用户名: 密码: 验证码:
宁波市新农村GIS开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
党的十六届五中全会提出的建设社会主义新农村这一重大任务,是党和政府在新时期解决“三农”问题的重大举措。新农村建设涉及农村经济建设、政治建设、文化建设和社会建设等方方面面,这些方面的建设都与信息化紧密相连。地理信息系统作为以空间数据管理与分析为特征的信息技术,在农村建设中已有很多应用,包括农业资源及生态环境的管理、农业生产、村镇规划等。但目前,GIS在农村中的应用仍然存在不少问题,如各个部门所建立的系统往往都是相互独立,数据和软件资源不能共享,难以进行多要素的综合分析;在新农村建设关注的生态环境、农民生活等方面应用很少;大多数GIS的建设成本较高,适合一般农业生产人员使用的低成本、易操作的GIS产品较少等。随着新农村建设的推进及GIS应用的广泛深入,需要对存在的问题及相关技术进行研究。
     论文结合宁波市新农村GIS建设开展研究,主要研究内容和取得的成果有如下四个方面:
     1)基于服务式的宁波市新农村GIS的设计及共享服务平台的开发。对面向Web服务的地理信息共享服务框架以及关键技术进行了研究,提出了宁波市新农村GIS的设计,并开发了一个面向服务的地理空间信息共享平台,包括基础数据服务、常用的数据处理服务以及平台管理模块,该平台形成统一的、跨行业和跨部门的地理空间信息共享模式,可以在此基础上构建不同架构(C/S、B/S以及M/S)的专业GIS,实现资源的共享、集成与融合。
     2)宁波市森林碳储量估算GIS的开发与应用。针对宁波市森林生态系统的特点,结合样方分析,建立了宁波市森林碳储量估算模型,利用共享平台提供的数据服务,开发了C/S架构的宁波市森林碳储量估算GIS,并利用该系统对宁波市森林碳储量估算与分析,分析结果表明宁波全市森林总体碳储量为39.5TgC西部山区森林碳储量较高,中部平原地区和东部沿海区域碳储量较低。
     3)宁波市新农村建设评价WebGIS开发与应用。通过对国内已有的新农村建设评价指标体系进行频度分析和理论分析,结合宁波市新农村建设的实际情况,提出了由5个一级指标、27个二级指标构成的宁波市新农村建设评价指标体系,并结合专家打分,制定了各个指标的权重,在此基础上,构建了基于服务的宁波市新农村建设评价WebGIS系统,系统能定期访问服务平台提供的最新数据,对评价结果进行更新并进行Web发布,同时,在没有获得某些数据的情况下,能够对各个指标的权重进行动态修正
     4)测土配方移动GIS的开发与应用。根据宁波市的实际情况,建立了基于目标产量的施肥量计算模型,并开发了M/S架构的测土配方移动GIS,该系统的客户端包括GPS实时定位、土壤参数查询和施肥建议三个模块,可以实时获得所在位置的经纬度坐标、查询所在位置的土壤参数并可以通过选择肥料种类、目标亩产量获得施肥量建议。在宁海县东部六个乡镇采集了104个样点,通过Kriging插值法获得了研究区各土壤养分含量的空间分布图,利用测土配方移动GIS可以快速获得所在位置的土壤肥力信息及施肥量建议,显示了系统具有较好实用性。
The significant historic task of constructing socialism new rural areas advanced at the Fifth Plenary Session of the Party's 16th session is an important strategic policy of the Central Party Committee in order to solve the "rural, agricultural and fanners" issues in the new era. The new rural construction involves rural economic development, political construction, cultural development and social development and other aspects, which are inextricably linked with the construction of information. As an typical information technology for spatial data management and analysis, geographical information system (GIS) has been widely applied in the construction of rural area, including agricultural resources and ecological environmental management, agricultural production, rural planning, etc. However, at the present time, there are still many problems in GIS application for rural area. For example, it is hard to make comprehensive multi-factors analysis because the various systems established by different departments are independent, which makes both the data and software impossible to be shared; Little research on applying GIS to ecological environment and people's life of rural area has been done before; Construction fee of most GIS is high and there is few GIS products that are low-cost and easy-operated for general use of agriculture-related person. As the new rural construction goes on and the development of GIS application technology, it's quite necessary to research on these problems and related technologies.
