用户名: 密码: 验证码:
水稻骨干亲本桂朝2号形成的关键基因组区段定位、传递及效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桂朝2号是一个重要的水稻骨干亲本,已经衍生了超过30个的水稻核心品种。1983年至今,桂朝2号及其衍生品种的种植面积已经超过14.66百万公顷。因此,从基因组水平上认识桂朝2号及其衍生品种,能较为全面的了解桂朝2号在我国水稻育种工作中发挥的作用,对今后的育种实践,尤其是对亲本组合的选择、桂朝2号及其衍生品种的利用提供科学的理论支持。本研究以桂朝2号及其上游亲本和衍生品种作为研究对象,利用SSR分子标记进行全基因组扫描,并结合一些重要的农艺性状,希望明确桂朝2号形成的关键基因组区段、其在后代的传递规律和效应。主要研究结果概况如下:
     1.利用425对多态性SSR标记对桂朝2号及其亲本、衍生品种进行遗传多样性进行分析,16个品种中检测出1095个等位变异基因,变异数目在2~7之间,平均等位基因数目为2.58;平均多态性信息含量(PIC)为0.38,变化范围为0.12~0.83;各品种间遗传相似性系数(GS)在0.72~0.93之间,平均为0.81。基于SSR分析的加权配对算术平均法(UPGMA)进行的聚类分析,桂朝2号及其亲本、衍生品种被聚为两大类,与各品种的系谱关系基本一致。
     2.利用1177对SSR引物对桂朝2号及其亲本进行全基因组扫描,构建了较高密度的桂朝2号基因组区段来源图谱。由371对多态性标记形成的383个基因组区段中,有42个区段为单一亲本来源,其余为多亲本来源。单一来源区段共覆盖染色体物理距离24659.154KB,占全基因组的6.63%;其中,对桂朝2号基因组形成中贡献最大的亲本是朝阳早18和桂阳矮49,遗传贡献率分别为2.00%和1.46%。单一来源区段被确定为桂朝2号的关键基因组区段,在这些区段上定位了37个QTLs(基因),主要和产量因子相关,也含部分及病虫害抗性基因及株型基因,如已被克隆的穗实粒主效QTL Glna,矮杆基因d2等。桂朝2号自身特有区段上也定位了一些和产量性状相关的QTL,其中与千粒重相关的QTL较多。这些区段可能源自本研究中未涉及的上游亲本材料。
     3.产量构成因子及品质性状在衍生品种中的传递规律:千粒重、有效穗、分蘖数、株高降低;结实率、穗实粒、单株重增加;整精米率、垩白率、垩白大小、表观直链淀粉、蛋白质含量降低,粒长、长宽比、透明度、胶稠度增加,糊化温度不变。此外桂朝2号的垩白率、垩白大小、粒长、长宽比、透明度等性状基本与朝阳早18表现一致,这些性状极可能就是遗传自朝阳早18。衍生品种继承了桂朝2号的结实率、穗实粒、分蘖数、单株重等产量性状及糊化温度与蛋白质含量;而其余品质性状整精米率、垩白率、垩白大小、粒长、长宽比、透明度、胶稠度、表观直链淀粉含量在育种过程中逐渐被淘汰掉。
     4.淀粉合成相关基因的分子标记检测结果,发现基于淀粉脱支酶基因(极限糊精酶基因)Pul开发的STS标记R114/113在桂朝2号及其亲本、衍生品种中扩增出了多态性,朝阳早18、青六矮、丰青矮3个材料表现为日本晴的粳稻带型。其他标记在供试品种中的扩增结果都符合籼型带型。
     5.全基因组SSR标记扫描发现348个标记在桂朝2号及其衍生品种中表现出多态性。根据SSR检测的结果,确定了桂朝2号有78个基因组区段传递给后代。各基因组区段对衍生品种的遗传贡献率变化范围是14.29~85.71%,平均47.25%。这些区段上定位了61个基因(QTLs),其中产量因子相关QTLs35个,其余基因主要与植物防御与非生物胁迫、生长发育、病虫害抗性、植株形态等性状相关。
Guichao 2, one of the most important rice core parents in China, has given rise to over thirty elite cultivars, and the total cultivation area of Guichao 2 and its derivatives amount to 14.66 million hectares since 1983. Thus, analyzing and recognizing Guichao 2 on a genomic level will definitely benefit the breeding practice, especially for core parents and for the promotion of hybrid combinations in the future.In the present study, Simple Sequence Repeat marker (SSR) based genome-wide screening and important agronomic characters investigation were performed, and combined with QTLs/gene analysis to learning the genetic structure, the effects of core genomic regions of Guichao 2 and its transfer patterns to its derivatives, and the main results were details as followed:
     1. Genetic diversity of Guichao 2 and its parents, derivatives was investigated with 425 pairs of polymorphic SSR markers. A total of 1095 alleles were detected among 16 cultivals, and the number of alleles each primer pair ranged between 2-7 with an average of 2.58. The polymorphic information content (PIC) value ranged from 0.12 to 0.83 and averaged 0.38. Genetic similarity (GS) among the 16 cultivars varied from 0.72 to 0.93 with an average of 0.81, indicating that the genetic diversity is not abundant. Guichao 2 and its parents, derivatives could be clustered into two groups with UPGMA cluster analysis based on SSR analysis, and the resuls are according with their pedigrees relationships.
