用户名: 密码: 验证码:
骨干亲本蜀恢527的全基因组扫描以及产量相关性状的QTL
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜀恢527因其一般配合力高、所配组合杂种优势强、衍生恢复系多等优点,被认为是现阶段杂交水稻育种的骨干亲本之一。本研究通过亲本性状遗传规律分析,结合全基因组扫描和QTL定位,阐明蜀恢527的遗传组成,确定其产量相关性状的关键基因组区域。研究结果如下:
     1.系谱产量相关性状的分析并结合全基因组扫描,阐明蜀恢527关键基因组区域。
     (1)系谱产量相关性状分析结果显示,结实率高低,每穗实粒数、每穗总粒数和有效穗的多少可能源自IR24-蜀恢527的遗传途径;而千粒重、单株重量的高低和有效穗的多少则可能源自圭630-R1318-蜀恢527的遗传途径。
     (2)采用1050个SSR引物对骨干亲本及其亲本进行全基因组扫描,构建了蜀恢527基因组来源图谱。分析发现,所有品种共有(无多态性标记)的区段占62.94%;约有17.53%的区段可能来源于多个亲本(多态性标记不足以区分各亲本);在蜀恢527形成过程中,R1318贡献了13.68%区段,辐36-2贡献了0.53%的区段,IR24贡献了1.32%的区段;同时,蜀恢527基因组内包含了4%的自身特有区段。
     (3)根据系谱产量相关性状遗传途径和基因组来源图谱,初步确定了蜀恢527产量相关关键基因组区域。我们认为由蜀恢527的特有区段、IR24-蜀恢527遗传的区段和圭630-R1318-蜀恢527遗传的区段为蜀恢527的关键基因组区域。
     2.以G46B×蜀恢527的F2群体为作图群体,对产量相关性状的QTLs进行了分析,以揭示蜀恢527产量相关性状的QTLs及其效应。
     (1)选择覆盖水稻基因组的1895对微卫星引物进行筛选,其中244对SSR引物在母本G46B和父本蜀恢527之间表现出多态性,引物多态性频率为12.88%。
     (2)用Mapmaker/EXP3.0软件构建了一张包含102个分子标记、覆盖水稻基因组2256.2cM、平均标记间遗传距离为22.12cM的遗传图谱。标记所覆盖的基因组最长的是第二染色体的两个连锁群(550.3cM),最短的是第11染色体(57.9cM)。标记间平均距离最长的是第8染色体(34.1cM),平均距离最短的是第11染色体(14.48cM)。本试验中所作出的遗传图谱标记顺序与已发表的图谱具有较好的一致性。
     (3)对千粒重、每穗实粒数、每穗总粒数、结实率、有效穗和单株重量6个性状进行QTL分析,共检测到17个QTLs位点,分布于水稻第1、2、4、5、7、8号染色体上,可以解释部分的遗传变异。这些QTLs位点的遗传效应值介于3.02%~20.73%之间,其中效应值大于10%的位点有5个,效应值小于5%的QTL也检测到3个位点。17个QTLs研究的结果如下:
     ①检测到3个控制千粒重的QTLs,分别为qKGW-2-1.qKGW-2-2和qKGW-8-1。qKGW-2-1和qKGW-2-2位于第2号染色体标记RM3316-RM3774和RM3680-RM6853区间内,分别可解释6.99%和5.17%的表型变异率,qKGW-8-1位于第8号染色体RMl019-RM6925区间内,可解释7.88%的表型变异率。这3个控制千粒重的QTLs总贡献率为20.2%。qKGW-2-1和qKGW-8-1的加性效应方向相同,来自于蜀恢527,而qKGW-2-2的加性效应与它们相反,来自于G46B.qKGW-2-1和qKGW-8-1的显性效应方向相同,来自于G46B,而qKGW-2-2的显性效应与它们相反,来自父本蜀恢527。
     ②检测到3个控制实粒数的QTLs,分别为qFGP-1-1、qFGP-2-1和qFGP-4-1。qFG-1-1位于第1号染色体标记RM1003-RM8084区间内,可解释9.30%的表型变异率。qFGP-2-1位于第2号染色体RM3692-RM208区间内,可解释16.58%的表型变异率。qFGP-4-1位于第4号染色体RM8213-RM3658区间内,可解释4.28%的表型变异率。这3个控制实粒数的QTLs.总贡献率为30.16%。qFGP-2-1和qFGP-4-1的加性效应方向相同,来自于蜀恢527,而qFGP-1-1的加性效应与它们相反,来自于G46B。qFGP-1-1和qFGP-2-1的显性效应方向相同,来自于G46B,而qFGP-4-1的显性效应与它们相反,来自父本蜀恢527。
     ③检测到2个控制总粒数的QTLs,分别为qGPP-2-1和qGPP-4-1。qGPP-2-1位于第2号染色体标记RM3316-RM3774区间内,可解释7.11%的表型变异率。GGPP-4-1位于第4号染色体RM7051-RM7187区间内,可解释3.02%的表型变异率。这2个控制总粒数的QTLs总贡献率为10.13%。qGPP-2-1的加性效应与qGPP-4-1相反,来自于蜀恢527。而qGPP-2-1和qGPP-4-1的显性效应均来自母本G46B。
