用户名: 密码: 验证码:
铜陵金属矿集区土壤中Cu、Cd元素污染评价及其缓变型地球化学灾害研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属元素污染已成为土壤环境的重要因素,并直接或间接的危害到人体健康。铜陵地区是世界上典型的矽卡岩铜金矿集区之一,是一个有三千多年开采历史的有色多金属矿区。随着矿业不断开采,有害重金属物质可以通过多种途径进入土壤,如大气沉降,工业废水和生活污水的排放,工业固废和城市垃圾以及农药化肥的施用,这些污染物主要集中在土壤表层或耕层,但随着时间的延长,污染物在土壤内部会迁移扩散和化学形态的相互转化。
     本文对铜陵矿区土壤重金属元素Cu、Cd全量及形态进行了全面系统的研究分析。铜陵地区表层土壤重金属形态含量和变异程度变化较大:Cu的总量均值为98.5(mg·kg-1),高于铜陵市土壤背景值(32.15 mg·kg-1),其化学形态以残渣态为主,有机结合态和铁锰氧化态次之。Cd的总量均值为3.45(mg·kg-1),远高于铜陵市土壤背景值(0.09 mg·kg-1),,最大值高达24.6(mg·kg-1),其化学形态中有机结合态最小(0.51 mg·kg-1)、离子交换态次之(0.77 mg·kg-1)。
     采用了地积累指数法、沉积物富集系数法、次生相富集系数法和次生相原生相分布比值法对研究区土壤重金属Cu、Cd进行了评价。结果表明:Cu、Cd的地积累指数主要为中强水平,个别处于极强水平;Cu的沉积富集系数为0~15之间,Cd的沉积富集系数为20~50之间,Cd的沉积作用大于Cu;Cu、Cd次生相富集系数法和次生相原生相分布比值法基本一致,Cu的次生相富集系数法和次生相原生相分布比值法结果大于Cd,但四种评价方法评价结果趋势基本一致。
     根据洁净区域和受污染区域沉积物中的“非稳态”重金属含量两者之间差值,估算土壤重金属的人为输入量。结果表明:Cu的输入量在0μg/g~458.03μg/g之间,平均值为54μg/g;Cd的输入量在0μg/g~21.70μg/g之间,平均值为1.63μg/g;运用剖面分析法分析了重金属Cu、Cd的形态迁移特征,结果表明:重金属Cu、Cd主要以离子交换态、碳酸盐结合态和有机质结合态迁移为主。
     根据缓变型地球化学灾害模型,研究了土壤中Cu、Cd的缓变型地球化学特征。结果表明TCASE+C与TRCPE+C+F+O之间、TCASE+C+F与TRCPE+C+F+O之间,符合缓变型地球化学灾害数学模型特征,土壤存在发生Cu、Cd缓变型地球化学灾害的可能性。对于Cu元素,在pH为5.0、5.0~2.0时,其缓变型地球化学灾害临界点分别为222.22、81.68 mg·kg-1,爆发点分别为438.75、384.99 mg·kg-1;对于Cd元素,在pH为5.0、5.0~2.0时,其缓变型地球化学灾害临界点分别为11.25、9.7 mg·kg-1,爆发点分别为14.61、24 mg·kg-1。随着酸性程度的增强,具有爆发Cu缓变型地球化学灾害可能的区域面积增大,临界点和爆发点均提前,研究区土壤中尚没有出现Cu、Cd缓变型地球化学灾害爆发的区域。土壤受到长期持续重金属输入积累以及土壤酸化、环境容量变小,是研究区土壤可能发生Cu、Cd重金属元素缓变型地球化学灾害的主要原因。
Heavy metal pollution has become an important factor in the soil environment and directly or indirectly endanger human health. Tongling mine area is one of the typical skarn type Cu-Au Mining district in the World, which has been exploited for 3 -thousand-year. With the long-time exploitation of mineral, harmful heavy metals inter into the soil through a variety of ways, such as atmospheric deposition, industrial wastewater and domestic sewage discharge, industrial solid waste , municipal solid waste and pesticide chemical fertilizer, the most of these pollutants focus on the soil surface or topsoil, but with time, the contaminants in the soil will be moved widely and the chemical speciation transform into each other.
