用户名: 密码: 验证码:
恩施州不同海拔下烤烟光合作用与产量、质量的差异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以3个遗传背景不同的烤烟品种K326、云烟87、中烟103为材料,在湖北省恩施地区,选择同一山脉的3个不同海拔点(500 m、900 m、1300 m)进行盆栽和大田试验,研究了不同海拔下烤烟光合作用与产、质量的差异。研究的主要内容为:烤烟叶片全展后气体交换参数、光合色素含量、RuBPcase初始活性以及叶绿体超微结构的变化;烤烟叶片全展时光合日变化及其与环境因子的关系;烤烟叶片全展后碳、氮物质以及部分次生代谢物质的变化;烤后烟叶产、质量及其香型风格的分析;光合生产能力与烤烟产、质量的关系。主要研究结果如下:
     (1)烤烟叶片全展后,光合功能不断衰退。随着海拔的升高,光合功能衰退的越慢。主要表现为Pn、光合色素含量以及RuBPCase的初始活性的下降率降低,叶绿体结构和类囊体片层结构解体时间推迟,净光合速率高值持续期(APD)延长,叶源量(LSC)和单位面积叶源量(PALSC)增加。通径分析表明,APD对LSC和PALSC直接贡献最大,因此延长烤烟光合功能期是提高烤烟叶片光合生产能力的主要措施。
     (2)随着海拔的升高,日光合总量(∑Pn)、单位面积日光合总量(PA∑Pn)以及水分利用率(WUE)逐渐增加,而日蒸腾总量(∑Tr)和单位面积日蒸腾总量(PA∑Tr)以海拔900 m最高,海拔500 m次之。在晴天中午时段,烤烟叶片表现出“光合抑制”的现象,随着海拔的升高,受抑制的程度减轻。高温加剧了强光对烤烟的光合抑制程度,是影响光合作用的主要限制因子。影响光合日变化的主要生理因子是气孔导度(Gs),生态因子因海拔不同而有所差异。在海拔500 m,环境温度(Ta)和空气相对湿度(RH)是Pn提高的制约因子。在海拔900 m,烤烟叶片光合作用主要受光通量密度(PFD)的影响。在海拔1300 m,环境温度(Ta)和空气湿度(RH)是影响Pn的主要因子。
     (3)生长在不同海拔下的烤烟光合生理特性存在一定的差异。随着海拔的升高,烤烟对强光的适应性和利用强光的能力增强,对弱光的适应性和利用弱光的能力降低。相对低海拔而言,生长在高海拔地区烤烟有着较高的碳吸收能力。Pn随光强的变化规律可用方程Pn = Pn max (1-C0exp(-aPFD/ Pn max)进行模拟,随CO2浓度(Ci)的变化规律可用方程Pn= Pn max (1-exp(-a Ci / Pn max)-Rd进行模拟。
     (4)烤烟叶片全展后,光合产物主要以淀粉的形式积累。随着生育进程的推进,淀粉含量、碳水化合物总量、比叶重以及碳氮比值呈先上升后下降的趋势。随着海拔的升高,光合产物以及干物质积累的时间延长。淀粉含量、碳水化合物总量、比叶重以及碳氮比值随着叶片全展后天数的变化规律均可用二次多项式进行模拟。叶片全展后,叶中N含量呈下降趋势。随着海拔的升高,叶中N含量的下降率降低。叶中N含量随着叶片全展后天数的变化规律均可用渐进回归模型进行模拟。叶中N含量与叶绿素含量、Pn均呈极显著正相关。
     (5)海拔对烤烟叶片叶源量(LSC)、单位面积叶源量(PALSC)、日光合总量(∑Pn)以及单位面积日光合总量(PA∑Pn)的影响均达到极显著水平。品种仅对PALSC的影响达到显著水平,而对其他3个光合生产能力指标的影响不显著。海拔与品种的互作效应对烤烟各光合生产能力指标的影响均达到极显著水平。以PALSC、LSC,PA∑Pn以及∑Pn为评价光合生产能力的指标,将不同品种海拔组合进行聚类分析,可以分成3类:较强型,包括云烟87-1300 m,中烟103-1300 m;中等型,包括K326-900 m,K326-1300 m,云烟87-900 m,中烟103-900 m;较低型,包括K326-500 m,云烟87-500 m,中烟103-500 m。
     (6)海拔和品种对多数产、质量指标有着显著的影响。海拔和品种间的互作对烤烟各产、质量指标有着显著的影响。以单叶重和群体产量作为评定烤烟产量的评价指标,将不同品种海拔组合进行聚类分析,可以分成3类:即高产型,包括中烟103-1300 m,中烟103-900 m以及云烟87-1300 m;中产型,包括中烟103-500 m,云烟87-900 m,云烟87-500 m,K326-900 m以及K326-1300 m,低产型,为K326-500 m。以产值和均价作为烟农收益的评价指标,将不同品种海拔组合进行聚类分析,可以分成3类:即高收益型,包括K326-900 m,云烟87-500 m,云烟87-900 m,云烟87-1300 m,中烟103-1300 m;中收益型,包括K326-1300 m,中烟103-900 m;低收益型,包括K326-500 m,中烟103-500 m。以评吸质量和外观质量作为烟叶质量的评价指标,将不同品种海拔组合进行聚类分析,也可以分成3类:质量较好型,包括K326-900 m和云烟87-900 m,质量中等型,包括K326-1300 m,云烟87-500 m,云烟87-1300 m,中烟103-1300 m,中烟103-900 m;质量较差型,包括K326-500 m和中烟103-500 m。
     (7)以河南平顶山、云南曲靖、贵州毕节、吉林敦化以及重庆地区这5个具有不同香型风格烤烟C3F等级为参比对象,将恩施州不同品种海拔组合的烤烟进行聚类和判别分析。聚类分析结果表明生态环境是决定烤烟香气成分的主要因素,不仅在大尺度生态条件下(地理位置跨度较大的不同省份或地区)烤烟香型风格存在较大差异,而且在同一区域因海拔梯度形成的生态环境差异会导致烟叶风格的改变。判别分析表明,有3个样本归为重庆中间偏浓香型一类,包括K326-1300m、中烟103-900m、中烟103-1300m;有3个样本归为河南浓香型一类,包括K326-900m、云烟87-500m、中烟103-500m;有2个样本归为云南清香型一类,包括云烟87-900m和云烟87-1300m;1个样本归为吉林中间香型一类,为K326-500m。
     (8)总体看来,在恩施州烟区,海拔900 m是烤烟种植的最适宜区,海拔1300 m次之。云烟87的品种适应性较强,在各个海拔下均表现出适宜的光合生产能力和较好的产、质量水平。K326最适宜于海拔900 m区域,中烟103最适宜于海拔1300 m区域。
Pot and field experiment were conducted at the altitude of 500 m, 900 m and 1300 m in Enshi Autonomous Prefecture of Hubei to study difference of photosynthesis, yield and quality of flue-cured tobacco K326, Yunyan87, and Zhongyan103, which genetic background is different. Changes of gas exchange parameters, photosynthetic pigment content, RuBPcase initial activity, and chloroplast ultrastructure after full expansion of middle leaf, diurnal changes of photosynthesis and relationship with environmental factors, changes of carbon and nitrogen as well as some secondary metabolites, analysis of yield, quality and aroma-style, and relations between photosynthetic production capacity and yield and quality were studied in this paper. The main conclusions were as follows:
     (1) Photosynthetic function declined after full expansion of leaf in flue-cured tobacco. With the increase of altitude, photosynthetic function decline was delayed. The decline rate of Pn, photosynthetic pigment content, and RuBPcase initial activity were reduced, disintegration time of chloroplast ultrastructure and thylakoid lamellar structure were postponed, active photosynthesis duration (APD)was prolonged, leaf Source Capacity (LSC) and per area leaf source capacity (PALSC) were increased. Pathway analysis showed that the direct action of APD affecting LSC and PALSC was largest, therefore, prolonging APD was the main measure of increasing photosynthetic production capacity of leaf in flue-cured tobacco.