     2. Origins map of Guichao 2's genetic regions was drawn based on genome-wide screening.371 polymorphic makers constitute 383 genetice regions,42 of them have single origin, and others have multiple origins.42 genetic regions cover chromosome physical distance 24659.154kb,6.63% of whole genome size. For the 42 single origin regions, Chaoyangzaol8 and Guichao 2 contribute more genetic components to Guichao 2 than other parents, and their genetic contribution ratio were 2.00% and 1.46%, respectively. The 42 single origin genetic regions inherited from a given parent or characteristic by Guichao 2, and be thought of important genetic regions of Guichao 2. There were 37 QTLs/gene mapped on these important genetic regions, most of them associated with yield factors, and some of them are related to plant type morphogenesis and resistance to diseases. For example, Glna, a main QTL associated with filled seeds per panicle, which can explain 44% of variation. A drawft gene, d2 mapped on important genetic regions too, and both of them had been cloned successifully. Moreover, some QTLs/gene related to yield factors, espcically associated with thousand grains weight, mapped on the genetic regions characteristic of Guichao 2, and these genetic regions uniquled by Guichao 2 might inherited from the parents dose not be involved in this study.
     3.3. Results of deliver rules of yield factors and quality traits from Guichao 2 to its derivatives indicates that:thousand grains weight, effective panicle number, tillers number and plant height decrease, while seed setting ratio, filled seeds per panicle and plant weight are increased; as for quality characters, head rice ratio, chalky ratio, chalk size, apparent amylase content and protein content decline, while grain length, length-width ratio, transparency and gel consistency rise, and gelatinization temperature is constant. Otherwise, chalky ratio, chalk size, grain length, length-width ratio and transparency of Guichao 2 are similer to Chaoyangzao 18's, indicating these characters might be inherited from Chaoyangzao 18. Furthermore, some yield factors, seed setting ratio, filled seeds per panicle, tillers number and plant weight for instance, gelatinization temperature and protein content inherits by derivatives from Guichao 2, while most of quality characters of Guichao 2's, such as head rice ratio, chalky ratio, chalk size, rain length, length-width ratio, transparency, gel consistency and apparent amylase content are sifted out in breeding programs due to hardly reach high quality standards.
     4. Markers developed from starch-synthesis genes were using to test genotype of Guichao 2 and its parents Chaoyangzao 18、Guiyangai 49 and its derivatives. Only 114/113, developed from Pul (gene encoding pullulanase), amplified polymorphic bands among ten cultivars, Chaoyangzao 18-. Qingliuai and Fengqingai are classied into Nipponbare genotype, others are classied into Indica genotype. Other markers did not amplified polymorphism among the ten cultivars, which are grouped into Indica genotype.
     5 A total of 348 polymorphic markers and 833 polymorphic alleles were detected. In addition,78 genomic regions of Guichao 2 are identified inherited by these derivatives, their contribution ratios ranging from 14.29% to 85.71%, with an average of 41.25%. Moreover,61 genes and quantitative trait loci (QTLs) were found to be located on these genomic regions,35 of them are associated with yield factors, and others mainly involve in stress response, growth and development, resistance to diseases and plant type.
引文
[1]McCouch SR, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, Sep 1997; 35(1-2):89-99.
    [2]黄光文.运用运用分子标记对水稻遗传多样性的研究.湖南长沙.湖南农业大学.2006.
    [3]Jun Yu, Songnian Hu, Jun Wang, et al. A draft sequence of the rice genome (Oryza sativa L.ssp. indica). Science,2002,296:79-92
    [4]Panaud O, Chen X, and McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet,1996,252:597-607.
    [5]X Zhao and G Kochert. Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol Biol,1993,21(4):607-614.
    [6]Chen X, Temnynkh S, Xu Y, et al. Development of a microsatellite and application in rice genetics and breeding. Plant Mol Biol,1997,35:89-99.
    [7]Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet,1993,241:225-235
    [8]Akagi H, Yolozeki A, Inagaki A, et al.Microsatellite DNA markers for rice chromosomes. Theor Appl Genet,1996,93:1071-1077
    [9]Panaud O, Chen X, and McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.).Mol Gen Genet,1996; 252(5):597-607.
    [10]熊立仲,王石平,张启发等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布.植物学报,1998,40(7):605-614
    [11]Temnykh S, Park WD, Ayres N, et al. Mapping and genome organization of microsatellite squences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    [12]Temnykh S, DeClerck G, Lukashova A, et al. Coutational and experimental analysisi of microsatellites in rice(Oryza sativa L.) frequency, length variation transposon association, and genetic marker potential. Genome Res,2001,11:1441-1452
    [13]McCouch SR, Teytelman L, Xu YB, et al. Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.) DNA Research,2002 9(6):199-207
    [14]Li C, Zhang Y, Ying K, et al. Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice. Theor Appl Genet,2004,108:392-400.
