from rice root, which induced the Eh and the quantities of Bacterium and Actinomycetes declining, and the contents of MBC, MBN, MBP low in the soil. All of that made the capacity of accommodating nutrient weak in microbe ecosystem. At the same time, the environment of paddy field was impacted severely due to leaching loss of N nutrient because of low utilization efficiency of nitrogen fertilizer. (2) Application of excessive organic manure did not interfere the rice growth and the structure of microbe population because of it's releasing N, P, and K nutrition mildly. As a result, the rice yield stabilized, and the content of organic matter, available N, P, and K increased gradually. On the other hand, the quantities of microbe and the content of MBC, MBN, and MBP rose, and the value of microbial activity were higher due to rice growing normally and inputting organic manure. However, leaching loss of macronutrient, secondary element nutrient, and micronutrient intensified due to the concentration of dissolved of all the nutrient increasing after inputting excessive organic manure. (3) Under deficiency of fertilizer, the rice grew slowly and the biomass was less than that under other treatments due to exhaustion of nutrient in soil. As a result of that, the quantities of microbe and the content of MBC, MBN, and MBP decreased in the soil. However, the leaching loss of various nutrient was lower than that under other fertilization treatments and confined in range of permission.
     The restoring effects of various fertilizations on the degraded paddy soils with deficiency of N, P, and K nutrients are as follows. The rice growing normally through balanced fertilization induced the rice yield increasing and forming a benign circulation among the paddy soil microbe ecosystem: the quantity of microbe, the microbial activity, and the content of MBC, MBN, and MBP increased significantly due to large amount of secretion and oxygen from rice root. So the capacity of accommodating nutrition in microbe ecosystem was strengthened, and the function of microbe ecosystem in paddy soil was enhanced. All of the restoring treatments increased the content of organic matter, available nitrogen, available phosphorous, available potassium, and the beneficial values of microbial character, especially, the ZYM had the best effects in all of treatments. Although the leaching loss of nutrient in restoring treatments were severer slightly than CK (deficiency of fertilizer) in the initial stage of rice growth, the concentration of various nutrient in leaching water was confined in safety to environment in most parts of period of rice duration, and under ZYM the value of the concentrations in leaching water was the lowest.
     The restoring effects of various fertilizations on the degraded paddy soils with deficiency of K fertilizer are as follows. The rice growing normally through adding potassium fertilizer and organic manure induced the rice yield increasing and forming a benign circulation among the paddy soil microbe ecosystem: the quantity of microbe, the microbial activity, and the content of MBC, MBN, and MBP increased significantly due to large amount of secretion and oxygen from rice root. So the capacity of accommodating nutrition in microbe ecosystem was strengthened, and the function of microbe ecosystem in paddy soil was enhanced. All of the restoring treatments increased the content of organic matter, available nitrogen, available phosphorous, available potassium, and the beneficial values of microbial character, especially, the NPhKM had the best effects in all treatments. Although the leaching loss of nutrient in restoring treatments were severer slightly than CK (deficiency of potassium fertilizer) in the initial stage of rice growth, the concentration of various nutrient in leaching water was confined in safety to environment in most parts of period of rice duration, and under NPKSi and NPKM the value of the concentration in leaching water was the lowest.
     The restoring effects of various fertilizations on the degraded paddy soils with deficiency of phosphorous fertilizer are as follows. The rice growing normally through adding phosphorous fertilizer and organic manure induced the rice yield increasing and forming a benign circulation among the paddy soil microbe ecosystem: the quantity of microbe, the microbial activity, and the content of MBC, MBN, and MBP increased significantly due to large amount of secretion and oxygen from rice root. So the capacity of accommodating nutrition in microbe ecosystem was strengthened, and the function of microbe ecosystem in paddy soil was enhanced. All of the restoring treatments increased the content of organic matter, available nitrogen, available phosphorous, available potassium, and the beneficial values of microbial character, especially, the NKhPM had the best effects in all treatments. Although the leaching loss of nutrient in restoring treatments were severer than CK (deficiency of phosphorous fertilizer) in the initial stage of rice growth, the concentration of various nutrient in leaching water was confined in safety to environment in most parts of period of rice duration, and under NKhPM the value of the concentration in leaching water was the lowest.