     (2)With the increase of altitude, daily photosynthesis(∑Pn), per area daily photosynthesis(PA∑Pn), and water use efficiency (WUE) were increased. At altiude of 900 m, flue-cured tobacco’s leaves had the highest Daily transpiration(∑Tr) and per area(PA∑Tr), followed by altiute of 500 m. In the sunny noon, flue-cured tobacco’s leaves appeared photosynthetic inhibition, and the degree was lightened with the increase of altitude. High temperature was the main limitied factor affecting photosynthesis and it could exacerbate photosynthetic inhibition. The main physiological factor affecting diurnal change of photosynthes was stomatal conductance(Gs), and ecological factors were different with altitude variation. At altitude of 500 m, ambient temperature (Ta) and air relative humidity (RH) were the main limitied factors to Pn. At altitude of 900 m, Pn mainly was impacted by photons flux density (PFD) . At altitude of 1300 m, Ta and RH were the main factors affecting Pn.
     (3) There were some differences on photosynthetic physiological characteristics among flue-cured tobacco growing at different altitudes. With the increase of altitude, adaptability and utilization ability for strong light increased, while it reduced for weak light. Flue-cured tobacco growing at high altitude had higher efficiency of carbon uptake than at low altitude. Response curves of Pn to PFD of flue-cured tobaccos’leaves at different altitudes were simulated with equation of Pn =Pnmax (1-C0exp(-aPFD/ Pn max), and equation of response curves of Pn to Ci was Pn=Pn max (1-exp(-a Ci / Pn max)-Rd.
     (4) Photosynthetic products mainly accumulated in the form of starch after full expansion of leaf in flue-cured tobacco. Content of starch and total carbohydrate, specific leaf weight, and ratio of carbon to nitrogen increased firstly and decreased afterwards in the process of leaf development. With the increase of altitude, the accumulating time of assimilate and dry matter were prolonged. The variation of content of starch and total carbohydrate, specific leaf weight, and ratio of carbon to nitrogen to days after full expansion were simulated with quadratic polynomial. Leaf N concentration was declined after full expansion, its variation was simulated with progressive regression model. The decline rate of leaf N concentration reduced with the increase of altitude. There were significant positive correlation between Leaf N concertration, Pn and chlorophyll content .
     (5) Effects of altitude on LSC, PALSC,∑Pn and PA∑Pn reached very significant level, however, only PALSC impacted by variety was significant level. The interactive effects of altitude and variety on every indexs for photosynthetic capacity reached very significant level. With PALSC, LSC,PA∑Pn and∑Pn as evaluation index for photosynthetic production capacity, different combinations of altitude and varieties were cluster analyzed, it had been divided into three categories, that were strong type including Yunyan87-1300 m and Zhongyan103-1300 m, medium type including K326-900 m, K326-1300 m and Yunyan87-900 m, lower type, including K326-500 m, Yunyan87-500 m and Zhongyan103- 500 m.
     (6) The effects of altitude and variety on most indexs for yield and quality production were significant. The interactive effects of altitude and variety on every indexs for yield and quality reached significant level. With weight per leaf and population yield as evaluation indexs for yield, different combinations of altitude and varieties were cluster analyzed, it had been divided into three categories, that were high-yield type including Zhongyan103-1300m, Zhongyan103-900m and Yunyan87-1300m, middle-yield type including Zhongyan103-500m, Yunyan87-900 m, Yunyan87-500m, K326-900m and K326-1300m, low-yield type, including K326-500m. With output value and average price as evaluation indexs for tobacco growers’income, different combinations of altitude and varieties were cluster analysised, it had been divided into three categories, that were high-income type including K326-900 m, Yunyan87-500m, Yunyan87-900m, Yunyan87-1300m and Zhongyan103-1300m, middle-income type including K326-1300m, Zhongyan103-900m,low-income type including K326-500m and Zhongyan103-500m. With smoking quality and appearance quality as evaluation indexs for tobacco quality, different combinations of altitude and varieties were cluster analysised, it had been divided into three categories, that were better quality type including K326-900m and Yunyan87-900m, middle quality type including K326-1300m, Yunyan87-500m, Yunyan87 -1300m, Zhongyan103-900m, Zhongyan103-1300m, lower quality type including K326-500m and Zhongyan103 -500m.
     (7) With grade C3F of flue-cured tobacco leaves as reference materials produced at different regions including Pingdingshan area in Henan, Qujing area in Yunnan, Bijie area in Guizhou, Dunhua area in Jilin, and Chongqing area which have different aroma type style, different combinations of altitude and varieties were cluster and discrimination analysised. Cluster analysis indicated that aroma type style showed great difference not only in large scale regions but also at different altitudes in the same region. Discrimination analysis indicated that three sample were classified as neutral tend to full aroma type in Chongqing including K326-1300 m, Zhongyan103-900 m, Zhongyan103-1300 m, three sample were classified as full aroma type in Henan including K326-900m, Yunyan87-500m, Zhongyan103 -500 m, two sample were classified as faint aroma type in Yunnan including Yunyan87-900m and Yunyan87 -1300m, one sample were classified as neutral aroma type in Jilin which was K326-500m.