     In this article, we have researched total content and chemical fraction content of heavy metal Cu, Cd in study area. The content of heavy metals in surface soil changed greatly and the variation is also relatively large: the mean amount of Cu is 98.5 (mg kg-1), higher than the background value in study area (32.15 mg kg-1), The chemical fractions is mainly in residual fraction, organic fraction, and followed by Fe-Mn oxidation fraction, the mean amount of Cd is 3.45 (mg kg-1), far higher than the background value in study area (0.09 mg kg-1), maximum up to 24.6 (mg kg-1), organic bound fraction is the minimum (0.51 mg kg-1), followed by exchange fraction (0.77 mg kg-1).
     According to difference of labile fraction content of heavy metals between clean and contaminated areas, we have estimated anthropogenic input of heavy metals. The results showed that: the content of input of Cu is range from 0μg/g to 458.03μg/g, with average content of 54μg/g; the content of input of Cd is range from 0μg/g to 21.70μg/g, with average of content.63μg/g; and some time, using profile analysis method, we also have analyzed heavy metals Cu, Cd fraction migration characteristics, the results showed that: heavy metals Cu, Cd mainly in exchangeable fraction, carbonate fraction and organic matter fraction migrate.
     According to delayed geochemical hazards model, we have researched the soil Cu and Cd elements delayed geochemical characteristics in study area The results show that: the relationships between TCASE+C and TRCPE+C+F+O、TCASE+C+F and TRCPE+C+F+O fit mathematical model of delayed geochemical hazard better, there is the possibility of the outbreak of soil delayed geochemical hazard in study area. For the Cu element, in the pH of 5.0、5.0~2.0, burst critical point of delayed geochemical hazards is 222.22、81.68 mg·kg-1 respectively and burst point of delayed geochemical hazards is 438.75、384.99 mg·kg-1 respectively; at the same time, for the Cd element, in the pH of 5.0、5.0~2.0, burst critical point is 11.25、9.7 mg·kg-1 respectively and burst point is 14.61、24 mg·kg-1 respectively. As the acidity increasing, the size of the region with probability of the outbreak of Cu-based delayed geochemical hazards enlarged, burst critical point and burst point are ahead of schedule, while soil quality evaluation process in the lower soil Cu content also need to attract sufficient attention; the sensitivity of Cd on the acidity level less than Cu, with the degree of acidity to enhance its burst critical point is slightly ahead of schedule as well as burst point slight delay and the outbreak of Cd-based delayed geochemical hazards have relations with soil physical and chemical conditions、bio-availability etc. The outbreak of soil delayed geochemical hazard of Cu, Cd have not been yet in study area. The main reasons for possibility of the outbreak of Cu-based and Cd-based delayed geochemical hazards are the accumulation of long-term sustainability entry of soil heavy metals、soil acidification and diminishing environmental capacity in study area.
引文
[1] Jung,M.C.,I.Thornton.Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine in Korea[J].Applied Geochemistry,1996,11:53- 5
    [2] Dang,z.,C.Q.Liu,J.H.Martin.Mobility of heavy metals associated with the natural weathering of coal mine spoils[J] . Enviromnental Pollution,2002,118(3):419—426.
    [3] Atilla,A.,B.Murat,K.Mustafa,et a1.Heavy metal pollution and acid drainage from the abandoned Balya Pb—Zn Sulfide Mine,NVV Anatolia,Turkey[J]_Environmental Geology,2003,45(2):1 98—208.