     This paper carries out researches on the GIS development of the new rural construction in Ningbo, which includes research contents and results mainly on the following four aspects:
     1) The development of service-oriented GIS and service-sharing platform for the new rural construction of Ningbo. Based on researches on webservice-oriented geographical information sharing framework and the key technologies, this paper proposed how to design a new rural GIS for Ningbo, and developed a service-oriented geographical information sharing platform, which involves basic data service, common data processing service and management module. This platform is unified, cross-industries and cross-sectors, which makes it feasible to build professional GIS of different structures (B/S, C/S or M/S) on it. Under this situation, sharing and integration of resources are implemented.
     2) The development and applications of forest carbon stock calculation GIS in Ningbo. According to the characteristics of Ningbo forest ecosystems, the forest carbon stock model is established with quadrates analysis. Based on the data services provided by the sharing platform, the forest carbon stock GIS is developed with a C/S framework, which is then used to calculate the forest carbon stock of Ningbo and make an analysis. The result shows that the forest carbon stock of Ningbo amounts to 39.5TgC. It also indicates that the forest carbon stock in the western mountain areas is higher while it is lower in the central plains and eastern coastal areas.
     3) The development and applications of WebGIS for new rural construction evaluation in Ningbo. After making frequency analysis and theoretical analysis on the evaluation systems established by the domestic researchers on this issue, a new evaluation system made up of 5 first-class indexes and 27 second-class indexes is proposed to evaluate the new rural construction in Ningbo. Then, according to experts'marking, the weighted coefficient of each index is ascertained. A service-oriented evaluation WebGIS of new rural construction in Ningbo is developed based on this evaluation system, which thermally accesses the latest data provided by the service platform, and then updates the evaluation results on the web. Besides, if certain fields of statistical data are lost, the evaluation system will be modified automatically to fit the data.
     4) The development and application of mobile GIS in formula fertilization by soil testing. According to the actual situation of Ningbo, a fertilization model based on target output is proposed. Then a mobile GIS within M/S framework is development in formula fertilization by soil testing. The client of this GIS system includes three modules:real-time location by GPS, the query service of soil parameters and formula fertilization suggestion, which can be used to get the exact coordination of location, find out the soil parameters of location and figure out fertilization suggestion based on fertilizer type and target yield.104 soil samples are collected in the six eastern towns of Ninghai county. Based on these samples, a spatial distribution map of this area is made using Kriging interpolation method. The soil fertility information and fertilization suggestion based on the location of mobile client can be acquired immediately by the mobile GIS of formula fertilization by soil testing. It suggests that this mobile GIS is practical.
引文
[1]Anderson F. Ecological studies in a Scandinavian woodland and meadow area, Southern Sweden.2. Plant biomass, primary production and turnover of organic matter. Botany Notiser, 1970,123:8-51
    [2]Ashish B, Aravin C, et al. C#Web 服务高级编程.北京:清华大学出版社.2002
    [3]Cannell M G R. World forest biomass and primary production data. London:Academic Press, 1982
    [4]Clark D A, Brown S, Kicklighter D W, et al. Net primary production in tropical forests:an evaluation and synthesis of existing field data. Ecological Applications,2001,11:371-384
    [5]Dixon R K, Brown S, Houghton R A, et al. Carbon pool and flux of global forest ecosystem. Science,1994,263:185-190
    [6]Duvingneaud P. Productivity of forest ecosystems, Proc. Brussels Symp. UNESCO. Ecology and Conservation,1969,4:1-684
    [7]Egenhofer M, Glasgow J, Gunter O.et al. Progress in computational methods for representing geographic concepts. Internatioal Journal of Geographical Information Science.1999,13(8): 775-797.