    [15]段远霖,赵守环,吴为人等.用SSR标记提高水稻分子连锁图谱密度.分子植物育种,,2003,1(4):475-479
    [16]梁永书,张启军,王世全等.测序水稻品种SSR遗传连锁图谱的构建及其农艺性状基因座分析.中国生物工程杂志,2007,27(1):28-34.
    [17]Zhang ZH, Deng YJ, Tan J, et al. A Genome-wide Microsatellite Polymorphism Database for the Indica and Japonica Rice DNA Res,2007,14:37-45
    [18]Olufowote JO, Xu Y, Chen X, et al.Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome,1997,40(3):370-378.
    [19]Gao LZ, Schaal BA, Zhang CH, et al. Assessment of population genetic structure in common wild rice Oryza rufipogon Griff, using microsatellite and allozyme markers. Theor Appl Genet,2002, 106(1):173-180.
    [20]Ni JJ, Colowit PM and Mackill DJ. Evaluation of Genetic Diversity in Rice Subspecies Using Microsatellite Markers Crop Science,2002,42:601-607.
    [21]Zhou HF, Xie ZW, and Ge S.Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theor Appl Genet,2003,107(2): 332-339.
    [22]段世华,毛加宁,朱英国.用微卫星DNA标记对我国杂交水稻主要恢复系遗传差异的检测分析.遗传学报,2002,29(3):250-254
    [23]Yu SB, WJ Xu, CH Vijayakumar, et al. Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet, 2003,108(1):131-140
    [24]Xu YB, Beachell H and McCouch RS.A Marker-Based Approach to Broadening the Genetic Base of Rice in the USA. Crop Sci,2004,44:1947-1959
    [25]Zhu MY, Wang YY, Zhu YY, et al. Estimating genetic diversity of rice landraces from Yunnan by SSR assey and its implication for conservation. Acta Botanica Sinica,2004,46(12): 1458-1467
    [26]李云峰,钟秉强,杨正林等.中国稻与美国稻的SSR标记多态性分析.分子植物育种,2004,2(6):801-806
    [27]Gao LZ. Microsatellite variation within and among populations of Oryza officinalis (Poaceae), an endangered wild rice from China. Mol Ecol,2005,14(14):4287-4297
    [28]Tu M, Lu BR, Zhu Y, and et al. Abundant within-varietal genetic diversity in rice germplasm from Yunnan Province of China revealed by SSR fingerprints. Biochem Genet,2007,45(11-12): 789-801.
    [29]Ram SG, Thiruvengadam V, and Vinod KK. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet,2007,48(4):337-345
    [30]Thomson MJ, Septiningsih EM, Suwardjo F, et al. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet, February 1,2007; 114(3):559-568.
    [31]Yang GP, Saghai Maroof MA, Xu CG et al. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet,1994,245:187-194
    [32]Akagi H, Yolozeki A, Inagaki A, et al. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet,1997,94:61-67
    [33]Olufowote JO, Xu YB, Chen XL, et al. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome,1997,40(3):370-378
    [34]Bligh H.F.J., Blackhall N. W., Edwards K.J., et al. Using Amplified Fragment Length Polymorphisms and Simple Sequence Length Polymorphisms to Identify Cultivars of Brown and White Milled Rice Crop Sci,1999,39:1715-1721
    [35]Davierwala AP, Ramakrishna W, Chowdari V, et al. Potential of (GATA)n microsatellites from rice for inter-and intra-specific variability studies. BMC Evol Biol,2001,1:7.
    [36]朱作峰,孙传清,李自超等.用SSR标记对水稻品种的分类研究.农业生物技术学报,2001,9(1):58-61.