    [4]吴攀,刘丛强,杨元根.2001.矿IJJ环境中(重)金属的释放迁移地球化学及其环境效应.矿物学报,21(2):213~218
    [5]叶霖,李朝阳,刘铁庚,李晓彪,皮道会.2004.富镉铅锌矿山的环境影响一-以贵州都匀牛角塘矿床为例.地球科学进展,19(2):456~460.
    [6]刘敬勇.矿区土壤重金属污染及生态修复[J].中国矿业, 2006 ,15(12):66~69.
    [7]王心义,杨健,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究[J].煤炭学报,2006,31(6):808~812.
    [8]王庆仁,刘秀梅,崔岩山.我国几个工矿与污灌区土壤重金属污染状况及原因探讨[J].环境科学学报,2002,22(3):354~359.
    [9]尚爱安,党志,漆亮,等.两类典型重金属土壤污染研究[J].环境科学学报,2001,21(4):501~504.
    [10]James F V, Michael H R. Heavy metal contamination of soils around a Pb-Zn smelter in Bukoeno, Poland[J]. Applied Geochemistry, 1996,11(1-2):11~16.
    [11]H Lee C. Assessment of contamination load on water,soil and sediment affected by the Kongjujei mine drainage , Republic of Korea[J]. Environmental Geology,2003,44(5):501~515.
    [12]Naicker K,Cukrowska E McCarthy T S. Acid miane drainage arising from gold mining activity in Johannesburg , South Africa and environs[J].Environmental Pollution,2003,22(1):29~40.
    [13]孙叶芳.矿区土壤重金属毒性评价及污染修复[硕士].浙江大学,2005.
    [14]黄智伟.厦门市翔安区农田土壤和农作物的重金属化学行为及其影响因素的研究[D].厦门:厦门大学.2007.
    [15]方凤满,王起超,李东侠,等.长春市大气颗粒汞及其干沉降通量[J1.环境科学,2001,22(2):60-63.
    [16]邱海源.厦门市安祥区土壤重金属分布、形态及生态效应研究[博士].厦门:厦门大学,2008.
    [17]张乃明.太原污灌区土壤重金属污染研究.农业环境保护.1996,l5(1):21~23.
    [18]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[博士].广州:暨南大学,2004.
    [19]熊教,李庆遣主编.中国土壤(第二版).北京;科学出版社,1990.464~574.
    [20] VOEGELIN,BARRNETLER K,KREM CHMAR R.Heavy metal release from contaminated soils: Comparison of colunm leaching and batch extraction results[J], Journal of Environmental Quality, 2003, 32: 865-875.
    [21]刘霞.刘树庆,王胜爱.河北主要土墩中Cd和Pb的形态分布及其影响因素[J]土壤学报,2003, 40(3 ):393-400.
    [22]陈能场,陈怀满土壤一植物系统中的重金属污染[M].北京科学出版社,1996.
    [23]杨炜林,祖艳群,李元.土壤重金属化学形态的空间异质性及其影响因子研究[J].云南农业大学学报,2007,22(6):912-916.]
    [24]徐明岗,张建新,张航.等.黑垆土、黄褐土等阳离子交换量影响因素的研究[J].土壤通报,1991. 22(3):108-110.
    [25]章明奎,朱祖祥.粉砂粒对阳离子交换量的影响[J].土壤肥料,1993(4): 41-43.
    [26]黄昌勇.土壤学.北京:中国农业出版社,2000:164-16.
    [27]Costa Antonio Carlo S,Bigham Jeny M,Tormena Cassio A.Clay mineralogy and cation exchange capacity of Brazilian soils from water contents determined by therm al analysis.Thermochimica Acta,2004.413:73-79
    [28]祖艳群,訾先能,郭春辉,李元.呈贡县蔬菜土壤有机质、阳离子交换量及分布特征研究.云南环境科学,2004,23(增刊):l5-l8.
    [29]安战士,徐明岗.陕西三种土壤的有机质和粘粒对土壤阳离子交换量的贡献.土壤,1988,20(6):3l0-l.