     Based on all the restoring effects, the treatment to restore paddy soil with deficiency of fertilizer should be chosen to apply rice special fertilizer and reasonable amount of organic manure, the treatment to restore paddy soil with deficiency of potassium fertilizer should be chosen to add reasonable amount of potassium fertilizer and organic manure, and the treatment to restore paddy soil with deficiency of phosphorous fertilizer should be chosen to apply more phosphorous fertilizer and reasonable amount of organic manure.
引文
[1]吕晓男,孟赐福,麻万诸,等.土壤质量及其演变[J].浙江农业学报,2004,16(2):105-109.
    [2]全国士壤普查办公室.中国土壤[M],北京:中国农业出版社,1998:236-237.
    [3]Anderson T H,Domsch K h.Application ofecophysiologicai quotients(qCO_2 and qO) on microbial biomass from soils of different cropping histories[J].Soil Biology and Biochemistry,1990,22:251-255.
    [4]Duxnury J M,Nkambuli S V.in:Defining Soil Quality for a Sustainable Environment[M].125-146.SSSA,Madison,Wisconsin USA,1994.
    [5]Masto R E,Chhonkar P K,Singh D,et al.Alternative soil quality indices for evaluating the effect of intensive cropping,fertilisation and manuring for 31 years in the semi-arid soils of India[J].Environ Monit Assess,2008,136:419-435
    [6]Kennedy A C,Papendick R J.Microbial characteristics of soil quality[J].Journal of Soil and Water conservation,1995,50:243-248.
    [7]Gijsman A J,Oberson A,Friesen D K,Thomas J I,et al.Nutrient cycling through microbial biomass under rice-pasture rotations replacing native savanna[J].Soil Biol.Biochem,1997,29:1433-1441.
    [8]Paul E A,Clark F E.Components of the soil biota.In:Soil Microbiology and biochemistry[M].London:Academic Press,1996:71-107.
    [9]Anderson T H,Domsch K H.Ratios of microbial biomass carbon to total organic carbon in arable soils [J].Soil Biol.Biochem.,1989,21:471-479.
    [10]Dick R P,Breakwill D,Turco R.Soil enzyme activities and biodiversity measurements as integrating biological indicators[M].In:Doran J W and Jones A J Editors,Handbook of methods for Assessment of soil quality,SSSA,Madison USA,1996:247-242.
    [11]李学垣主编.土壤化学[M].北京:高等教育出版社,2001.212-215.
    [12]薛南冬,廖柏寒,周细红.施氮对长沙地区两种水稻土铝及盐基离子溶出的影响[J].湖南农业大学学报(自然科学版),2001,27(2):134-138.
    [13]杨忠芳,陈岳龙,钱熏,等.土壤pH对镉存在形态影响的模拟实验研究[J].地学前缘,2005,12(1):252-259.
    [14]王火焰,周健民,陈小琴,等.氮磷钾肥料在土壤中转化过程的交互作用Ⅱ.硫酸铵在水稻土中的转化[J].土壤学报,2005,42(1):70-77.
    [15]Iqbal M T,Tian Guangming,Liang Xinqiang,et al.Measurement of ammonia emission following surface application of urea fertilizer from irrigated Paddy Rice Fields[J].Agricultural Sciences in China,2005,4(4):288-293.
    [16]单艳红,杨林章,沈明星,等.长期不同施肥处理水稻土磷素在剖面的分布与移动[J].土壤学报,2005,42(6):970-975.
    [17]娄运生,李忠佩,张桃林.不同水分状况及施磷量对水稻土中速效磷含量的影响[J].土壤(Soils),2005,37(6):640-644.
    [18]赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失[J].农村生态环境,2005,21(3):29-33.
    [19]王海霞,殷秀琴,周道玮.松嫩草原区农牧林复合系统中小型土壤动物群落生态研究[J].应用生 态学报,2003,14(10):1715-1718.