    [37]Yashitola J., Thirumurugan T., Sundaram R. M., et al. Assessment of purity of rice hybrids using microsatellite and STS markers.Crop Science,2002,42:1369-1373
    [38]丁效华,陈跃进,杨长寿等.水稻粳型亲籼系粳型性的判别.中国水稻科学,2003,17(1):21-24
    [39]樊叶杨,庄杰云,吴建利.应用微卫星标记鉴别水稻籼粳亚种.遗传,2000,22(6):392-394
    [40]赵勇,杨凯,Cheema AA,等.利用水稻功能基因SSR标记鉴定水稻种质资源.中国农业科学,2002,35(4):349-353
    [41]S Jain, RK Jain, and SR McCouch. Genetic analysis of Indian aromatic and quality rice (Oryza Sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor ApplGenet,2004,109(5):965-977
    [42]Hong Lu, Marc A. Redus, Jason R.Coburn, et al. Population structure and breeding patterns of 145 U.S. rice cultivars based on SSR marker analysis. Crop Sci,2005,45:66-76
    [43]李进波,方宣钧,杨国才,等.两系杂交稻亲本SSR指纹图谱的建立及其在种子纯度鉴定中应用.杂交水稻,2005,20(2):50-53
    [44]谭智丹,余显权,高健强,等.利用SSR鉴定杂交水稻种子纯度的研究.种子,2006,25(4):27-29
    [45]贺浩华,罗小金,朱昌兰,等.杂交稻部分不育系与恢复系的SSR分类.作物学报,2006,32(2):169-175
    [46]Giarrocco, L. E., M. A. Marassi, and G.L. Salerno. Assessment of the genetic diversity in Argentine rice cultivars with SSR markers. Crop Sci,2007,47:853-858
    [47]Jayamani, P., S. Negrao, M. Marins, et al. Genetic relatedness of Portuguese rice accessions from diverse origins as assessed by microsatellite markers. Crop Sci,2007,47:879-884
    [48]Ramakishana W, Lagu MD, Gupta VS, et al. DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequence. Theor Appl Genet,1994,88:402-406
    [49]兰涛,郑军,吴为人等.用微卫星标记构建两系稻培矮64s/E32的分子遗传连锁图.遗传,2003,25(5):557-562
    [50]李莉,杨剑波,汪秀峰等.利用RAPD和微卫星标记对协优杂交稻亲本进行区别与鉴定.中国水稻科学,2000,14(4):203-207
    [51]彭锁堂,庄杰云,颜启传等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定.中国水稻科学,2003,17(1):1-5
    [52]詹庆才.利用微卫星DNA标记进行杂交水稻种子纯度鉴定的研究.杂交水稻,2002,17(5):46-50
    [53]Li Y, HY Zhang, XZ Wang, et al. Identification and analysis of F2 stable population derived from the cross of triploid X diploid in rice. Yi Chuan Xue Bao,2004,31(6)604-608
    [54]时宽玉,洪德林.6个水稻杂交组合与其亲本的SSR标记多态性及其应用.南京农业大学学报,2005,28(4):1-5
    [55]彭勇,梁永书,王世全,等.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,4(6):786-790
    [56]Zhao Bing, Deng Qiming, Zhang Qijun, et al. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genetica Sinica,2006.33(5):449-457
    [57]刘传光,江奕君,毛兴学.水稻与玉米远缘杂交改良籼稻温敏两用核不育系之SSR分析.中国农学通报,2006,22(2):152-155
    [58]Lopez, M.T., T. Toojinda, A. Vanavichit, et al. Mcirosatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development. Crop Sci,2003,43:2267-2271
    [59]Li SG, YP Wang, HY Li, et al. Utilization of a microsatellite marker to identify rice blast resistance gene in two segregating populations. Sheng Wu Gong Cheng Xue Bao, 2000,16(3):324-327
    [60]Akagi H, Y Yokozeki, A Inagaki, et al. A codominant DNA marker closely linked to the rice nuclear restorer gene, RF-1, identified with inter-SSR fingerprinting. Genome,1996, 39(6):1205-1209
    [61]Yan CJ, CW Xu, CD Yi, et al. Genetic analysis of gelatinization temperature in rice via microsatellite(SSR) markers.Yi Chuan Xue Bao,2001,28(11):1006-1011.
    [62]Zhang J., Y. Xu, X. Wu, et al.A bentazon and sulfonylurea sensitive mutant:breeding, genetics and potential application in seed production of hybrid rice. Theor Appl Genet,2002,105(1): 16-22.
    [63]朱磊,朱友林,余潮等.水稻苯达松敏感致死基因bel的初步定位.南昌大笑学报,2005,29(6):540-542
    [64]Price AH, J Townend, MP Jones, et al. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol,2002,48(5-6):683-695.