    [30]刘世全,蒲玉琳,张世熔,王昌全,邓良基.西藏土壤阳离子交换量得空间变化和影响因素.水土保持学报,2004,18(5):l-5.
    [31]章明奎,朱祖祥.粉粒对土壤阳离子交换量的影响.土壤肥料,1993(4):41-43.
    [32]中国土壤学会墒.中国土壤科学的现状与展望.南京:江苏科学技术出版社.1991.22~281; 104~110; 11l~117; 75~78; 207~213.
    [33]中国土壤学会编写组编.土壤科学与农业持续发晨北京:中国科学技术出版社,1994.303~309; 291~296;310~319.
    [34]龚于同主编.土壤环境变化.北京;中国科学技术出版社,l992.3~9.
    [35]武得礼,王夏仙.电导法测定土壤全盐量应用条件的探讨[J].土壤肥料,1997, (4) :37-40.
    [36]蔡阿兴,陈章英,蒋正琦,等.我国不同盐渍地区盐分含量与电导率的关系[J].土壤,1997 ,54:54-56.
    [37]张瑜斌,邓爱英,庄铁诚,等.潮间带土壤盐度与电导率的关系[J] .生态环境,2003, 12:164-165.
    [38]陈能场,陈怀满土壤一植物系统中的重金属污染[M].北京科学出版社,1996
    [39]袁敏,铁柏清,唐美珍.土壤重金属污染植物组合修复技术的应用[J].云南农业大学学报,2005,20(2):274~704.
    [40]SHUMAN L M ,WANG J. Effect of rice varity on zine ,cadmium ,iron and manganese contents in rhizosphere end non-rhizosphere soil fraction[J].Comm Soill Sci. Plant A nal,1997,28:23-36.
    [41]杨炜林,祖艳群,李元.土壤重金属化学形态的空间异质性及其影响因子研究[J].云南农业大学学报,2007,22(6):912-916.
    [42]魏俊风,吴大清,彭金莲,等.广州城市水体沉积物中重金属形态分布研究[J]土壤与环境,1999,8(1):10 -1 4.
    [43]李华,刘树庆芝彦峰等.重金属在根际土壤环境中的化学行为的研究进展[J].河北环境科学,2001,(1 ) :39 -43.
    [44]莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在土壤中的形态分布和转化[J].农业环度保护,20 02 ,2 1( 1) :9-12.
    [45]贾振邦,周华.应用地累积指数法评价河流沉积中重金属污染研究。北京大学学报(自然科学版),2000,36(4):525~530
    [46]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究.地理科学,1997,17(1):81~86
    [47]贾振邦,梁涛,林健枝.香港河流沉积物重金属污染潜在生态危害研究.北京大学学报(自然科学版), 1997,33(4):485~492
    [48]贾振邦,于澎涛.应用回归过量分析法评价太子河沉积物的重金属污染.北京大学学报(自然科学版), 1995,31(4):451~459
    [49]Forstner U. Lecture Notes in Earth Sciences(Contaminated Sediment).Berlin: Springer . Verlag, 1989 107~109
    [50]陈静生.水环境化学北京:高等教育出版社,1987. 18 6~187.
    [51]Chapman D. Water Quantity Assessment.London: Chapman & Hall Ltd, 1992.121~134.
    [52]吴瑜端.台湾海峡西岸主要港湾的重金属及其生态效应.见:陈静生,周家义,中国水环境重金属研究.北京:中国环境科学出版社.1992 . 329~368.
    [53]Creagh C.1993.Acid sulfate soils,Ecos,77:25~29.