    [20]奚振帮.化学肥料学[M].北京:科学出版社,1994:126
    [21]周卫军,王凯荣.不同农业施肥制度对红壤稻田土壤磷肥力的影响[J].热带亚热带土壤科学,1997,6(4):231-234.
    [22]王绍明.不同施肥方式下紫色水稻土土壤肥力变化规律研究[J].农村生态环境,2000,16(3):23-26.
    [23]潘伟彬,李延,庄卫民,等.施肥对红壤性水稻土锌铜形态及有效性的影响[J].福建农业学报,2000,15(2):45-49.
    [24]张扬珠,刘学军,李法云,等.耕型红壤和红壤性水稻土铜的化学形态及其有效性[J].土壤通报,2000,31(5):210-212.
    [25]李恋卿,郑金伟,潘根兴,等.太湖地区不同土地利用影响下水稻土重金属有效性库变化[J].环境科学,2003,24(3):101-104.
    [26]成杰民,潘根兴等.太湖地区水稻土pH及重金属元素有效性含量变化影响因素初探[J].农业环境保护,2001,20(3):141-144
    [27]刘铮.微量元素的农业化学[M].北京:农业出版社,1991:108-267
    [28]Liang Yongchao,Yang Yanfang,Yang Chaoguang,et al.Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil[J].Geoderma,2003,115:149-160.
    [29]金棵,王晓娟,李成才,等.利用垃圾堆肥改良水稻土Ⅱ.对水稻土中重金属含量和花卉生长的影响[J].应用与环境生物学报,2003,9(4):400-404.
    [310]蔡全英,莫测辉,吴启堂,等.水稻土施用城市污泥后土壤中多环芳烃(PAHs)的残留[J].土壤学报,2002,39(6):887-891.
    [31]Mazur K,Wojtas A.Influence of many years' fertilization on chemical and physical-chemical soil properties Trans 14~(th) Inter[J].Soil Science,1990,4:26-28.
    [32]Suzuki M,Kamekawa K,Sekiya S,et al.Effect of continuous application of organic or inorganic fertilizer for sixty years on soil fertility and rice yield in paddy field Trans 14~(th) Inter[J].Soil Science,1990,4:14-19.
    [33]Lemenih M,Karltun E,olsson M.Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia[J].Agriculture,Ecosystems and Environment,2004,29:1-14.
    [34]Lefroy R D B,Blair G J.The dynamics of soil organic matter changes resulting from cropping[C].15th World Congress of Soil science,1994:235-245.
    [35]Blair G J,Lofroy R D B.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J].Agricultural Resource.1995,46:1459-1466.
    [36]谭周进,冯跃华,刘芳,等.稻作制与有机肥对红壤水稻土微生物及酶活性的影响研究[J].中国生态农业学报,2004,12(2):121-123.
    [37]黄运湘,张杨珠,刘鹏,等.稻作制与有机肥及地下水位对水稻土硫素状况的影响Ⅰ.全硫和有效硫含量.湖南农业大学学报(自然科学版),2001,27(3):205-208.
    [38]Andersen M K,Henrik H N,Jensen H H,et al.Competition for and utilisation of sulfur in sole and intercrops of pea and barley[J].Nutrient Cycling in Agroecosystem,2007,77:143-153.
    [39]Wang L F,Cai Z C,Yan H.Nitrous oxide emission and reduction in a laboratory—incubated paddy soil response to pretreatment of water regime[J].Journal of Environmental Sciences,2004,16(3):353-357.
    [40]Hu S,Bruggen A H C.Microbial dynamics associates with multiphase decomposition of 14C-labeled in soil[J].Microbial Ecology,1997,33:134-143.
    [41]颜晓元,施书莲,杜丽娟,等.水分状况对水田土壤N_2O排放的影响[J].土壤学报,2000,37(4):482-489.
    [42]Krnova M,Masscheleyn P H,Lindau C W,et al.Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential[J].Water,Air,and Soil Pollute,1992,61:37-45.
    [43]Davidson E A,Swank W T.Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitfification[J].Applied Environment Microbial,1986,52:1287-1292.