    [8]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322
    [9]Grubler A. Enhancing carbon sink. Energy,1993,18:499-522
    [10]Houghton R A, Hobbie J E, Mellilo J M, et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:a net release of CO2 to the atmosphere. Ecological Monographs,1983,53:235-262
    [11]Houghton R A, Boone R D, Mellilo J M, et al. Net flux of carbon dioxide from tropic forests in 1980. Nature,1985,316:617-620
    [12]Houghton R A, Boone R D, Fruci J R, et al. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980, due to changes in land use:geographic distribution of the globe flux. Tellus,1985,39B:122-139
    [13]Houghton R A. Temporal patterns of land-use change and carbon storage in China and tropical Asia. Science in China(Series C),2002,45:10-17
    [14]Hoogenboom G. Contribution of agometeorology to the simulation of crop production and its applications. Agricultural& Forest Meteorology.2000,103(1-2):137-157.
    [15]Hutchinson M F. A new objective method for spatial interpolation of meteorological variables from irregular networks applied to the estimation of monthly mean solar radiation, temperature, precipitation and windrun. CSIRO Div. of Water Resources Tech.,1989
    [16]Hu B G, Jaeger M. Plant Growth Modeling and Application-2003, International Symposium on Plant Growth Modeling,Simulation,Visualization and Their Application, Beijing:Tsinghua University Press,2003
    [17]Hwang S Y, Lim E P, et al. On composing a reliable composite Web Service:A study of dynamic Web service selection. IEEE International Conference On Web Service 2007:184-191
    [18]Ichii K, Matsui Y, Yamaguchi Y, et al. Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model. Global Biogeochemical Cycles,2001,15:351-363
    [19]Iverson L R, Brown S, Grainger A, et al. Carbon sequestration in tropic Asia:an assessment of technically suitable forest land using geographical information systems analysis. Climate Research,1993,3:23-38
    [20]Iverson L R, Brown S, Prasad A, et al. Use of GIS for estimating potential and actural forest biomass for continental south and southeast Asia, In:effect of land use change on atmospheric CO2 concentrations:south and southeast Asia as a case study. Dale V H, ed. New York: Springer-Verlag,1994.67-116
    [21]Jordan C F. Amazon rain forest. American Scientist,1982,70:394-401
    [22]Kalogirou S. Expert systems and GIS:an application of land suitability evaluation. Computers Environment and Urban Systems,2002,26 (2-3):89-112
    [23]Leith H, Whittaker(eds.)R H. Primary productivity of biosphere.Berlin:Springer-Verlag, 1975
    [24]Littleboy M., Silburn D M. Freebairn, D.M., et al. Impact of soil erosion on production in cropping systems.I. Development and validation of a simulation model. Australian Journal of Soil Research,1992,30(5):757-774.
    [25]Littleboy M, Smith D M, Bryant M J. Simulation modelling to determine suitability of agricultural land. Ecological Modelling,1996,86:219-225.
    [26]Maclean D A, Wein R W. Biomass of jack pine and mixed hardwood stands in southern New Brunswich. Canadian Journal of Forest Research,1976,6:441-447
    [27]Maji A K, Nayak D C, Krishna N D R, et al. Soil information system of Arunachal Pradesh in a GIS environment for land use planning. JAG,2001,3(1):69-77.
    [28]Manderson A, Palmer A. Soil information for agriculture decision making:a New Zealand perspective. Soil Use and Management,2006,22(4):393-400.