     ④检测到5个控制结实率的QTLs,分别为qSS-1-1、qSS-2-1、qSS-7-1、qSS-7-2和qSS-8-1。qSS-1-1位于第1号染色体标记RM5718-RM5919区间内,可解释8.69%的表型变异率。qSS-2-1位于第2号染色体标记RM3692-RM208区间内,可解释11.72%的表型变异率。qSS-7-1位于第7号染色体标记RM3831~M5344区间内,可解释7.92%的表型变异率。qSS-7-2位于第7号染色体标记RM3635~M7110区间内,可解释12.49%的表型变异率。qSS-8-1位于第8号染色体标记RM7057~M6010区间内,可解释3.04%的表型变异率。这5个控制结实率的QTLs总贡献率为43.86%。qSS-1-1、qSS-2-1和qSS-7-1的加性效应方向相同,均来自于蜀恢527,而qSS-7-2和qSS-8-1的加性效应与它们相反,来自于G46B。SS-7-2的显性效应来自父本G46B,其他四个的显性效应与它相反。
     ⑤检测到2个控制有效穗的QTLs,分别为qPN-5-1和qPN-8-1。qPN-5-1位于第5号染色体标记RM7653~M3663区间内,可解释5.16%的表型变异率。qPN-8-1位于第8号染色体RM4955~M7057区间内,可解释20.73%的表型变异率。这2个控制有效穗的QTLs总贡献率为25.89%。qPN-5-1与qPN-8-1的加性效应方向相同,均来自于G46B, qPN-5-1和qPN-8-1的显性效应方向也相同,均来自于G46B。
     ⑥检测到2个控制单株重量的QTLs,分别为qGYD-2-1和qGYD-8-1。qGYD-2-1位于第2号染色体标记RM3355~M6318区间内,可解释5.34%的表型变异率。qGYD-8-1位于第8号染色体RM4955~RM7057区间内,可解释10.58%的表型变异率。这2个控制单株重量的QTLs总贡献率为15.92%。qGYD-2-1与qGYD-8-1的加性效应方向相反,来自于蜀恢527,qGYD-2-1和qGYD-8-1的显性效应方向相同,均来自于G46B。
     (4)该F2群体中也发现有15个偏分离分子标记,占总标记数的11.5%。其中,RM5586、M6554和RM8121三个标记偏G46B基因型,RM594、RM1092、RM5665、RM3308、RM20285和RM336偏蜀恢527基因型,在RM6717、RM1339和RM1364位点父母本纯合基因型偏高,杂合基因型偏低,而RM8240和RM1384位点父母本纯合基因型偏低,杂合基因型偏高,RM3572位点偏向G46B和杂合基因型。
     3蜀恢527形成的核心关键区段产量相关性状候选QTLs
     根据定位的QTLs及其效应,结合蜀恢527性状遗传途径和关键基因组区域分析,我们认为千粒重qKGW-2-1、qKGW-2-2、qKGW-8-1基因,单株重量qGYD-2-1基因,实粒数qFGP-2-1、qFGP-4-1基因,总粒数qGPP-2-1基因,结实率qSS-1-1、qSS-2-1、qSS-7-1、qSS-8-1基因可能是构成蜀恢527产量相关性状的关键基因。同时,整合文献报道产量相关性状的QTLs定位结果,也发现了一些可能解释关键区段影响产量相关性状的候选QTLs位点。
As one of the backbone parents currently used in hybrid rice breeding Shuhui 527 has many merits, such as high general combining ability, strong heterosis of hybrid combination, and many derivative R-lines. In order to clarify the genetic composition and the key genome regions of yield related characters of Shuhui 527, genomic scanning and QTLs analysis of Shuhui 527 were performed in this study. Main results were as the following:
     1. The genetic composition and the key genome regions of yield related characters of Shuhui 527 were defined by genomic scanning and hereditas analysis of yield related traits.
     (1). The results showed that seed-setting rate, filled grain number per panicle, grain number per panicle and panicles were possibly derived from the pedigree of IR24-Shuhui527; the weight of a thousand seeds, plant weight and panicles were possibly derived from the pedigree of Gui630-R1318-Shuhui 527.