    [65]Lorieux M, G Reversat, SX Garcia Diaz, et al. Linkage mapping of Hsa-1(Og), a resistance gene of African rice to the cyst nematode, Heterodera sacchari. Theor Appl Genet,2003,107(4): 691-696
    [66]Andaya V. C. and D. J. Mackill. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of experimental Botany,2003,54(392):2579-2585
    [67]Andaya VC and DJ Mackill. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet,2003,106(6): 1084-1090
    [68]Robin S, MS Pathan, B Courtois, et al. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet,2003,107(7):1288-1296
    [69]Yan CJ, GH Liang, F Chen, et al. Mapping quantitative trait loci associated with rice grain shape based on an indica/japonica backcross population. Yi Chuan Xue Bao,2003; 30(8):711-716
    [70]Albar L, MN Ndjiondjop, Z Esshak, et al. Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. Theor Appl Genet,2003,107(2):371-378
    [71]Che KP, QC Zhan, QH Xing, et al. Tagging and mapping of rice sheath blight resistant gene. Theor Appl Genet,2003,106(2):293-297
    [72]Liu HQ, WR Wu, YL Duan, et al. Towards the positional cloning of a spikelet identity gene frizzle panicle (FZP) in rice (Oryza sativa L.). Yi Chuan Xue Bao,2003,30(9):811-816
    [73]李喜焕,刘国振,刘国庆等.水稻PCD相关基因的定位研究.作物学报,2003,29(6):942-946
    [74]潘海军,王春连,赵开军等.S水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择.作物学报,2003,29(4):501-507
    [75]段远霖,吴为人,张丹凤等.水稻幼穗分化受阻突变体lhd的遗传分析与基因定位.科学通报,2003,48(15):1662-1665
    [76]张毅,沈福成,杨光伟等.水稻芽鞘紫线抑制与反抑制现象的遗传及反抑制基因的SSR分析.遗传学报,2004,31(8):830-835
    [77]Ma Jian Feng, Namiki Mitani, Sakiko Nagao, et al. Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice. Plant Physiology, 2004,136:3284-3289
    [78]Liu XQ, X Xu, YP Tan, SQ Li, et al. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativaL.). Mol Genet Genomics,2004,271(5):586-594
    [79]朱宏波,方宣钧,杨仁崔.水稻长穗颈基因eui2(t)共分离SSR标记的获得.中国农业科学,2004,37(3):456-459
    [80]荆彦辉,付永彩,孙传清等.水稻穗颈维管束及产量相关性状的QTL分析.中国农业大学学报,2004,9(5):16-21
    [81]Sharma TR, MS Madhav, BK Singh, et al. High-resolution mapping, cloning and molecular characterization of the Pi-k (h) gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics,2005,274(6):569-578
    [82]Andaya CB and TH Tai. Fine mapping of the rice low phytic acid (Lpal) locus. Theor Appl Genet, 2005,111(3):489-495
    [83]Li F, G Hu, Y Fu, H Si, et al. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome,2005,48(4):738-746
    [84]Chen S, L Wang, Z Que, et al. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No.1. Theor Appl Genet,2005,111(8): 1563-1570
    [85]Yue Bing, Weiya Xue, Lizhong Xiong, et al. Genetic Basis of Drought Resistance at Reproductive Stage in Rice:Separation of Drought Tolerance From Drought Avoidance. Genetics, 2006,172:1213-1228
    [86]Fujii S and K Toriyama. Molecular mapping of the fertility restorer gene for ms-CW-type cytoplasmic male sterility of rice. Theor Appl Genet,2005,111(4):696-701
    [87]Zhao XQ, GH Liang, JS Zhou, et al. Molecular mapping of two semidwarf genes in an indica rice variety Aitaiyin3 (Oryza sativa L.). Yi Chuan Xue Bao,2005,32(2):189-196
    [88]Shao YJ, ZX Chen, YF Zhang, et al. One major QTL mapping and physical map construction for rolled leaf in rice.Yi Chuan Xue Bao,2005,32(5):501-506
    [89]Wan,J.M., Y.J. Cao, C.M. Wang, et al. Quantitative trait loci associated with seed dormancy in rice. Crop Sci,2005,45:712-716
    [90]Yang YJ, XD Wang, XJ Wu, et al. The discovery, genetic analysis and gene mapping of earliness rice(Oryza sativa L.) D64B. Yi Chuan Xue Bao,2005,32(5):495-500
    [91]梁永书,张启军,叶少平等.水稻分蘖相关性状的QTL定位与分析.中国农学通报,21(12):47-52
    [92]杨朗,李容柏,李杨瑞.水稻褐飞虱抗性基因的初步定位.分子植物育种,2005,3(6):807-809
    [93]万建林,翟虎渠,万建民.水稻耐亚铁毒QTLs的定位.遗传学报,2005,32(11):1156-1166
    [94]叶少平,张启军,李杰勤,等.用(培矮64s/Nipponbare)F2群体对水稻产量构成性状的QTL定位分析.作物学报,2005,31(12):1620-1627
    [95]Hyeon-So Ji, Sang-Ho Chu, Wenzhu Jiang, et al. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics,2006,173:995-1005
    [96]Luo H, Y Li, Z Yang, et al. Fine mapping of a pistilloid-stamen(PS) gene on the short arm of chromosome 1 in rice. Genome,2006,49(8):1016-1022.
    [97]Andaya VC and TH Tai. Fine mapping of the Qcts12 locus, a major QTL for seeding cold tolerance in rice. Theor Appl Genet,2006,113(3):467-475
    [98]Chen JW, L Wang, XF Pang, et al. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stal) resistance gene bph19(t). Mol Genet Genomics,2006,275(4):321-329
    [99]Han L, T Zhang, JD Xu, et al. Genetic analysis and gene mapping of purple stigma in rice. Yi Chuan Xue Bao,2006,33(7):642-646
    [100]Jiang ZX, SQ Wang, QM Deng, et al. Genetic analysis and molecular tagging on a novel excessive tillering mutant in rice. Yi Chuan Xue Bao,2006,33(4):339-344
    [101]Singh SP, RM Sundaram, SK Biradar, et al. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice (Oryza sativa L.). Theor Appl Genet,2006,113(3):509-517.