    [44]Devevre O C,Horwath W R.Decomposition office straw and microbial carbon use efficiency under different soil temperatures and moistures[J].Soil Biology & Biochemistry,2000,32:1773-1785.
    [45]谢学俭,冉炜,沈其荣,等.田间条件下~(32)P在淹水水稻土中的垂直运移[J].南京农业大学学报,2003,26(3):56-59.
    [46]刘学军,廖晓勇,张扬珠,等.不同稻作制对红壤性水稻土中锰剖面分布的影响[J].生态学报,2002,22(9):1440-1445.
    [47]谢晓梅,廖敏,黄昌勇,等.除草剂苄嘧磺隆对稻田土壤微生物活性和生物化学特性的影响[J].中国水稻科学,2004,18(1):67-72.
    [48]Sparling G P,Ord B G,Vaughan D.Changes in microbial biomass and activity in soils amended with phenolic acids[J].Soil Biol Biochem,1981,13:455-460.
    [49]姚斌,汪海珍,徐建民,等.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-354.
    [50]Abid S,Lial M,Huang Changyong,et al.Alteration of certain soil microbiological and biochemical indices of a paddy soil under anthropogenic stress[J].Journal of Zhejiang University Science,2002(5):467-474.
    [51]Lu Z M,Min H,Ye Y F.Short Term influence of herbicide quinclorac on enzyme activities in flooded paddy soils[J].Pedosphere,2004,14(1):71-76.
    [52]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167.
    [53]Jiang X J,Luo Y M,Liu S L,et al.Changes in soil microbial biomass and Zn extractability over time following Zn addition to a paddy soil[J].Chemosphere,2003,50:855-861.
    [54]Luo Yongming,Jiang Xianjun,Wu Longhua,et al.Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater[J].Geoderma,2003,115:113-120.
    [55]Cao Z H,Hu Z Y.Copper contamination in paddy soils irrigated with wastewater[J].Chemosphere.2000,41:3-6.
    [56]Lee S H.Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea[J].Geoderma,2005:231-241.
    [57]成杰民,潘根兴,仓龙,等.模拟酸雨对太湖地区主要水稻土土壤pH及植物生长的影响[J].南京农业大学学报,2000,23(2):116-118.
    [58]成杰民,潘根兴,郑金伟,等.模拟酸雨对太湖地区水稻土铜吸附—解吸的影响[J].土壤学报,2001,38(3):333-340.
    [59]Kohno Y,Matsumura H,Kobayashi T.Effect of simulated acid rain on the growth of Japanese conifers grown with or without fertilizer[J].Water,Air and Soil Pollution,1995,85:1305-1310.
    [60]刘广深,许中坚,徐文彬,等.模拟酸雨对土壤有效磷衰减的影响[J].矿物学报,2002,22(1):35-39
    [61]Kushwaha C P,Tripathi S K,Singh K P.Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem[J].Soil & Tillage Research,2000,56:153-166.
    [62]高明,周保同.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,5(7):1177-1181.
    [63]方荣杰.非充分灌溉条件下稻田生态环境研究[J].节水灌溉,2001(5):35-37.
    [64]金棵,王晓娟,沈延松,等.利用垃圾堆肥改良水稻土Ⅰ:对水稻土物理化学性状的影响[J].应用与环境生物学报,2003,9(3):266-270.
    [65]卜元卿,黄为一.稻秸对土壤细菌群落分子多态性的影响[J].土壤学报,2005,42(2):271-277.
    [66]邱孝煊,蔡元呈,林勇,等.稻草还田对红壤性水稻土肥力的影响[J].中国农学通报,2006,22(1):188-190.
    [67]李学垣,王启发,徐凤琳.稻草还田对土壤钾、磷、锌的吸附解吸及其有效性的影响[J].华中农业大学学报,2000,19(3):227-232.
    [68]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001:212-223.
    [69]张超兰,徐建明,姚斌.添加有机物对莠去津污染土壤微生物生物量的动态影响[J].农药学学报,2003,5(2):79-84.