    [29]Manoj P, Ghosh S K. An approach for service oriented discovery and retrieval of spatial data. International Workshop on Service Oriented Software Engineering. Shanghai:ACM Press, 2006:88-94
    [30]Ni J. Net primary productivity in forests of China:scaling-up of national inventory data and comparison with model predictions. Forest Ecology and Management,2003,176:485-495
    [31]Ogawa H, Yoda K, Kira T. Comparative ecological studies on three main forest vegetation in Thailand:Ⅱ. Plant biomass. Nature Life Southeast Asia(Kyoto),1961,1:49-80
    [32]Olson J S, Watts J K, Allison L J. Major world ecosystems ranked by carbon in live vegetation:a database. NDP-017, TN, Oak Ridge National Laboratory,1985
    [33]Ovinghton J D, Heitkamp D, Lawrence D B. Plant biomass and productivity of prairie, savanna, oak woods and maize field ecosystems in central Minnesota. Ecology,1963,44: 52-63
    [34]Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:a process model base on global satellite and surface data. Global Biogeochemical Cycles,1993,7:811-841
    [35]Rodel D L. Forest carbon budgets in Southeast Asia following harvesting and land cover change. Science in China(Series C),2002,45:55-64
    [36]Robinson T P. Metternicht G.. Testing the performance of spatial interpolation techniques for mapping soil properties]. Computers and Electronics in Agriculture.2006,50:97-108.
    [37]Ruimy A, Saugier B. Methodology foe the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research,1994,99:5263-5283
    [38]Saaty T L. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology,1977,15 (3):234-281
    [39]Satoo T. A synthesis of studies be the harvest method:primary production relations in ht temperate deciduous forest of Japan. In:analysis of temperate forest ecosystem. Ecology Study. New York:Springer-Verlag,1970.1:55-72
    [40]Spatially enabling service-oriented architectures with ArcGIS server[C/OL].ArcNews online, 2006. http://www.esri.com/news/arcnews/summer06articles/spatiallyenabling.html
    [41]Thysen I. Agriculture in the information society. Journal of agricultural engineering research. 2000,76(3):297-303.
    [42]Using ArcGIS geostatistical analyst. ESRI,2001:50-139
    [43]Whittaker R H. Forest dimension and production in the Great Smoky Mountains. Journal of Ecology,1966,47:103-121
    [44]Yu J, Chen Y, Wu J P, et al. Cellular automata-based spatial multi-criteria land suitability simulation for irrigated agriculture. International Journal of Geographical Information Science,2011,25(1):131-148.
    [45]Zhao M, Zhou G S. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management,2005,207: 295-313
    [46]安和平,金小麟,杨成毕.板桥河小流域治理前期主要植被类型生物量生长规律及森林生物量变化研究.贵州林业科学,1991,19(4):20-34
    [47]白淑英,张树文,宝音,等.遥感和GIS在土地适宜性评价研究中的应用——以呼和浩特武川县为例.水土保持学报,2003,17(6):19-26
    [48]白由路,杨俐苹.我国农业中的测土配方施肥.土壤肥料,2006(2):3-7
    [49]北京艾力泰尔信息技术有限公司,吉林省农用饮用水安全管理信息系统.超图通讯,2010,21:28-29.
    [50]北京林业大学.土壤理化分析实验指导书.北京,2002.
    [51]迟文学.面向服务的搭建式软件开发技术研究.北京:中国地质大学.2008
    [52]陈崇成,李军,黄洵,等.福清市土地开发与管理决策支持系统设计及应用.资源科学,2000,22(1):40-44
    [53]承达瑜,张海荣,等.基于服务式GIS的煤矿区环境信息共享框架研究.现代矿业,2009,1:131-134
    [54]陈芬.基于AEZPGIS的福建土地适宜性评价.福建地理理,2002,17(3):11-18
    [55]陈逢珍,赖如勤.县级土地评价信息系统的建立.测绘通报,1998,7:32-35.
    [56]陈海龙.江西省丰城市新农村建设模式及其评价研究.上海:华东交通大学硕士论文,2009
    [57]陈天恩,赵春江,陈立平,等.测土配方施肥辅助决策平台的研究与应用.计算机应用研究,2008,25(9):2748-2774.