    [102]Nguyen TT, S Koizumi, TN La, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet,2006,113(4):697-704
    [103]Sun LH, CM Wang, CC Su, et al. Mapping and marker-assisted selection of a brown planthopper resistance Gene bph2 in rice (Oryza sativa L.). Acta Genetica Sinica,2006,33(8):717-723
    [104]QL Liu, XH Xu, XL Ren, et al. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet,2007,114(5):803-814
    [105]Huang T, Y Wang, B Ma, et al. Genetic analysis and mapping of genes involved in fertility of Pingxiang dominant genic male sterile rice. J Genet Genomics,2007,34(7):616-622
    [106]Han L, Y Qiao, S Zhang, et al. Identification of quantitative trait loci for cold response of seedling vigor traits in rice. Genet Genomics,2007,34(3):239-246
    [107]王楠,赵芳明,凌英华,等.一个水稻披叶突变体的遗传分析和基因定位.分子植物育种,2007,5(1):55-58
    [108]Qi Dongling, Guizhen Guo, Myung-Chul Lee, et al. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. J Genet Genomics,2008, 35(5):299-305.
    [109]Morgante M, Hanafey & Wayne Powell. Microsatellites are prefertially associated with norepetitive DNA in plant genomes. Nat genet (letter),2000,30:194-200
    [110]Akio M, Hui SZ, Lisa M, et al. Characterization and genetic mapping of simple sequence repeats in the rice genome. DNA Research,1996,3(4):233-238
    [111]庄巧生.中国小麦品种改良及系谱分析.中国农业出版社,2003年09月第1版.
    [112]韩俊,张连松,李静婷等.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析.作物学报,2009,35:1395-1404.
    [113]黎裕,王天宇.我国玉米育种种质基础与骨干亲本的形成.玉米科学,2010,18:1-8.
    [114]赵峰,孟祥兵,李卫华等.玉米骨干亲本黄早四抗病基因遗传传递规律的初步研究.玉米科学,2008,16:15-]8.
    [115]乔海明,米君,张丽丽等.基于“尚义大桃”和“红木”资源利用的胡麻骨干亲本选择重要性评价.
    [116]毕川,刘思洁,余晓琴等.蓖麻纯合骨干亲本的亲缘关系分析.广东农业科学,2010,37:191-193.
    [117]张琼,齐永文,张垂明等.我国大陆甘蔗骨干亲本亲缘关系分析.广东农业科学,2009,10:44-48.
    [118]叶乃兴.我国茶树育种的骨干亲本及其系谱分析.中国茶叶.2008,30:11-13.
    [119]叶乃兴.日本茶树育种的骨干亲本及其系谱分析.中国茶叶.2007,29:22-23.
    [120]路运才,王华忠.甜菜多倍体品种骨干亲本的重要农艺性状鉴定与评价.中国糖料,2006,2:15-16,26.
    [121]谭祖猛,李云昌,胡琼等.SSR和SRAP标记研究油菜杂交种骨干亲本的遗传多样性.农业生物技
    [122]钟秉强,杨正林,冉启良等.美国水稻品种农艺性状和品质性状的温度钝感特性研究.中国农学通报,2005,2:118-121.
    [123]王庆胜.黑龙江垦区水稻品种骨干亲本评价与育种展望.黑龙江农业科学,2010,4:30-32.
    [124]徐俊锋,魏祥进,江玲等.我国部分早籼品种及杂交早籼骨干亲本抽穗期遗传分析.中国水稻科学,2010,3:215-222.
    [125]刘华招,杜欣谊,吴洪然等.黑龙江省早熟粳稻育成品种亲本选配研究.北方水稻,2009,39:4-6.
    [126]从夕汉,李莉,滕斌等.56个杂交水稻骨干亲本SSR指纹图谱的构建及遗传相似性分析.生物学杂志,2010,27:87-91.
    [127]段世华,毛加宁,朱英国.红莲型杂交稻(红莲2号)及其骨干亲本的RAPD分析与鉴定.武汉植物学研究,2002,20:171-176.
    [128]Miura, K., Ikeda, M., Mastubara, A. et al.2010, OsSPL14 promotes panicle branching and higher grain productivity in rice.-Nat. Genet.42:545-550.
    [129]Cheng SH, Zhuang JY, Fan YY, et al. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Batany,2007,100:959-966
    [130]Devanand PS, Wan J, Rangaswamy M, et al. Isozyme divergence between maintainers and restorers in hybrid rice breeding programs in india. Crop Sci,1999,39:831-835
    [131]Fu YB,. Peterson GW, Yu JK, et al. Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor Appl Genet, 2006,112(7):1239-1247
    [132]Donini P, Law JR, Koehner RMD, et al. Temporal trends in diversity of UK wheat. Theor Appl Genet,2000,100:912-917
    [133]Christiansen MJ, Anderson SB, and Ortiz R. Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed,2002,9:1-11
    [134]Khan IA, Awan FS, Ahmad A, et al. Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet Resour and Crop Evol,2005,52:239-244
    [135]Reif JC, Zhang P, Dreisigacher S, et al. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet,2005,110:859-854
    [136]Roussel V, Koeing J, Bechert M, et al. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet,2004,108:920-930
    [137]Roussel V, Leisova L, Exbrayat F, et al. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet,2005,111:162-170
    [138]Fu YB, Peterson GW, Richards KW, et al. Allelic reduction and genetic shift in the Cnadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet,2005,110:1505-1516
    [139]Anderson, J.A., Churchill, G.A., Autrique, J.E. et al.1993, Optimizing parental selection for genetic linkage maps.-Genome 36:181-186.