    [70]Ambrosoli R,Petruzzelli L,Minati J L,et al.Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions[J].Chemosphere,2005,60:1231-1236.
    [71]蔡祖聪.尿素和KNO_3对水稻土无机氮转化过程和产物的影响Ⅱ.N_2O生成过程[J].土壤学报,2003.19:415-420.
    [72]Yuan F,Ran W,Shen Q R.Nitrification Potential of soils under liquid incubation conditions[J].Pedosphere,2005,15(3):379-385.
    [73]梁运江,许广波,魏铁铮,等.有机肥与化肥配施对水稻土养分可持续性的影响[J].北华大学学报(自然科学版),2001,2(3):251-256.
    [74]陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J].农业环境科学学报,2005,24(6):1094-1099.
    [75]Shen H,Cao Z H.Study on sustainability indexes of soil nutrients under different agroecosystems[J].Rural Eco-environment,1998,14[3]:35-39.
    [76]李方敏,廖宗文,艾天成.平衡施肥理论与肥料高效利用[J].磷肥与复肥,2000,19(5):66-68.
    [77]Hernandez R M,Lopez H D.Microbial biomass,mineral nitrogen and carbon content in Savanna soil aggregates under conventional and no tillage[J].Soil Biology & Biochemistry,2002,34,1563-1570.
    [78]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    [79]赵兰坡,杨学明,路立平.长期连作玉米的黑钙土、风沙土中有机—无机复合体组成及有机碳分布的特征[J].土壤通报,1996,27(3):120-123.
    [80]肖思思,李恋卿,潘根兴,等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草Cd 吸收的影响期[J].环境科学,2006,27(2):351-355.
    [81]王凯荣.我国农田镉污染现状及对策[J].农业环境保护,1997,16(6):274-278.
    [82]Sillanp M,Vlrkutyt J.用电动纠正法去除土壤中重金属研究[J].中国水土保持,2000,7:20.
    [83]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [84]王果,陈建斌,高山.稻草、紫云英对土壤外源铜的形态及生态效应的影响[J].生态学报,1999,19(4):551-556.
    [85]梁文举,武志杰,闻大中.21世纪初农业生态系统健康研究方向[J].应用生态学报,2002,13(8):1022-1026
    [86]Peden D G.Agroecosystem management for improved human health:Applying principles of integrated pest management to people[C].Proceedings of the Annual Meeting of the Canadian Society of Animal Science.Vancouver,British Columbia,Canada:1998:5-8.
    [87]粱文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用[J].沈阳农业大学学报,2001,32(1):70-72.
    [88]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2004:4.
    [89]潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响——以太湖地区黄泥土肥料长期试验为例[J].生态学报,2006,26(11):3704-3711.
    [90]Bera R,Seal A,Bhattacharyya P,et al.Phosphate sorption desorption characteristics of some ferruginous soils of tropical region in Eastern India[J].Environment Geology,2006,51:399-407.
    [91]范饮桢,谢建昌.长期肥料定位试验中土壤钾素肥力的演变[J].土壤学报,2005,42(4):591-599.
    [92]Knoepp J D,Swank S T.Long-term effects of commercial sawlog harvest on soil cation concentrations [J].Forest Ecology and Management,1997,93:1-7.
    [93]Pennock D J,Kesse C V.Clear-cut forest harvest impacts on soil quality indicators in the mixedwood forest of Saskatchewan,Canada[J].Geoderma,1997,75:13-32.
    [94]姜勇,张玉革,梁文举,等.耕地土壤交换性钙镁比值的研究[J].土壤通报,2004,34(5):414-417.
    [95]Chan K Y.Changes to a soil on irrigation with a sanitary landfill leachate[J].Water,Air and Soil Pollution,1982,17:295-304.
    [96]全国农业技术推广服务中心,中国有机肥料养分志[M].北京:中国农业出版社,1999:1-77.
    [97]肖思思,李恋卿,潘根兴,等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草Cd吸收的影响期[J].环境科学,2006,27(2):351-355.