    [58]程锋.基于GIS与决策模型整合的基本农田保护规划系统.北京:中国农业大学博士论 文,2003
    [59]方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24:513-517
    [60]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999
    [6U傅新,梁柏柳,韩荣青,等.G1S技术支持下的招远市农村居民点居住适宜性研究.首都师范大学学报(自然科学版),2009,30(3):87-91
    [62]顾凤岐,王爽.构建社会主义新农村指标体系研究.统计与信息论坛,2006,5:26-30
    [63]郭浩,王兵,马向前,等.中国油松林生态服务功能评估.中国科学C辑:生命科学,2008,38:565-572
    [64]过建春,刘艳.对中国社会主义新农村评价指标体系的初步探讨.发展,2006,10:59-60
    [65]郭建宏.林副产品配送优化辅助决策模型与GIS集成研究.北京:北京林业大学博士论文,2008
    [66]何琳.关于社会主义新农村评价问题的思考.山东工商学院学报,2006,4:17-20
    [67]黄方,刘湘南,张养贞.GIS支持下的吉林省西部生态环境脆弱态势评价研究.地理科学,2003,23(1):95-100
    [68]黄皓.面向服务的地理信息共享在Google Earth上的实现.成都:成都理工大学,2007
    [69]黄跃进,唐锦春,孙柄楠.基于GIS的农用土地适宜性评价模型的建立.浙江林学院学报,1999,16(4):406-410
    [70]霍雨,王腊春.江苏省新农村建设评价指标体系初探——以大丰市南阳镇为例.四川环境,2007,2:79-83,100
    [71]康铭东,彭玉群.移动GIS的关键技术与应用.测绘通报,2008,9:50-69.
    [72]柯金虎,朴世龙,方精云.长江流域植被净第一生产力及其时空格局研究.植物生态学报,2003,27:764-770
    [73]李党辉.基于WebGIS的森林资源管理信息系统设计.武汉:武汉大学硕士论文,2005
    [74]李广海,陈通,等.和谐社会理念的新农村评价指标体系构建.西北农林科技大学学报(社会科学版),2007,1:10-13
    [75]李虹,田亚平,等.村级新农村建设评价实证研究——以湖南省衡南县工联村为例.农业经济问题,2007,4:77-80,111-112
    [76]李军.农业信息技术.北京:科学出版社,2010.
    [77]李树德,李瑾.天津市社会主义新农村建设考核评价研究.农业技术经济,2006,6:60-64
    [78]李秀霞,刘雁.社会主义新农村评价体系研究.农村经济,2006,11:105-107
    [79]林杰,张金池,彭世揆,等.江西省1:100万土壤信息系统的构建.南京林业大学学报(自然科 学版),2005,29(5):106-110
    [80]林文鹏.基本农田信息系统设计与实例研究.福州:福建师范大学硕士论文,2001
    [81]刘舫,杨长保,李文莉,等.农业生态环境综合信息系统的设计和实现——以吉林省为例.第八届ESRI中国用户大会论文集,北京:测绘出版社,2009
    [82]刘礼勇,范文涛,李洪国,等.应用GIS、 GPS技术建设农村公路信息管理平台探讨.第七届ArcGIS暨ERDAS中国用户大会论文集,2006,596-603
    [83]刘京.陕西省士壤信息系统的建立及应用.杨陵:西北农林科技大学博士论文.2010
    [84]刘健宏.福建省社会主义新农村建设评价指标体系研究.台湾农业探索,2008,3:46-49
    [85]罗天祥.中国主要森林类型生物生产力格局及其数学模型.北京:中国科学院国家计划委员会-自然资源考察委员会,1996
    [86]鹿应荣.粮食物流系统优化研究.长春:吉林大学,2007
    [87]马明远,秦向阳.基于GIS的村镇社区数字化管理.地理信息世界,2010,8(4):76-81
    [88]马晓燕,国忠金,等.社会主义新农村建设评价指标体系的集对分析模型.数学的实践与认识,2010,14:9-15
    [89]毛艳玲.GIS支持下的闽侯县未利用土地适宜性评价.福建农林大学学报(自然科学版),2005,34(3):382-385
    [90]倪健.中国亚热带常绿阔叶林净第一性生产力的估算.生态学杂志,1996,15:1-8
    [91]聂艳,周勇,陈平,等.基于G1S的耕地定级方法及其应用.长江流域资源与环境,2005,14(3):342-347.