    [140]邱福林,庄杰云,华泽田等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测,中国水稻科学,2005,19(2):101-104
    [141]马红勃,许旭明,韦新宇等.基于SSR标记的福建省若干水稻品种DNA指纹图谱构建及遗传多样性分析,福建农业学报,2010,25(1):33-38.
    [142]玄英实,姜文洙,刘宪虎等.中国东北地区水稻主要栽培品种的遗传多样性分析,植物遗传资源学报,2010,11(2):206-212.
    [143]刘传光,张桂权.用SSR标记分析1949—2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势,作物学报,2010,36(11):1843-1852
    [144]马琳,余显权,赵福胜,贵州地方水稻品种的SSR遗传多样性分析,中国水稻科学,2010,3:237-243.
    [145]江云珠,汤圣祥,余汉勇等.利用SSR标记对中国水稻品种进行遗传多样性评价和品种分类的研究.中国稻米,2010,16(4):19-24.
    [146]程本义,吴伟,夏俊辉等.利用微卫星标记分析浙江省近年来主要水稻品种的遗传多样性.中国水稻科学,2009,5:551-554.
    [147]姜恭好,徐才国,李香花等.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1),pp.63-72
    [148]郭龙彪,罗利军,邢永忠等.水稻重要农艺性状的两年QTL剖析.中国水稻科学,2003,17(3):211-218
    [149]Inukai T, Zeigler R S, Sarkarung S, et al. Development of pre-isogenic lines for rice blast-resistance by marker-aided selection from a recombinant inbred population.Theoretical and Applied Genetics,1996,93(4):560-567
    [150]林荔辉,吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342
    [151]Zhaohui Chu, Binying Fu, Hong Yang, et al.Targeting xal3, a recessive gene for bacterial blight resistance in rice.Theoretical and Applied Genetics,2006,112(3):455-461
    [152]庄杰云,樊叶杨,吴建利等.应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001,28(5):458-464
    [153]YU,S.B. J.X.LI, C.G.XU, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS,1997,94, pp.9226-9231
    [154]袁爱平,曹立勇,庄杰云等.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析.遗传学报,2003,30(10):899-906
    [155]Xing, Y. Z., Tan, Y. F., Hua, J. P. et al.2002, Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.-Theor. Appl. Genet.105:248-257.
    [156]徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10
    [157]TabienR E, Li Z, Paterson A H, et al. Mapping of four major rice blast resistance genes from 'Lemont'and'Teqing'and evaluation of their combinatorial effect for field resistance.Theoretical and Applied Genetics,2000,101(8):1215-1225
    [158]Gao Y.M, J.Zhu, Y.S.Song, et al. Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice.Journal of Zhejiang University SCIENCE,2004, 5(4):371-377
    [159]Motoyuki Ashikari, Hitoshi Sakakibara, Shaoyang Lin, et al. Cytokinin Oxidase Regulates Rice Grain Production. Science,2005,309(741):741-745
    [160]Zhi Hong, Miyako Ueguchi-Tanaka, Kazuto Umemura, et al. A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is Caused by a Loss of Function of a New Member of Cytochrome P450. The Plant Cell,2003,15(12):2900-2910
    [161]刘国庆,颜辉煌,傅强,等.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报,2001,46(5):738-742
    [162]Zhou J. H., J. L. Wang, J. C. Xu, et al.ldentification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathology,2004,53(2):191-196
    [163]Hua Jinping, Xing Yongzhong, Xu Caiguo, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002, 162:1885-1895
    [164]Lin-H-X, Qian-H-R, Zhuang-J-Y, et al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.) Theoretical and applied genetics,1996,92(8):920-927.
    [165]Naweed I. Naqvi, Bharat B. Chattoo. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome,1996,39(1):26-30.
    [166]Li J.X., S.B. Yu, C.G. Xu., et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theoretical and applied genetics,2000,101:248-254
    [167]Chu., Z.H., M. Yuan, J.L.Yao, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice.GENES & DEVELOPMENT,2006,20(10): 1250-1255
    [168]Tomotsugu Arite; Hirotaka Iwata; Kenji Ohshima; Masahiko Maekawa; Masatoshi Nakajima; Mikiko Kojima; Hitoshi Sakakibara and Junko Kyozuka. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice.The Plant Journal,2007,51(6):1019-1029
    [169]李刚.水稻淀粉合成相关基因分子标记的开发及稻米淀粉RVA谱特征与品质性状的相关性研究.四川成都,四川农业大学,硕士学位论文,2005.
    [170]Shen Y Z, Min S K, Xiong Z M, et al. Genetical studies on amylose content of rice grain and modifies on the determination method. Sci Agric Sin,1990,23(1):60-68.
    [171]莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14.