    [54]Stigliani W M. Changes in valued“capacities”of soils and sediments as indicators and time delayed environmental effects [J]. Environmental Monitoring and Assessment,1988,10:245~307
    [55]Stigliani W M, Chemical time bombs: Definition, concepts andexamples[C]. Executive Rep.16(CTB Document 1: Rep. of the 1st“Chemical Time Bomb”workshop, held at Borger, Netherlands, in August 1990, Participants: P. Doelman, W. Salomons, R. Schulin, G. R. B. Smit, W. M. Stigliani, and S. van der Zeer), Int. Inst, Appl. Syst. Anal, Laxenburg, Austria, 1991. A-2361.
    [56]Schulin R, Geiger G. Furrer G. Heavy metal retention by soil organic matter under changing environmental conditions [A]. In: Salomons W, Stigliani W M eds. Biogeodynamics of pollutants in soil and sediments-risk assessment of delayed and non-linear response[C]. Springer, Berlin, 1995.53-85.
    [57]陈明,冯流,周国华,谢文明,Jacques Yvon,曹小娟,陈红军,缓变型地球化学灾害:特征、模型和应用[J].地质通报,2005,24(10):916-921.
    [58]龚子同.我国境内成土风化壳的地球化学类型.土壤专报,1980,37:1~23.
    [59] Gong Zitong,Luo Guobao, Pedogeoehemistry of China and people's hea]th Pedosphere,199l,2(1): 1~l0.
    [60] Gong Zitong。Huang Biao.Pedogeochemistry of China and protection and treatt of endemic diseases of humans and animals In:Masters D G, et al eds.Mineral prob]ems in sheep in Northern China and other regions of Asia.Canberra:AClAR,1996, 18~ 23.
    [61]中国土壤学会墒.中国土壤科学的现状与展望.南京:江苏科学技术出版社.1991.22~ 28; l04~110;,11l~117;75~78;207~213.
    [62]王毫亲,祝寿泉,禽仁培,等.中国盐溃土.北京:科学出版社.1996.I~2
    [63]中国土壤学会编写组编.土壤科学与农业持续发晨北京:中国科学技术出版社,1994.303~309I 291~296,310~319.
    [64]潘根兴,冉炜.中国大气酸沉降与土壤酸化问题.热带亚热带土壤科学:1994,3(4) 243~252.
    [65]Stiglianl W M .Doelman P,Salomons W, et al. Chemical time bombs- Predictlng the unpredictable.Environment 1991.33(4)1 4~9,26~29.
    [66]金相灿,埘鸿亮,屠清瑛等主编.中国湖泊富营养化.北京:中国环境科学出版社,1990.103~120.
    [67]龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素的探讨.地球科学进展,1998,13(2):184~191.
    [68]杜佩轩.田晖,刘健,等.城市环境灾害化学定时炸弹的基本类型.陕西地质,2002,20(1):60~65.
    [69]城市环境灾害化学定时炸弹的基本类型.陕西地质,20(1):60~65.
    [70]李湘凌,张颖慧等,合肥地区土壤中Zn元素的缓变型地球化学灾害特征[J]农业工程学报,2008,24(5): 42-45.
    [71]袁峰,张颖慧等,合肥地区土壤Cu元素缓变型地球化学灾害研究[J]土壤学报,2008,45(6):1501- 1504.
    [72]陶春军,周涛发等,合肥大兴镇土壤中Pb元素缓变型地球化学灾害的研究[J]地质与资源,2009,18(1): 53-54.
    [73]Chen Ming, Feng Liu,Jacques Yvon. Accumulation and release of typical heavy metals in soil and chemical timing bombs[C].International Conference on Environmental and Public health,Management,Hongkong Baptist University,November17~19,2004
    [74]Chen Ming, Feng Liu, Jacques Yvonb. Delayed geochemical hazard: the concept, model and case study[C]. The 2 nd symposium on soil pollution and remediation across the Taiwan Strait, Nankai University, Tianjin, China, Sept. 24-27, 2004.]
    [75] Tessier A,Campbel P C,Bison M.Sequential extraction procedure for the speciation of particulate trace metals [J] . An alytica Chimica Acta, 1979,51: 844-850.