     (2).The genetic originated map of Shuhui 527 and its related ancestral parents were constructed by genomic scanning of materials in the pedigree with 1050 SSR primers. The results revealed that①the shared fragments of all varieties (i.e. none polymorphic fragments) accounted for 62.94%;②putative multi-originated fragments (polymorphic marker was unable to identify its origin) accounted for approximately 17.53%;③in the breeding process of Shuhui 527, R1318 had contributed 13.68% fragments, Fu36-2 had contributed 0.53% fragments, and IR24 had contributed 1.32% fragments;④Shuhui 527 had contributed 4% itself fragments.
     (3). The key genome regions of Shuhui 527 was initially determined by the results of genomic scanning and hereditas analysis of yield related traits. Yield related key genormic regions of Shuhui527 were involved of those regions called Shuhui527 specific fragments, IR24 Originated fragments and R1318 originated fragments.
     2. Using 288 G46B×Shuhui527 F2 descendants as mapping population, we constructed a rice SSR linkage map. By means of SSR linkage map, quantitative trait loci (QTLs) with 6 yield related traits including 1000-grain weight, Filled grain number per panicle, Grain number per panicle, seed setting rate, Pancile number, and Weight per plant were positioned and analyzed. Main results were as the following:
     (1).244 SSR markers coming from 1895 SSR markers overlaying the rice genome had expressed polymorphism in both G46B and Shuhui527, polymorphism frequency was 12.88%.
     (2).We constructed a molecular genetic map included 102 pairs of SSR markers which covered 2256.2 cM of rice genome, and the average distance between two markers spanned 22.12 cM with the population of G46BXShuhui527 F2. Two linkage groups of the chromosome 2 covered the longest (550.3cM) genome region, and the the linkage group of the chromosome 11 is the shortest (57.9 cM). The longest average distance between two markers spanned 34.1 cM and the shortest average distance between two markers spanned 14.48 cM, respectively. The linkage relationship of the markers was almost identical to previous studies.
     (3). A total of 17 yield related QTLs were detected on chromosome 1,2, 4,5,7,8, respectively. Variation percentage explained by individual QTL ranged from 3.02% to 20.73%, out of which 5 QTLs explained more than 10% phenotypic variation and 3 QTLs explained less than 5% phenotypic variation. The detailed informations of 17 QTLs were as the following:
     ①Three QTLs were detected for 1000-grain weight, named qKGW-2-1, KGW-2-2 and qKGW-8-1. Totally, they explained 20.2% of the phenotypic variation. Among them, the qKGW-2-1 and qKGW-2-2 in the marker interval RM3316~RM3774 and RM3680~RM6853 of chromosome 2,accounting for 6.99% and 5.17% variation, respectively, the qKGW-8-1 were located in the marker interval RM1019-RM6925 of chromosome 8, accounting for 7.88% variation. The additive effects of qKGW-2-1 and qKGW-8-1 came from the male parent Shuhui527, however qKGW-2-2 came from the female parent G46B. The dominant effects of qKGW-2-1 and qKGW-8-1came from thefemale parent G46B, however qKGW-2-2 came from the male parent Shuhui527。
     ②Three QTLs were detected for filled grain number, named qFGP-1-1, qFGP-2-1, and qFGP-4-1. Totally, they explained 30.16% of the phenotypic variation. Among them, the qFGP-1-1 in the marker interval RM1003-RM8084 of chromosome 1, accounting for 9.30% variation, the qFGP-2-1 were located in the marker interval RM3692~RM208 of chromosome 2, accounting for 16.58% variation. the qFGP-4-1 in the marker interval RM8213~RM3658 of chromosome 4, accounting for 4.28% variation. The additive effects of qFGP-2-1 and qFGP-4-1 came from the male parent Shuhui527, however qFGP-1-1 came from the female parent G46B. The dominant effects of qFGP-1-land qFGP-2-1came from the female parent G46B, however qFGP-4-1came from the male parent Shuhui527。
     ③Two QTLs were detected for grain per panicle, named qGPP-2-land qGPP-4-1. Totally, they explained 10.13% of the phenotypic variation. Among them, the qGPP-2-1 in the marker interval RM3316-RM3774 of chromosome 2, accounting for 7.11% variation, the qGPP-4-1 were located in the marker interval RM7051~RM7187 of chromosome 4, accounting for 3.02% variation. The additive effects of qGPP-2-1 came from the male parent Shuhui527, however qGPP-4-1 came from the female parent G46B. The dominant effects of qGPP-2-land qGPP-4-1 came from thefemale parent G46B。
     ④Five QTLs were detected for seed setting rate, named qSS-1-1, qSS-2-1, qSS-7-1, qSS-7-2 and qSS-8-1. Totally, they explained 43.86% of the phenotypic variation. Among them, the qSS-1-1 in the marker interval RM5718- RM5919 of chromosome 1, accounting for 8.69% variation, the qSS-2-1 were located in the marker interval RM3692-RM208 of chromosome 2, accounting for 11.72% variation, the qSS-7-1 in the marker interval RM3831~RM5344 of chromosome 7, accounting for 7.92% variation. the qSS-7-2 were located in the marker interval RM3635~RM7110 of chromosome 7, accounting for 12.49% variation. the qSSS-1 were located in the marker interval RM7057-RM6010 of chromosome 8, accounting for 3.04% variation. The additive effects of qSS-1-1、qSS-2-land qSS-7-1 came from the male parent Shuhui527, however qSS-7-2 and qSSS-1 came from the female parent G46B. The dominant effects of qSS-7-2 came from the female parent G46B, however qSS-1-1 qSS-2-1、qSS-7-1 and qSS-8-1 came from the male parent Shuhui527。
     ⑤Two QTLs were detected for panicle number, named qPN-5-1 and qPN-8-1. Totally, they explained 25.89% of the phenotypic variation. Among them, the qPN-5-1 in the marker interval RM7653~RM3663 of chromosome 5, accounting for 5.16% variation, the qPN-8-1 were located in the marker interval RM4955-RM7057 of chromosome 8, accounting for 20.73% variation. The additive effects of qPN-5-land qPN-8-1 came from the female parent G46B. The dominant effects of qPN-5-land qPN-8-1 came from the female parent G46B.