    [92]宁波,龚文峰,范文义.基于RS和GIS帽儿山土地利用适宜性评价.东北林业大学学报,2009,37(2):56-58
    [93]宁波市林业局.宁波森林资源分布图.2007
    [94]潘学标.棉花模型的研究与应用.第95次香山科学会议论文集,1998,31-38
    [95]朴世龙,方精云,郭庆华.利用CASA模型估算中国植被净第一生产力.植物生态学报,2001,25:603-608
    [96]彭明军,樊玮.面向服务的政务地理信息共享平台设计与实现.地理空间信息,2009,06:59-61
    [97]朴世龙,方精云,郭庆华.1982-1999年中国植被净第一性生产力及其时空变化.北京大学学报(自然科学版),2001,37:563-569
    [98]曲福田,何军,等.江苏省新农村建设指标体系、实现程度与区域比较研究.农业经济问题,2007,02:62-66,111
    [99]任杰.大兴区可持续发展指标体系分析与评价研究.北京:中国地质大学硕士论文,2006
    [100]商红娟,蒋卫芬,李伟,等小麦“3414”肥效试验研究.现代农业科技,2010,22:59-60
    [101]石玉鳞.南昌(湾里区)长岭杉木人工林生态系统生物量研究.江西农业大学学报,1989,11(4):32-46
    D02]宿钦兰,郭鸿鹏.长春市新农村建设评价指标体系研究.农业与技术,2008,4:94-97
    [103]孙培昕.基于WebGIS的农资物流配送系统研究与应用.第七届ArcGIS暨ERDAS中国用户大会论文集,2006,707-711
    [104]孙天任,唐礼俊,魏泽长.水竹人工林生物量结构的研究.植物生态学与地植物学学报,1986,10(3):190-198
    [105]孙钊.测土配方施肥项目的发展现状与对策.现代农业科技,2009,15:290-291
    [106]谭伟.基于组件GIS的造林决策支持模型研究.北京:北京林业大学博士论文,2005
    [107]田根,童小华.基于移动GIS和GPS集成的绿化调查关键技术.同济大学学报(自然科学版),2007,35(10):1400-1429.
    [108]田有国.基于GIS的全国耕地质量评价方法及应用.华中农业大学,2003.
    [109]涂平,陈崇成,徐涵秋,等.土地适宜性评价与利用决策支持系统的设计与实现.福州大学学报(自然科学版),1999,27(5):114-118
    [110]王长耀,牛铮,唐华俊,等.对地观测技术与精细农业,北京:科学出版社,2001
    [111]王人潮.农业资源信息系统.北京:中国农业出版社.1999
    [112]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12:13-16
    [113]汪懋华.“精细农作”技术发展与农业装备技术创新.数字地球,北京:中国环境科学出版社,1999
    [114]吴升,华一新,杨树华,等.金沙江流域生态保护与建设决策支持系统.地球信息科学,2004,6(4):37-40
    [115]吴建军.基于GIS的农村医疗设施空间可达性分析——以河南省兰考县为例.郑州:河南大学硕士论文,2008
    [116]吴艳.区域社会主义新农村建设评价指标体系研究.厦门:.厦门大学硕士论文,2009
    [117]夏敏,赵小敏,汤江龙.土地适宜性评价空间决策支持系统初探.江西农业大学学报,2005,27(6):911-915
    [118]夏敏,赵小敏,张佳宝,等.基于GIS的土地适宜性评价决策支持系统——以南京市江宁区淳化镇为例,长江流域资源与环境,2006a,15(3):325-329
    [119]夏敏,张佳宝,赵小敏,等.基于G1S的土地适宜性评价决策支持系统研究与应用.农业系统科学与综合研究,2006b,22(4):256-259
    [120]肖庆业.关于构建新农村建设评价指标体系的思考——以福建省漳州市为例.老区建设,2008,18:35-36