    [98]Hovmand M F.Cumulated deposition of strong acid and sulphur compounds to a spruce forest[J].Forest Ecology and Management,1999,114:19-30.
    [99]于群英,李孝良,张永兰.安徽省水稻土有效硅状况及硅肥效果[J].土壤,1999.(3):164-166.
    [100]孙克君,吴雪彪.廖宗文.不同土壤固硅能力研究初报[J].生态环境,2003,12(2):177-178.
    [101]Clark R B.Boron accumulation by maize grown in acidic soil amended with coal combustion products[J].Fuel,1999,78(2):179-185.
    [102]Sharma K R,Srivastava P C,Srivastava P,et al.Effect of farmyard manure application on boron adsorption-desorption characteristics of some soils[J].Chemosere,2006,65:769-777.
    [103]Grybos M,Davranche M,Gruau G,et al.Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction[J].Journal of Colloid and Interface Science,2007,314:490-500.
    [104]Lehto T.Boron retention in limed forest mot[J].Forest Ecology and Management,1995,78:11-20.
    [105]Lavado R S,Porcelli C A,Alvarez R.Concentration and distribution of extractable elements in a soil as affected by tillage systems and fertilization[J].The Science of the Total Environment,1999,232:185-191.
    [106]Gr(?)nflaten L K,Amundsen L,Frank J,et al.Influence of liming and vitality fertilization on trace element concentrations in scots pine forest soil and plants[J].Forest Ecology and Management,2005,213:261-272.
    [107]寇长林,王永歧,连东军,等.施肥结构对砂质潮土中微量营养元素空间变化的影响[J].土壤通报,2001,32(1):35-39.
    [108]Monedero S,Mondini M A,Nobili C,et al.Soil response to different stabilization degree of the treated organic matter[J].Waste Management,2004,24:325-332.
    [109]Rajmohan N,Elango L.Distribution of iron,manganese,zinc and atrazine in groundwater in parts of Palar and Cheyyar river basins,South India[J].Environmental Monitoring and Assessment,2005,107:115-131.
    [110]杨丽娟,李天来,付时丰,等.长期施肥对菜田土壤微量元素有效性的影响[J].植物营养与肥料学报,2006,12(4):549-553.
    [111]张杨珠,黄顺红,万大娟,等.湖南主要耕地土壤的固定态铵含量与最大固铵容量[J].中国农业科学,2006,39(9):1836-1845.
    [112]喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996:305-308.
    [113]Schnurer J,Rosswail T.Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter[J].Applied Environment Microbiology,1982,46:1256-1261.
    [114]Zheng Xunhua,Wang Mingxing,Wang Yuesi,et al.Impacts of soil moisture on nitrous oxide emission from crop lands:a case study on the rice-based agro-ecosystem in Southeast China[J].Chemosphere-Global Change Science,2000,2:207-224.
    [115]Wu Zhongni,Zhao Liangzhu.Evidence of N_2O emission and gaseous nitrogen losses through nitrification-denitrification induced by rice plants(Oryza sativa L.)[J].Biol Fertil Soils,2004,40:211-214.
    [116]李阜棣.土壤微生物学[M].北京:中国农业出版社,1996.80-96.
    [117]谭周进,李倩,陈冬林,等.稻草还田对晚稻土微生物及酶活性的影响[J].生态学报,2006,26(10):3385-3392.
    [118]Matsurama T,Nakajima Y,Matsuya K,et al.Bacterial community in plant residues in a Japanese paddy field estimated by RFLP and DGGE analyses[J].Soil Biology & Biochemistry,2007,39:463-472.
    [119]Zhong W H,Cai Z C.Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J].Applied Soil Ecology,2007,36:84-91.
    [120]Anderson T H,Domsch K H.Ratios of microbial biomass carbon to total organic carbon in arable soils[J].Soil Biol.Biochem,1989,21:471-479.
    [121]朱兆良,孙波.中国农业面源污染控制对策研究[J].环境保护,2008,394(8):4-6.
    [122]Arregui L M,Quemada M.Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies:application of capacitance probes[J].Plant Soil,2006,288:57-69.