     (8) Overall, altitude of 900 m in Enshi was the most suitable area for tobacco cultivation, followed by altitude of 1300m. Flue-cured Yunyan87 had stronger adaptability, exhibited more suitable photosynthetic production capacity and better yield and quality at every altitude. K326 was most appropriate at altitude of 900 m, while Zhongyan103 was most appropriate at altitude of 1300 m.
引文
1.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社, 1998: 262-276.
    2.匡廷云,卢从明,李良璧等.作物光能利用效率与调控[M].济南:山东科学技术出版社,2004:117-118.
    3.贾士芳,董树亭,王空军等.弱光胁迫对玉米产量及光合特性的影响[J].应用生态学报,2007, 18(11): 2456-2461.
    4. Zhao D, Oosterhuis D. Physiologic and yield responses of shaded cotton to the plant growth regulator PGR-IV[J]. Plant Growth Regulation, 1998, 17: 47- 52.
    5. Liehtechaler H K, Burgslahler R, Buschmam C, et al. Effect of high light and low light stress on compositon, function and structure of photosynthetic apparatus, In: Marcelle R. eds. Effect of stress on photosynthesis. The Hagus. 1983, 353-370.
    6.吴正锋,王才斌,李新国等.苗期遮荫对花生(Arachis hypogaea L. )光合生理特性的影响[J].生态学报, 2009, 29(3): 1366-1372.
    7.叶子飘,赵则海.遮荫对生姜叶片显微结构及叶绿体超微结构的影响[J].生态学杂志, 2009, 28(1): 19-22.
    8.李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报, 1997, 24(1):97-99.
    9.乔新荣,郭桥燕,刘国顺等.光强对烤烟生长发育及光合特性的影响[J].华北农学报, 2007, 22(3): 76-79.
    10.刘国顺,赵献章,韦风杰等.旺长期遮光及光照转换对不同烟草品种光合效率的影响[J].中国农业科学, 2007, 40(10): 2368-2375.
    11.黄俊,郭世荣,吴震等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报, 2007, 18(2): 352-358.
    12.Boardman N K. Comparative photosynthesis of sun and shade plant. Ann Rev Plant Physiol, 1977, 28: 355-377.
    13.Fay P A, Kanpp A K. Responses to short-term reductions in light in soybean leaves: Effects of leaf position and drought stress[J]. Plant Sci. 1998, 159: 805-811.
    14.范燕萍,余让才,郭志华.遮荫对匙叶天南星生长及光合特性的影响[J].园艺学报, 1998, 25(3): 270-274.
    15.秦舒浩,李玲玲.遮光处理对西葫芦幼苗形态特征及光合生理特性的影响[J].应用生态学报, 2006, 17(4): 653-656.
    16.Chazdon RL , Kaufmann S. Plasticity of leaf anatomy of two rain forest shrubs in relation to photosynthetic light acclimation[J]. Functional Ecology, 1993, 7: 385-394.
    17.Sims DA, Pearcy RW. Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance.I. Carbon balance and allocation at different daily photoflux densities[J]. Plant , Cell and Environment , 1994, 17: 881– 887.
    18.Naidu S L, Delucia E H. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps[J]. Tree Physiology, 1997, 17: 367-376.
    19.Tognetti R. Ecophysiological responses of Fagus sylvatica L. Seedlings to changing light conditions I. Interactions between phototsynthetic acclimation and photoinhibition during stimulated canopy gap formation[J]. Physiologia Plantarum, 1997, 101(1): 115-123.
    20.Dymova O V, Golovko T K. Light adatptation of photosynthetic appartus in Ajuga reptans L. a shade-tolerant plant as an example[J]. Russion journal of plant physiol, 1998, 45(4): 440-446.
    21.甄伟,张福墁.弱光对黄瓜功能叶片光合特性及其超微结构的影响[J].园艺学报, 2000, 27(4): 290-292.
    22.沈文云,马德华,候锋等.弱光处理对黄瓜叶绿体超微结构的影响[J].园艺学报, 1995, 22 (40): 397-398.
    23.候兴亮,李景富,许向阳.番茄耐弱光性的研究进展[J].中国蔬菜, 1999, 4: 48-51.
    24.杨延杰.弱光胁迫对番茄生长发育及生理代谢影响的研究[D].博士论文.沈阳.2004.
    25.朱列书,赵松义,李伟.烟草不同基因型的光合特性研究[J].中国烟草科学, 2006(1): 5-7.
    26.王少先,李再军,王雪云等.不同烟草品种光合特性比较研究初报[J].中国农学通报,2005, 21(5): 245-247.
    27.江力,曹树青,张荣铣等.两个品种烟草叶片发育过程中几种光合参数变化的比较[J].植物生理学通讯, 2006, 42(6): 1050-1054.
    28.贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展[J].植物学通报, 2000,17(3): 218-224.
    29.Krause G H. Photoinhibition of photosynthesis. An evolution of damaging and protection mechanisms[J]. Physiol Plant, 1988, 74: 566-574.
    30.Demmig B, Bjêrkman O. Comparison of the effect of excessive light on chlorophyllfluorescence (77K) and photon yield of O2 evolution in leaves of higher plants[J]. Planta , 1987, 172 : 171-184.
    31.许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4): 237-243.
    32.艾希珍,张振贤,杨秀华等.一些蔬菜作物光合与蒸腾特性研究[J].园艺学报, 2000, 27(5): 371-373.
    33.徐坤,郑国生,王秀峰.环境因素与生姜需光特性关系研究[J].生态学报, 2001, 21(7): 1091-1094.
    34.徐凯,郭延平,张上隆等.草莓叶片光合作用对强光的响应及其机理研究[J].应用生态学报, 2005, 16(1): 73-78.
    35.江力,曹树青,戴新宾等.光强对烟草光合作用的影响[J].中国烟草学报, 2000, 6(4): 17-20.
    36.黄一兰,李文卿,林毅等.光强对烤烟光合作用影响的初步研究[J].烟草科技, 2000, 9: 36-38.