    [172]Zhang, S.Y., Li, G., Fang, J. et al. The Interactions among DWARF10, Auxin and Cytokinin Underlie Lateral Bud Outgrowth in Rice.-J Integr. Plant Biol,2010,52:626-638
    [173]Hauser, F. and Horie, T. A conserved primary salt tolerance mechanism mediated by HKT transporters:a mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress.-Plant Cell Environ,2010,33:552-565.
    [174]Agrawal, G.K.,Yamazaki, M., Kobayashi, M. et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tosl7 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol,2001,125:1248-1257.
    [175]Fan, G.Z., Cai, Q.S., Wang, C.M. et al. Response of 1000-grain weight to FACE in CSSL population of rice (Oryza sativa L.). Acta Agronomica Sinica,2005,31:706-711.
    [176]Hu, H.H., You, J., Fang, Y.J. et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Bio,2008,67:169-181.
    [177]Yadav, S.R., Prasad, K. and Vijayraghavan, U. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics, 2007,176:283-294.
    [178]Monna, L., Kitazawa, N., Yoshino, R. et al. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002,9:11-17.
    [179]Xu, J.L., Xue, Q.Z., Luo L.J. et al. Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chinese J Rice Sci,2002,16:6-10.
    [180]Koiwai, H., Tagiri, A., Katoh, S. et al. RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J.2007,51:92-104
    [181]Wilderman, P.R., Xu, M.M., Jin, Y.H. et al. Identification of Syn-Pimara-7,15-Diene Synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol,2004,135:2098-2105
    [182]Sazuka,T., Kamiya, N., Nishimura, T., et al. A rice tryptophan deficient dwarf mutant, tddl, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J.2009,60:227-241.
    [183]Chen, F., Li, Q., Sun, L.X. et al. The Rice 14-3-3 Gene Family and its Involvement in Responses to Biotic and Abiotic Stress. DNA Res,2006,13:53-63.
    [184]Lin, H. X., Qian, H. R., Zhuang, J. Y. et al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor. Appl. Genet,1996,92:920-927.
    [185]Wang, Y. S., Pi, L. Y., Chen, X.H. et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. The Plant Cell,2006,18:3635-3646.
    [186]Wong, H. L., Sakamoto, T., Kawasaki, T. et al. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRacl in rice. Plant Physiol,2004,135:1447-1456.
    [187]Li, J. X., Yu, S. B., Xu, C. G. et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid.Theor. Appl. Genet,2000,101:248-254.
    [188]Sato, H., Ideta, O.. Ando, I. et al. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breeding Sci,2004,54:265-271.
    [189]Cho, J., Ryoo, N., Ko, S. et al. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta,2006,224:598-611.
    [190]Zhou, J., Jiao, F. C., Wu, Z. C. et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol,2008,146:1673-1686.
    [191]Toriba, T., Harada, K., Takamura, A. et al. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol. Genet. Genomics,2007,277:457-468.
    [192]Berruyer, R., Adreit, H., Milazzo, J. et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor.Appl. Genet.2003,107:1139-1147.
    [193]Yoshie, Y., Goto, K., Takai, R. et al. Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnology 2005,22: 127-135.
    [194]Huang, X.Z., Qian, Q., Liu, Z. B. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet,2009,41:494-497
    [195]Lee, J. H., Cho, Y. S., Yoon, H. S. et al. Conservation and divergence of FCA function between arabidopsis and rice. Plant Mol. Bio,2005,58:823-838.
    [196]Tanaka, K., Murata, K., Yamazaki, M. et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol.2003,133: 73-83.
    [197]Zhou, Y., Zhu, J. Y., Li, Z. Y. et al. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics,2009,183: 315-324.
    [198]Mukhopadhyay, A., Vij, S., and Tyagi, A. K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA,2004,101:6309-6314.
    [199]Kant, S., Bi, Y. M., Zhu, T. et al. SAUR39, a Small Auxin-Up RNA Gene, Acts as a negative regulator
    [200]Bharaj, T. S., Virmani, S. S. and Khush G. S. Chromosomal location of fertility restoring genes for 'wild abortive' cytoplasmic male sterility using primary trisomics in rice. Euphytica,1995,83: 169-173.
    [201]Zhang, S. W., Li, C. H., Cao, J. et al. Altered architecture and enhanced drought tolerance in rice via the down-regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 activation. Plant Physiol, 2009,151:1889-1901.
    [202]Sato, H., Ideta, O., Ando, I. et al. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breeding Sci,2004,54:265-271.
    [203]Srinivas Prasad, M., Aruna Kanthi, B., Balachandran, S. M. et al. Molecular mapping of rice blast resistance gene Pi-1(t) in the elite indica variety Samba mahsuri. World J. Microb. Biot,2009,25: 1765-1769.
    [204]Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol.1997,48:67-87.
    [205]Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol,2001,127:459-472.
    [206]Myers A M, Morell M K, James M G, et al. Recent progress toward understanding the amylopectin crystal. Plant Physiol,2000,122:989-997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700