    [76]臧文拴,吴金国,张达,刘爱华,铜陵新桥铁矿田地质地球化学特征及其成因浅析[J]大地构造与成矿学2004,(2)187~193
    [77]楚之潮,铜陵新桥硫铜金多金属矿床找矿标志[J]冶金地质动态1991,(3):32~37.
    [78]邹海明,邹长明,林平,官楠,李粉茹,土壤中酸可提取态重金属释放特征研究[J].中国农业科学通报,2006,22(6):404~406.
    [79]施俊法,化学定时炸弹的克星:植物修复技术[J]国土资源通报2001(4):39.
    [80]常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带.北京:地质出版社,1991.
    [81]王波,叶新才,程从坤,等.铜陵地区生态环境综合治理途径.长江流域资源与环境,2004, 13(5 ): 494 - 498.
    [82]吴才来,陈松永,史仁灯,等‘铜陵中生代中酸性侵入岩特征及成因.地球学报,2003, 24 (1): 41-4.
    [83]储国正.铜陵狮子山铜金矿田成矿系统及其找矿意义,中国地质大学〔北京)博士学位论文,2003.
    [84]王文杰,叶俊英.安徽省古代矿业史略闭.安徽地质,2000, 10 (1): 74-77.
    [85]黄铭洪,束文圣,周海云,等.环境污染与生态恢复.北京:科学出版社,2003.
    [86]王占岐,魏民,国内外“人工矿床”研究现状与前景.地球科学进展,2001, 16 (2): 235-237.
    [87]周涛发,刘一,张鑫,等.金属矿山重金属元素污染与治埋对策.刘登义.生态安徽的理论与实践.合肥:合肥工业大学出版社,2004.186-190.
    [88]Liu Jia-un, Liu Yu-ping, Li Chao-yang, et al. Characteristics and conditions of formation of an excellent fossil wood cell texture from the vein copper deposits in Lanping-Simao basin, S W China. Ore Geology Reviews,2002, 20 (1-2): 55~63.
    [89]杨元根,E. Paterson, C .Campbell.城市土壤中重金属元素的积累及其微生物效应.环境科学,2001,22 ( 3) : 4 4-48.
    [90]宋书巧,周永章,周兴,等十壤砷污染特点与植物修复探讨.热带地理,2004, 24 (2): 6-9.;
    [91] Tokunaga S, Hakuta T, Acid washing and stabilization of an artificial arsenic-contaminated soil.Chemos ph ere ,2002,46 :3 1-38 .
    [92] Turpeinen R, Pantsar-Kallio M, Kairesalo T. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. The science of the to total evironment,2002, 285:133~145.
    [93]牟保磊,1999牟保磊.元素地球化学.北京:北京大学出版社,1999.
    [94]何振立,周启星,谢正苗.污染及有益A素的土壤化学平衡.北京:中国环境科学出版社,1998;
    [95]顾继光等,2002顾继光,周启星.W污染土壤的治理及植物修复.生态科学,2002, 21 (4): 352-356.
    [96]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及环境效应研究[博士].合肥:合肥工业大学,2005.
    [97]顾也萍,刘付程.皖南紫红色沙石岩上发育土壤的系统分类研究[J].土壤学报,2007,44 (5): 776-783.
    [98]孙宇瑞.土壤含水率和盐分对土壤电导率的影响[J].中国农业大学学报,2000,5(4):39-41.
    [99] Gupta A K, Sinha S. 2006. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L. ) var. T55 grown on soil amended with tannery sludge: Selection of single extractants[J]. Chemosphere, 64 (1): 161—173
    [100] Usman A R A, Ghallab A. 2006. Heavy-metal fractionation and distribution in soil profiles short-term-irrigated with sewage wastewater[J]. Chemistry and Ecology, 22 (4): 267-278
    [101] Lucho-Constantino C A, Alvarez-Suarez M, Beltran-Hernandez R I, etal. 2005. A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewate [J].Environment Internationa,l 31 (3): 313-323
    [102] Ahumada I, Escudero P, CarrascoM A,etal. 2004.Use of sequential extraction to assess the influence of sewage sludge amendment on metal mobility in Chilean soils [J]. Journal of EnvironmentalMonitoring, 6 (4): 327—334).