    37.Robert E S, Mark A, John S B. Kok effect and the quantum yield of photosynthesis[J]. Plant Physiology, 1984, 75 : 95-101
    38.Eilers P H C, Peeters J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton [J ] . Ecol Model, 1988, 42: 199-215.
    39.Hand D W, Warren W J W, Acock B. Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus [J ]. Ann Bot, 1993, 71: 209-216.
    40.Rubio F C, Camac H O F G, Sevilla J M F, et al . A mechanistic model of photosynthesis in microalgae [J ] . Biotechnol Bioengi, 2003, 81 :459-473.
    41.Yu Q, Zhang Y Q, Liu Y F, et al . Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes [J ] . Ann Bot, 2004, 93 :435-441.
    42.Kyei-Boahen S, Lada R, Astatkie T, et al. Photosynthetic response of carrots to varying irradiances[J ]. Photosynthetica, 2003, 41: 1–5.
    43.Leakey ADB, Uribelarrea M, Ainsworth EA, . Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J ]. Plant Physiology, 2006, 140: 779–790.
    44.高峻,孟平,吴斌等.杏-丹参林药复合系统中丹参光合和蒸腾特性的研究[J].北京林业大学学报, 2006, 28(2): 64-67.
    45.叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报, 2008, 32(6): 1356-1361.
    46.徐践.玉竹光合生理特性研究[D].博士论文.北京.2003.
    47.Bataglia M, Beadle C, Loughhead S. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens. Tree Physiology, 1996, 16: 81-89.
    48.施建敏,郭起荣,杨光耀等.毛竹光合作用对环境因子的季节响应[J].广西植物, 2007, 27(6): 923-928.
    49.陈志辉,张良诚.柑桔光合作用对环境温度的适应[J].浙江大学学报(农业与生命科学版), 1994, 20(40): 389-392.
    50.Bunce J A.The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley[J]. Jounral of Experimental Botany, 1998, 49: 1555-1561.
    51. Read J, Busby J R. Comparative responses to temperature of the major canopy species Tasmanian cool temperature rainforest and their ecological significanceⅡ.Net photosynthesis and cilmate analysis[J]. Aust J Bot, 1990, 38: 185-205.
    52.曾乃燕,何军贤,赵文等.低温胁迫期间水稻光合膜色素与蛋白水平的变化[J].西北植物学报, 2000, 20(1): 8-14.
    53.陈善娜,邹晓菊,梁斌.水稻不同抗冷性品种幼苗叶细胞膜系统的电镜观察[J].植物生理学通讯, 1997, 33(3): 191-194.
    54. Weeden N F, Buchanan B B. Leaf cytosolic fructose -1,6–bisphosphatase- A potential targets in low temperature stress[J]. Plant Physiol, 1983, 72: 259-261.
    55.李平,刘鸿先,王以柔等.低温对杂交水稻及其亲本三系始穗期旗叶光合作用的影响[J].植物学报, 1990, 32(6): 456-464.
    56.李平,陈贻竹,李晓萍等.籼稻的耐冷性与亲本的关系[J].植物学报, 1994, 37(7): 544-551.
    57.Hetherington S E, He J, Smile R M. Photoinhibition at low temperature in chilling sensitive and resistant plants[J]. Plant Physiol, 1989, 90: 1609-1615.
    58.王国莉,郭振飞.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J]. 2005, 19(4): 381-383.
    59.何洁,刘鸿先,王以柔等.低温与植物的光合作用[J].植物生理学通讯, 1986 (2): 1-6.
    60.Coles-James A, Jones R Christian. Efect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from atidal freshwater river[J]. Jounral of physiology, 2000, 36 (1): 7-16.
    61.郭汉华,易建华,孙在军.低温胁迫对烟苗光合作用的后续影响[J].烟草科技, 2004, 4: 31-33.
    62.易建华,孙在军.烟草光合作用对低温的响应[J].作物学报, 2004, 6: 582-588.
    63.Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 1980, 31: 491- 543.
    64.陈安和.高温对水稻光合特性的影响[J].渝州大学学报(自然科学版), 1989(2): 42-48.
    65. AL-Khatib K, Paulsen G. High-temperature effects on photosynthetic p rocesses in temperate and tropical cereals[J]. Crop Science, 1999, 39: 119- 125.
    66.Xu Q, Paulsen A Q, Guikema J A, et al. Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation[J]. Environm ental and Experimental Botany, 1995, 35: 43- 54.
    67.张吉旺,董树亭,王空军等.大田增温对夏玉米光合特性的影响[J].应用生态学报, 2008, 19(1): 81-86.
    68. King A W, Emanuel W R , Post W M. Projecting future concentrations of atmospheric CO2 with global carbon cycle models : the importance of simulating historical changes[J ] . Environ Man , 1992 , 16: 91-108.
    69.蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响-国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报, 1997, 21(6): 489-502.
    70.龚伟,宫渊波,胡庭兴等. CO2浓度升高对湿地松针叶蒸腾特性和水分利用效率的影响[J].水土保持学报, 2005, 19(5): 178-182.
    71.孙伟,王德利,王立等.狗尾草蒸腾特性与水分利用效率队模拟光辐射增强和CO2升高的响应[J].植物生态学报, 2003, 27(4): 448-453.
    72.何平.大气温室效应与植物的光合性状-大气CO2升高对油桐和烟草光合气体交换及叶的脂类组成的影响[J].中南林学院学报, 1998, 18(3): 18-21.
    73. Berry J A, Downton W J S. Environmental regulation of photosynthesis In: Govindjee(ed) Photosynthesis VolⅡ. Development, Carbon Metabolism, and Plant Productivity. Academic Press, New York pp. 263-343.
    74.周小玲,田大伦,张旭东等.不同CO2浓度对4个桤木品系光合特性的影响[J].林业科学研究, 2007, 20(5): 710-716.
    75.孙旭生,林琪,姜雯等.施氮量对开花期超高产小麦旗叶CO2响应曲线的影响[J].麦类作物学报, 2009, 29(2): 303-307.
    76.杜尧舜.增施CO2和生长调节剂对草莓光合作用的影响[J].浙江农业学报, 2000, 12(3): 144-146.
    77.Delucia E, Sasek T W, Strain B R. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide[J]. Photosynthesis Res. 1985, 7: 175-184.
    78.Yelle S, Beeson J r. R C, TrudelM J, et al. Acclimation of two tomato species to high atmo spheric CO2[J]. Plant Phy siol, 1989, 90: 1465-1 472.