    [121]解俊霞,郇金宝.区县级新农村建设评价指标体系研究.乡镇经济,2009,8:32-36
    [122]严定春,诸叶平,李世娟,等.数字化玉米种植管理系统研究.农业网络信息,2006,1]:10-12
    [123]严永斌.基于NET Compact Framework的面向数据采集移动GIS开发与应用.上海:华东师范大学硕士论文,2008
    [124]杨同辉,宋坤,达良俊,等.中国东部木荷-米槠林的生物量和地上净初级生产力.中国科学:生命科学,2010,40(7):610-619
    [125]易敏.面向服务架构(SOA)的空间信息服务研究.上海:华东师范大学硕士论文.2008
    [126]于贵瑞,温发全,王秋凤,等.全球气候变化与陆地生态系统碳循环.北京:气象出版社,2003
    [127]俞艳,何建华,甘宇航,等.AO支持下的士地适宜性评价系统研制.国士资源科技管理,2006(4):76-80
    [128]俞艳,郭庆胜,何建华,等.基于Web服务的土地适宜性评价PSE设计与实现.武汉大学学报(信息科学版),2006,3 1(6):544-547
    [129]宇振荣.作物生长模拟模型研究.生态学杂志,1994,13(1):69-73
    [130]赵庚星,李玉环,李强.GIS支持下的定量化、自动化农用土地评价方法的探讨.农业工程学报,2003,17(6):219-223
    [131]赵敏.中国主要森林生态系统碳储量和碳收支评估.北京:中国科学院植物研究所博士论文,2004
    [132]赵明松,程先富,王世航,等.安徽省土壤信息系统(AHSIS)的设计与开发.中国农学通报,2008,24(2):441-444。
    [133]赵欣.清水河县新农村建设评价与规划研究.呼和浩特:内蒙古师范大学硕士论文,2008
    [134]张丽,田银磊.基于PDA的小麦测土配方施肥信息移动查询系统.河南农业大学学报,2010,44(3):340-342.
    [135]张磊.新农村建设评价指标体系研究.经济纵横,2009,7:67-70,29
    [136]张淑云.河北省新农村建设评价指标体系的构建.贵州农业科学,2010,3:203-205
    [137]张霞.地理信息服务组合与空间分析服务研究.武汉:武汉大学硕士论文.2004
    [138]赵颖慧,李凤日.基于ArcGIS Server9.0和J2EE构建多层结构的森林资源WebGIS.东北林业大学学报,2008,36(5):80-83.
    [139]浙江省林业厅.浙江省森林资源二类技术操作细则.2006
    [140]郑嘉英.测土配方施肥的关键性技术及操作要求.中国农技推广,2010,26(5):33-34
    [14I]郑文钵.数字农业——21世纪的新型农业模式.世界科学,2000,(1):38-39
    [142]郑耀.SOA在铁路信息共享平台中的应用研究.北京:北京交通大学.2007
    [143]周国民.数字农业综述.农业图书情报学刊,2004,15(3):5-6,17
    [144]周广胜,郑元润,陈四清,等.自然植被净第一性生产力模型及其应用.林业科学,1998,34:2-11
    [145]周美娟.上海市警用三维GIS系统开发.上海:华东师范大学硕士论文,2010
    [146]周玉荣,于振良,赵士洞.中国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24:518-522
    [147]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算.植物生态学报,2007,31:413~424
    [148]朱昕.湖南省林业基础地理数据库管理系统建设.第七届ArcGIS暨ERDAS中国用户大会论文集,2006,644-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700