    [103] Gregorauskiene V, Kadunas V. 2006. Vertical distribution patterns of trace and major elements within soil profile in Lithuania [ J].Geological Quarterly, 50 (2): 229-237
    [104] He Z L, ZhangM K, Stoffella P J, et al. 2006.Verticaldistribution and water solubility of phosphorus and heavy metals in sediments of the St. Lucie Estuary, South Florida, USA [ J]. Environmental Geology, 50 (2): 250-260
    [105] Pirintsos S A, Matsi T, Vokou D, et al. 2006. Vertical distribution patterns of trace elements in an urban environment as reflected by their accumulation in lichen transplants[J]. Journal of Atmospheric Chemistry, 54 (2): 121-131
    [106] TylerG. 2004.Vertical distribution of major, minor, and rare elements in a Haplic Podzol[J]. Geo derma, 119 (3-4): 277-290
    [107] During R A, Hoss T, Gath S. 2002. Depth distribution andbioavailability of pollutants in long-term differently tilled soils[J].Soil& Tillage Research, 66 (2): 183-195.
    [108]章明奎,王浩,张惠敏,浙东海积平原农田土壤重金属来源辨识[J].环境科学学报,2008,28(10):1946-1954.
    [109]常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带[M].北京:地质出版社,1991.
    [111]翟裕生,姚书振,林新多.长江中下游铁铜(金)成矿规律[M].北京:地质出版社,1992.
    [112]张鑫,周涛发,袁峰,等.铜陵矿区土壤中镉存在形态及生物有效性[J].生态环境,2004,13(4):572-574.
    [113]周涛发,殷汉琴,张鑫,等.铜陵矿区土壤中铅的存在形态及生物有效性[J].合肥工业大学学报(自然科学版),2005,28(9):1146-1150.
    [114]李录久,吴萍萍,杨自,等.矿区土壤重金属污染现状调查[J].安徽农业科学,2006,34(13): 3136-3137.
    [115] Tessier A Campbell P C,Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry Acta,1979,51:844~850
    [116]顾也萍,刘付程.皖南紫红色沙石岩上发育土壤的系统分类研究[J].土壤学报,2007,44 (5): 776-783.
    [117]唐先干,杨金岭,张甘霖,皖南山区降水酸性特征与元素沉降通量[J].环境科学,2009,30(2):356-361.
    [118] Ulrich, B. and Pankrath, J. (eds.). Effects of Accumulation of Air Pollutants in Forest Ecosystems [M]. The Netherlands: Reidel, Dordrecht, 1983.
    [119] Hauhs, M. and Wright, R.F. Regional pattern of acid deposition and forest decline along a cross section through Europe [J]. Water, Air and Soil Pollution, 1986, 31: 463-474.
    [120] Mathy, P. (ed.), Air Pollution and Ecosystems [M]. The Netherlands: Reidel, Dordrecht, 1988
    [121] Schulze, E.-D, Air pollution and forest decline in a spruce (Picea abies) forest [J]. Science 1989, 244:776-783.
    [122] Davidson, A.W. and Bailey, I.F. SOa pollution reduces the freezing of rye grass [J]: Nature 1982, 297:400.
    [123] Bengtsson, G. and Rundgren, S. Groundliving invertebrates in metal polluted forest soils[J]. Ambio 1984,13:29-33.
    [124] Coughrey, P.J, Martin, M.H, and Young, E.W. The wood louse, Uniscusacellus, as a monitor of environmental cadmium levels [J]. Chemosphere 1977, 12:827-832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700