    79. Arp W J, Drake G. Increased photosynthetic capacity of Scirpus olneyi after 4 years of expo sure to elevated CO2[J]. Plant Cell & E nviron, 1991, 14: 1003-1006.
    80.Tuba Z, Szente K, Koch J. Response of photosynthesis, stomatalconductance, water use efficiency and production to long-term elevated C02 in winter wheat[J]. J. Plant Physiol, 1994, 144:661-668.
    81.X u D Q, Gifford R M, Chow W S. Photosynthetica acclimation in pea and soybean to high atmospheric CO2 partial pressure[J]. Plant Physiol, 1994, 106: 661-671.
    82.Rowlang-Bamford A J, Baker J T, Allen Jr L H. et al. Acclimation of rice to changing atmospheric carbon dioxide concenrtaiton[J]. Plant Cell Environ, 1991, 14:577-583.
    83.Radin J W, Kimball B A, Hendrix D A, et al. Photosynthesis of cotton plants exposed to Enriched levels of CO2 in the Field[J]. Photosyn Res, 1987, 12:191.
    84.Hicklenton P R, Jollife P A. Alteration in the physiology of C02 exchange in tomato plants grown in C02-enriched atmospheres[J]. Can J Bot, 1980, 58: 21-81.
    85.Campbell W J, Allen Jr L H, Bowes G. Efects of C02 concentration on Rubisco activity amount and photosynthesis in soybean leaves[J]. Plant Physiol, 1988, 88: 1310-1316.
    86.许大全.光合作用的“午睡”现象的生态、生理与生化[J].植物生理学通讯, 1990(6): 5-10.
    87.Liu J W, Hu X S, Wang S J, et al. Stomatal and Photosynthesis Model in Relation to Environment: The response of four poplar clones to irradiation, temperature and relative humidity [J]. Journal of Beijing Forestry University ( English Ed.), 1997, 6(1): 19-33.
    88.项斌,林舜华,高雷明.紫花苜蓿对CO2倍增的反应:生态生理研究和模型拟合[J].植物学报, 1996, 38(1) : 63-71.
    89.翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版), 2002, 28(4): 387-391.
    90.金志凤,李永秀,景元书等.杨梅光合作用与生理生态因子的关系[J].果树学报, 2008, 25(5): 751-754.
    91.夏江宝,孙景宽,张光灿.水分胁迫对美国凌霄单叶水分利用效率的影响[J].西北植物学报, 2009, 29(1): 0154-0159.
    92.马成仓,高玉葆,王金龙等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J].植物生态学报, 2004, 28(3): 305-311.
    93.邵玺文,韩梅,韩忠明等.不同生境条件下黄芩光合日变化与环境因子的关系[J].生态学报, 2009, 29(3): 1470-1476.
    94.葛滢,常杰,陈增鸿等.青冈净光合作用与环境因子的关系[J].生态学报, 1999, 19(5): 683-688.
    95.苏培玺,严巧娣. C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报, 2006, 6(1): 75-82.
    96.覃鹏,刘叶菊,曾淑华等.高海拔地区烟草光合作用的日变化[J].亚热带植物科学, 2004, 33(3): 16-18.
    97. Woodward FI. Ecophysiological studies on the shrub Vaccinium myrtillus L.taken from a wide altitudinal range[J]. Oecologia, 1986, 70: 580–586.
    98.YODA K A. Preliminary survey of the forest vegetation of eastern Nepal[J]. Journal of College Art and Scinences, Chiba University(natural Science), 1967, 5:99-140.
    99.潘红丽,李迈和,蔡小虎等.海拔梯度上的植物生长与生理生态特性[J].生态环境学报,2009, 18(2): 722-730.
    100. Hovenden M J, Brodribb T. Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern beech, Nothofagus cunninghamii.Australian[J]. Journal of Plant Physiology, 2000, 27: 451– 456.
    101.Friend AD, Woodward FI. Evolutionary and ecophysiological responses of mountain plants to the growing season environment[J]. Advances in Ecological Research, 1990, 20: 59–124.
    102.沈广材,史宏志,杨兴有等.四川烟区不同海拔高度温湿度对白肋烟生育期的影响[J].西南农业学报, 2009, 22(3): 589-593.
    103.冯学民,蔡德利等.土壤温度与气温及纬度和海拔关系的研究[J].土壤学报, 2004, 41(3): 489-491.
    104.祖元刚,阎秀峰,张文辉等.青藏高原东部不同海拔高度裂叶沙参气体交换与水分利用效率[J].植物学报, 1998, 40(10): 947-954.
    105.刘华,臧润国,张新平等.天山中部3种自然生境下天山雪莲的光合生理生态特性[J].林业科学, 2009, 45(3): 40-47.
    106.卢存福,贲桂英,韩发等.矮嵩草光合作用与环境因素关系的比较研究[J].植物生态学报, 1995, 19: 72-78.
    107.Kumar N, Kumar s, Ahuja P S. Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifoliumspecies at contrasting altitudes[J]. PHOTOSYNTHETICA. 2005, 43 (2): 195-201.
    108.康华靖,刘鹏,徐根娣等.大盘山自然保护区香果树对不同海拔生境的生理生态响应[J].植物生态学报, 2008, 32(4): 865-872.
    109.张波,师生波,李和平等.青藏高原不同海拔地区唐古特山莨菪叶片光合色素含量和抗氧化酶活性的比较研究[J].西北植物学报, 2008, 28(9): 1778-1886.
    110.Kumar N, Kumar s, Ahuja P S.Differences in the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley, pea, and wheat at two altitudes[J]. PHOTOSYNTHETICA. 2004, 42 (2): 303-305.
    111.Kumar N, Kumar vats S, Kumar s, et al. Altitude-related changes in activities of carbon metabolism enzymes in Rumex nepalensis[J]. PHOTOSYNTHETICA. 2008, 46 (4): 611-614.
    112.魏捷,余辉,匡廷云等.青海高原不同海拔珠芽蓼叶绿体超微结构的比较[J].植物生态学报, 2000, 24(3): 304-307.
    113.何涛,吴学明,张改娜等.不同海拔火绒草叶绿体超微结构的比较[J].云南植物研究,2005(6):639-643.
    114.Tranquillini W.Physiological Ecology of the Alpine Timpberline: Tree existence at High Altitude with Special Reference to the European Alps, Ecological Studies [M].New York:Springer Berlin Heidelberg, 1979.(中译本:李文华,廖俊国,译.高山林线生理生态[M].北京:中国环境科学出版社,1986.)