    [123]李延,刘星辉,庄卫民.山地龙眼园土壤镁素淋失特点模拟[J].山地学报.2000,18(3):248-252.
    [124]赵秀芬,刘学军,吕世华,等.水肥状况对土壤中铁的移动及水稻吸铁的影响[J].中国农业大学学报,2003,8(5):74-78.
    [125]Miller A J,Gra M.Root nitrogen acquisition and assimilation[J].Plant and Soil,2004,274:1-36.
    [126]Yang Changming,Yang Linzhang,Yang Yongxing,et al.Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils[J].Agricultural Water Management,2004,70:67-81.
    [127]Griffiths B S,Hallett P D,Kuan H L,et al.Functional resilience of soil microbial communities depends on both soil structure and microbial community composition[J].Biol Fertil Soils,2008,44:745-754.
    [128]川口桂三郎编,汲惠吉等译.水田土壤学[M].北京:农业出版社,1985:208-318.
    [129]陈伟.苹果园土壤微生物类群与栽培环境关系的研究[D].济南:山东农业大学,2007:59-60.
    [130]Frank D A,Gehring C A,Machut L,et al.Soil community composition and the regulation of grazed temperate grassland[J].Oecologia,2003,137:603-609
    [131]Heal O W,Madean S F.Comparative productivity in ecosystem-secondary productivity[A].In:van Dobben W H and Melonnell P H L(eds.).Unifying concepts in ecology[M].The Hague Holland,1975:89-108.
    [132]庞欣,张福锁,王敬国不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480.
    [133]刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].生态学报,2007,27(3):1079-1085.
    [134]Garland J I.Analytical approaches to the characterizations source utilization.Soil Biol.Biochem,1995,28:213-221
    [135]He Z L,Wu J,O'Donnel A G,et al.Seasonal responses in microbial biomass carbon,phosphorus and sulphur in soils under pasture[J].Biol Fertil Soil,1997,24:421.
    [136]Dong Xue,Yao Huaiying,Huang Changyong.Microbial Biomass,N Mineralization and Nitrification,Enzyme Activities,and Microbial Community Diversity in Tea Orchard Soils[J].Plant Soil,2006,288:319-331
    [137]纪雄辉.洞庭湖区典型稻田养分流失规律及流域模拟研究[D].长沙:湖南农业大学,2007:54
    [138]Arregui L M,Quemada M.Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies:application of capacitance probes[J].Plant Soil.2006.288:57-69.
    [139]Haraguchi T,Marui A,Yug K,et al.Effect of plastic-film mulching on leaching of nitrate nitrogen in an upland field converted from paddy[J].Plant Soil,2006,288:57-69.
    [140]郭碧花.水稻对硅、钾、钙、镁的吸收动力学研究[J].西华师范大学学报(自然科学版),2003,24(4):396-401.
    [141]刘学军,吕世华,张福锁,等.土壤剖面中水肥状况对锰的移动和水稻吸锰的影响[J].土壤学报,1999,36(6):369-376.
    [142]Pyare R.Leachability of zinc ions from ternary phosphate glasses[J].Journal of Materials Science,2003,38:2079-2086.
    [143]李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599
    [144]慕成功.钾素营养与施肥技术[M].北京:中国农业科技出版社,1997:46-47.
    [145]Olivier C.D,William R.H.Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures[J].Soil Biol.Biochem.2000,32:1773-1785.
    [146]Glissmann K,Conrad R.Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil[J].FEMS Microbiol.Ecol.,2000,31:117-126.
    [147]Ocio J A,Martinez J,Brookes P C,Contribution of straw derived N to total microbial biomass N following incorporation of cereal straw to soil[J].Soil Biol.Biochem,1991,23:655-659.
    [148]He Jizheng,Yong Zheng,Chen Chengrong,et al.Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J].Soils Sediments,2008,8:349-358.
    [149]Cai Zucong.Ammonium transformation in paddy soils affected by the presence of nitrate[J].Nutrient Cycling in Agroecosystems,2002,63:267-274.
    [150]张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望[J].土壤通报,2004,35(12):785-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700