    115.LUO T X,PAN Y D, OUYAN H, et al. Leaf area index and net primary productivity alongsubtropical to alpine gradients in the Tibetan Plateau[J]. Global Ecology and Biogeography, 2004,13: 345-358.
    116. LI M H, KRAUCHI N, DOBBERTIN M. Biomass distribution of different-aged needles in young and old Pinus cembra trees at highland and lowland sites[J]. Trees, 2006, 20: 611-618.
    117. WRIGHT I J, REICH P B, CORNELISSEN J H, et al.Modulation of leaf economic traits and trait relationship by climate[J]. Global Ecology and Biogeography, 2005, 14: 411-421.
    118.张霁,蔡传涛,蔡志全等.不同海拔云南黄连生物量和主要有效成分变化[J].应用生态学报, 2008, 19(7): 1455-1461.
    119.李凯辉,王万林,胡玉昆等.不同海拔梯度高寒草地地下生物量与环境因子的关系[J].应用生态学报, 2008, 19(11): 2364-2368.
    120.张兴端,霍仕平,李求文等.海拔高度对武陵山区玉米品种生育期和产量的影响[J].玉米科学, 2006, 14(3): 99-101.
    121.池再香,杨桂兰,杨黎等.不同海拔高度的光温因子对超级稻陆两优106产量的影响研究[J].贵州气象, 2007, 31(6): 9-11.
    122.李明海,任选伦,詹蓉晖等.不同海拔高度和土壤类型对烤烟产质的影响[J].贵州农业科学, 1997, 25(增刊): 54-58.
    123.马剑雄,徐兴阳,罗华元等.不同品种烤烟对种植海拔的敏感性[J].烟草科技, 2009, 3: 53-56.
    124. Fischer C, H?ll W. Food reserves of Scots pine(Pinus sylvestris L.). I. Seasonal changes in the carbohydrateand fat reserves of pine needles[J]. Trees, 1991, 5:187-195.
    125. PALONEN P. Relationship of seasonal changes in carbohydrates and cold hardiness in canes and buds of three red raspberry cultivars[J]. Journal of the American Society for Horticultural Science, 1999, 124: 507-513.
    126.周永斌,吴栋栋,于大炮等.长白山不同海拔岳桦非结构碳水化合物含量的变化[J].植物生态学报, 2009, 33(1): 118-124.
    127.李蟠,孙玉芳,王三根等.贡嘎山地区不同海拔冷杉比叶质量和非结构性碳水化合物含量变化[J].应用生态学报, 2008, 19(1): 8-12.
    128.王瑞新.烟草化学[M].北京:中国农业出版社, 2003: 34-36.
    129.穆彪,杨建松,李明海.黔北大娄山区海拔高度与烤烟烟叶香吃味的关系研究[J].中国生态农业学报, 2003, 11(4): 148-151.
    130.王世英,卢红,杨骥等.不同种植海拔高度对曲靖地区烤烟主要化学成分的影响[J].西南农业学报, 2007, 20(1): 45-48.
    131.吴金水.北京东灵山地区现代植物碳氮含量和C/N比值与海拔高程的关系研究[D],硕士论文,中国科学院, 2005.
    132.胡启武,宋明发,欧阳华等.祁连山青海云杉叶片氮、磷含量随海拔变化特征[J].西北植物学报, 2007, 27(10): 2072-2079.
    133.韩锦峰.烟草栽培生理学[M].北京:中国农业出版社, 2003.
    134.简永兴,董道竹,杨磊等.种植海拔对烤烟生物碱组成的影响[J].烟草科技, 2006, 1: 27-30.
    135.简永兴,杨磊,谢龙杰等.种植海拔对烤烟石油醚提取物及常规化学成分的影响[J].烟草科技, 2005, 7: 3-6.
    136.常寿荣,罗华元,王玉等.云南烤烟种植海拔与致香成分的相关性分析[J].中国烟草科学, 2009, 30(3): 37-40.
    137.王树会,李天福,邵岩等.不同烤烟品种及海拔对烟叶中有机酸的影响[J].西南农业大学学报, 2006, 28(1): 127-130.
    138.闫克玉,赵献章.烟叶分级[M].北京:中国农业出版社, 2003.
    139.简永兴,杨磊,陈亚等.海拔高度对湘西北烤烟品质的影响[J].作物杂志, 2006, 3: 25-29.
    140.胡国松,杨林波,魏嵬等.海拔高度、品种和某些栽培措施对烤烟香吃味的影响[J].中国烟草科学, 2000, 3: 9-13.
    141.Mandal K J, Sinha A C. Nutrient management effects on light interception, photosynthesis, growth, dry-matter production and yield of Indian mustard (Brassica juncea) [J]. J Agron Crop Sci, 2004, 190: 119–129.
    142.Palmqvist K, Sundberg B. Light use efficiency of dry matter gain in five macro-lichens: Relative impact if microclimate conditions and species-specific traits[J]. Plant Cell & Environ, 2000, 23: 1–14.
    143.Munné-Bosch S, Nogués S, Alegre L. Diurnal of variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions[J]. New Phytol, 1999, 144: 109–119.
    144.冯建灿,张玉洁.柿树光合速率日变化及其影响因子的研究[J].林业科学, 2002, 38 (4): 34-39.
    145.陈贤田,柯世省.茶树光合“午休”的原因分析[J].浙江林业科技, 2002, 3: 80-82.
    146.李天福,王彪.不同光照处理对烤烟光合作用日变化影响[J].云南农业大学学报, 2006, 21(1): 69-72.
    147.Raschke K. Resimann A. The midday depression of C02 assimilation in leaves of Arbutus unedo L.: diumal changes in photosynthetic capacity related to changes in temperature and humidity[J]. Planta, 1986, 168: 546-558.
    148.杜占池,杨宗贵,崔骁勇.草原植物光合生理生态研究[J] .中国草地, 1999, 3 : 20-27.
    149.万素梅,贾志宽,杨宝平.苜蓿光合速率日变化及其与环境因子的关系[J].草地学报, 2009, 17(1): 27-31.
    150.刘玉华,史纪安,贾志宽等.旱作条件下紫花苜蓿光合蒸腾日变化与环境因子的关系[J].应用生态学报, 2006, 17(10): 811-814.
    151.Loveys B R, During H. Diurnal changes in water relations and abscisic acid in field-grown Vtis vinifera cultivarsⅡ. Abscisic acid changes under semi-arid conditions[J]. New Phytol, 1984,97:37-47.
    152.翁晓燕,蒋德安,陆庆等.影响水稻叶片光合日变化因素的分析[J].中国水稻科学, 1998, 12(2): 105-108.
    153. Downton W J S, Loveys B R, Grant W J R. Non-uniform stomatal closure induced by water stress causes putative non- stomatal inhibition of photosynthesis[J]. New Phytol, 1988, 110: 503-510.
    154.冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究, 2002, 20(4): 14-18.
    155.张守仁,高荣孚.光胁迫下杂种杨无性系光合生理生态特性的研究[J].植物生态学报, 2000, 24(5): 528-533.
    156.徐伟红,郭卫华,徐飞等.三种枣树叶绿素荧光参数的日变化[J].山东农业科学, 2007, 2: 29-31.
    157.张旺锋,任丽彤,王振林等.膜下滴灌对新疆高产棉花光合特性日变化的影响[J].中国农业科学, 2003, 36(2): 159-163.
    158. Woolhouse H W. In: The Molecular Biology of Plant Development. Eds: Smith H, Grierson D. Blackwell Scientific Publications, Oxford, London, 256-281.
    159.张荣铣,戴新宾,许晓明等.叶片光合功能期与作物产量潜力[J].南京师范大学学报,1999, 22(3): 250-260.
    160.张荣铣,程在全,方志伟等.关于光合速率高值持续期的初步研究[J].南京师范大学学报, 1992, 15: 76-86.
    161.江力,张荣铣.烟草叶片发育过程中光合功能衰退与H2O2积累的关系[J].分子细胞生物学报, 2006, 39(4): 325-329.
    162.Stoskopf N C. Understanding Crop Production[M]. Reston, Virginia: Reston Publishing Company, 1981, 1-12.
    163.许大全.作物的光合效率[M].上海:上海科学技术出版社, 2002.
    164. Lawlor D W. Photonsynthesis, productivity and enviroment[J]. J Exp Bot, 1995, 46(special issue): 1449-1661.
    165.Good N E, Bell D Photosynthesis H. Plant productivity, and crop yield. In: Caarleon P S(ed). The Biology of Crop productivity[M]. New York: Academic Press, 3.
    166. Nelson C J. Genetic associations betweens photosynthetic characteristics and yield: Review of the evidence[J]. Plant Physiol Biochem, 1988, 26: 543-554.
    167. Evans L T. From leaf photonsynthesis to crop productivity. In: Murata N(ed). Research in Photonsynthesis VolⅣ[M]. Dordrecht: Kluwer Academic Publishers,1992,587-594.
    168.许大全,沈允钢.作物高产高效生理学研究进展[M].北京:科学出版社, 17-23.
    169.沈允钢.光合作用与物质生产(1)[M].北京:中国农业出版社, 1980, 1-3.
    170.王强,张其德,蒋高明等.超高产杂交稻光合特性的研究[J].植物生态学报, 2000, 42(12): 1285-1288.
    171.朱桂杰,蒋高明,郝乃斌等.大豆生理生态特性与产量的关系[J].植物学报, 2002, 44(6): 725-730.
    172.张荣铣,刘晓忠,宣亚南等.小麦叶片展开后光合碳同化能力—叶源量的估算[J].中国农业科学, 1997, 30(1): 84-91.
    173.陆巍,曹树青,张荣铣等.水稻剑叶叶源量及其与产量性状关系的研究[J].南京农业大学学报, 2001, 24(1):1-4.
    174.张荣铣,戴新宾,许晓明等.叶片光合功能期与作物光合生产潜力.见:娄成后,王学成主编.作物产量形成的生理学基础[M].北京:中国农业出版社, 2000, 52-63.
    175.曹树青,翟虎渠,张红生等.不同类型水稻品种叶源量及有关光合生理指标的研究[J].中国水稻科学, 1999, 13(2): 91-94.
    176.颜景义,郑有飞,郭林等.小麦累积光合量的估算及其规律分析[J].中国农业气象, 1995, 12(1): 4-8.
    177.洪佳华,刘明孝,杜宝华等.用日净光合总量分析冬小麦绿色器官的光合生产能力[J].中国农业气象, 1996, 17(3): 19-22.
    178.武兰芳,欧阳竹.不同种植密度下两种穗型小麦叶片光合特性的变化[J].麦类作物学报, 2008, 28(4): 618-625.
    179.李少昆,张旺锋,马富裕等.北京超高产棉花(皮棉2000 kg/hm2)生理特性研究[J].作物学报, 2000, 26(4): 508-512.
    180.魏爱丽,王志敏.小麦叶片日光合高值持续时间基因型差异的初步研究[J].西北植物学报, 2004, 24(8): 1493-1496.
    181.李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社, 2000: 134–137.
    182.肖强,叶文景,朱珠等.利用数码相机和photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志, 2005, 24(6): 711-714
    183.张永丽,肖凯,李雁鸣.种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制[J].作物学报, 2005, 31(4):498-505.
    184.张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    185.Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa XP. deltoids clone[J]. Tree Physiology, 1991, 8: 145 - 149.
    186.董志新,韩清芳,贾志宽等。不同苜蓿(M edicago sativa L. )品种光合速率对光和CO2浓度的响应特征[J].生态学报,2007,27(6):2272-2277.
    187.Hodgson R A J, Raison J K. Inhibition of photosynthesis by chilling in moderate light: a comparison of plants sensitive and insensitive to chilling[J]. Planta, 1989, 178: 545 - 552.
    188.蔡时青,许大全.大豆叶片CO2补偿点和光呼吸的关系.植物生理学报, 2000, 26 (6) : 545-550.
    189. GB2635-1992,烤烟[S]. 1992.
    190.闫克玉,袁志永,吴殿信等.烤烟质量评价指标体系研究[J].郑州轻工业学院学报(自然科学版), 2001(4): 57-61.
    191. Farqhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant physiology, 1982, 33: 317- 345.
    192.刘国顺.烟草栽培学[M].北京:中国农业出版社, 2003.
    193.李俊清,牛树奎.森林生态学[M].北京:高等教育出版社, 2006.
    194. Ford D M, Shibles R. Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence[J]. Plant Physiol, 1988, 86: 108-111
    195.李寒冰,胡玉熹,白克智等.小麦芒和旗叶叶绿体结构及低温荧光发射光谱的比较研究[J ] .电子显微学报, 2002 , 21 (2) : 97-101.
    196.陶琴南,吴良欢,方萍等.不同叶色水稻叶绿体密度及基粒结构的计算机图像分析[J].植物生理学报, 1992 , 18 : 126 -132.
    197.王瑞,刘国顺,毕庆文等.不同海拔下全程覆膜对烤烟光合功能和产量、质量的影响[J].生态学杂志, 2010, 29(1): 1-8.
    198.李霞,刘友良,焦德茂.不同高产水稻品种叶片的荧光参数的日变化和光适应特性的关系[J].作物学报, 2002, 28(2): 145-153.
    199.刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响[J].生态学报, 2002, 22(12): 2264–2271.
    200.Hikosaka K, Terashima I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant, Cell & Environ, 1995, 18: 605–618.
    201.王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报, 2003, 14(10): 1632–1636.
    202. Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones[J]. Ann Rev Plant Physiol, 1978, 29: 227–317.
    203.谢田玲,沈禹颖,邵新庆等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率[J].生态学报, 2004, 24(8): 1679-1686.
    204.刘金祥,麦嘉玲,刘家琼. CO2浓度增强对沿阶草光合生理特性的影响[J].中国草地, 2004, 26(3): 13-18.
    205.刘瑞显,郭文琦,陈兵林等.干旱条件下花铃期棉花对氮素的生理响应[J].应用生态学报, 2008, 19(7): 1475-1482.
    206.董志新,韩清芳,贾志宽等.不同苜蓿(Medicago sativa L. )品种光合速率对光和CO2浓度的响应特征[J].生态学报, 2007, 27(6): 2271-2278.
    207.孙旭生,林琪,赵长星等.施氮量对超高产冬小麦灌浆期旗叶光响应曲线的影响[J].生态学报, 2009, 29(3): 1429-1436.
    208.刘贤赵,康绍忠,邵明安等.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报, 2000, 11(3): 377-381.
    209.焦念元,赵春,宁堂原等.玉米-花生间作对作物产量和光合作用光响应的影响[J].应用生态学报, 2008, 19(5): 981-985.
    210.李章海,徐晓燕,季学军等.不同栽培条件对烤烟上部烟叶烟碱和总氮含量的影响[J].中国烟草科学, 2005, 1: 28-31.
    211.周冀衡,朱小平,王彦亭,等.烟草生理与生物化学[M].合肥:中国科学技术大学出版社, 1996.
    212.邓云龙,孔光辉,武金坤等.氮素营养对烤烟叶片淀粉积累及SPS、淀粉酶活性的影响[J ] .烟草科技, 2001, (11) : 34 - 37.
    213. HUANGB K, BOWEXS C G. Development of green-house solar systems for bulk tobacco curing and production [J]. Energy Agric, 1986 , 5 (4) : 267.
    214.李文卿,陈顺辉,江荣风等.不同施氮量对烤烟总氮和烟碱积累的影响[J].中国烟草学报, 2007, 13(4): 31-35.
    215.刘贤赵,康绍忠,李庆志等.不同生育期遮荫条件下番茄矿质氮的分配效应[J].农业工程学报, 2003, 19(2): 199-202.
    216.TAKASHIMA T, HIKOSAKE K, HIROSE T. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species[J]. Plant, Cell and Environment, 2004, 27: 1047-1054.
    217.EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78: 9-19.
    218.于建军,任晓红,夏林等.“金攀西”优质烟开发区烤烟中性致香物质分析[J].中国烟草科学, 2005(4): 11-13.
    219.邵岩,方敦煌,邓建华等.云南与津巴布韦烤烟致香物质含量差异研究[J].中国农学通报, 2007,23(8): 70-74.
    220.李章海,王能如,王东胜等.不同生态尺度烟区烤烟香型风格的初步研究[J].中国烟草科学, 2009, 30(5): 67-70.
    221.李章海,王能如,王东胜等.烤烟香型的重要影响因子及香型指数模型的构建初探[J].安徽农业科学, 2009, 37(5): 2055-2057.
    222.赵铭钦,陈秋会,陈红华.中外烤烟烟叶中挥发性香气物质的对比分析[J].华中农业大学学报, 2007,26(6): 875-879.
    223.冼可法.云南烤烟中性香味物质分析研究[J].中国烟草学报, 1992(2): 1-9.
    224.韩锦峰,马常力,王瑞新等.不同肥料类型及成熟度对烤烟香气物质成分及香型的影响[J].作物学报, 1993(3): 253-261.
    225.何承刚,曾旭波.烤烟香气物质的影响因素及其代谢研究进展[J].中国烟草科学, 2005(2): 40-43.
    226.周冀衡,杨虹琦,林桂华等.不同烤烟产区烟叶中主要挥发性香气物质的研究[J].湖南农业大学学报(自然科学版), 2004,30(1): 20-23.
    227.宗会,徐照丽.云南香气品质与植物生态环境关系的探讨[J].中国农学通报, 2005(专刊): 177-179.
    228.左天觉,朱尊权.烟草的生产、生理和生物化学[M].上海:上海远东出版社, 1993: 433488.
    229.于建军,庞天河,任晓红等.烟叶中性致香物质和评吸结果关系研究[J].河南农业大学学报, 2006,40(4): 346-349.
    230.杨虹琦,周冀衡,罗泽民等.不同产区烤烟中质体色素及降解产物的研究[J].西南农业大学学报(自然科学版), 2004,26(5): 640-644.
    231.唐启义,冯明光.DPS数据处理系统-试验设计、统计分析及模型优化[M].北京:科学出版社,2006:628-642.
    232.Smeeton B W. Genetical control of tobacco quality[J]. Recent Adv Tob Sci ,1987, 13: 3-26.
    233.唐远驹.试论特色烟叶的形成和开发[J].中国烟草科学, 2004, 1: 10-13.
    234.杨兴有,刘国顺.成熟期光强对烤烟理化特性和致香成分含量的影响[J].生态学报, 2007, 27, (8): 3451-3456.
    235.陈瑞泰.中国烟草栽培学[M].上海:上海科学技术出版社, 1987: 76-82
    236.王瑞,刘国顺,倪国仕等.种植密度对烤烟不同部位叶片光合特性及其同化物积累的影响[J].作物学报, 2009, 35(12): 2288-2295.
    237.董树亭.玉米群体光合与产量关系及调控研究[D].博士论文:北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700