     ⑥Two QTLs were detected for yield per plant, named qGYD-2-1 and qGYD-8-1. Totally, they explained 15.92% of the phenotypic variation. Among them, the qGYD-2-1 in the marker interval RM3355-RM6318 of chromosome 2, accounting for 5.34% variation, the qGYD-8-1 were located in the marker interval RM4955-RM7057 of chromosome 8, accounting for 10.58% variation. The additive effects of qGYD-2-1 came from the male parent Shuhui527, however qGYD-8-1 came from the female parent G46B. The dominant effects of qGYD-2-land qGYD-8-1 came from the female parent G46B.
     (4) 288 F2 individuals derived from G46B and Shuhui527 were used to construct a genetic linkage map. Among the 131 markers,15 SSR markers, occupying 11.5% of the difference SSR markers showed genetic segregation distortion(P<0.05). RM5586, RM6554 and RM8121 inclined to the genotype of G46B;RM594、RM1092、RM5665、RM3308、RM20285 and RM336 inclined to the genotype of Shuhui527; RM6717, RM1339 and RM1364 inclined to the genotype of both G46B and Shuhui527,less heterozygous genotype;RM8240 and RM1384 inclined to the heterozygous genotype, less isozygoty genotype;RM3572 inclined to the genotype of both G46B and heterozygous genotype.
     3 Candidate yield related QTLs in key fragments of Shuhui 527
     The candidate QTLs of Shuhui 527 was initially determined by comparing the results of the key genomic fragments and the QTL locations and effects. Comparation suggested that qKGW-2-1、qKGW-2-2 and qKGW-8-1 for 1000-grain weight, qGYD-2-1 for weight per plant, qFGP-2-1 and qFGP-4-1 for filled grain number, qGPP-2-1 for grain per panicle, qSS-1-1、qSS-2-1、qSS-7-1 and qSS-8-1 for seed setting rate were candidate QTLs for the yield related traits of Shuhui 527.Besides, some other potential candidate QTLs were also discussed by integrating their genomic locations reported previously to the key genomic fragments of Shuhui 527.
引文
1程式华;李建.现代中国水稻.北京丰台区,金盾出版社,2007,1
    2万建民.作物分子设计育种.作物学报,2006,32(3):455-462
    3张学勇;董玉琛;游光侠等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学,2001,34(4):355-362
    4魏凌基;艾尼瓦尔;孔广超等.新疆春小麦育成推广品种及骨干亲本的高分子量谷蛋白亚基的组成分析.石河子大学学报(自然科学版),2003,7(2):41-44
    5詹克慧;高翔;范平等.河南审定小麦品种的骨干亲本分析.河南农业大学学报,2006,40(1):11-14
    6王珊珊;李秀全;田纪春等.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性.分子植物育种,2007,5(4):485-490
    7李小军.小麦骨干亲本碧蚂4号的遗传效应分析.北京,中国农业科学院,2009
    8李小军;徐鑫;刘伟华等.利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传.中国农业科学,2009,42(10):3397-3404
    9陈新民;何中虎;王德森等.利用京411为骨干亲本培育高产小麦新品种.作物杂志,2009,4:1-5
    10李琼;王长有;刘新伦等.小偃6号及其衍生品种(系)遗传多样性的SSR分析.麦类作物学报,2008,28(6):950-955
    11司清林;刘新伦;刘智奎等.阿夫及其衍生小麦品种(系)的SSR分析.作物学报,2009,35(4):615-619
    12盖红梅;王兰芬;游光霞等.基于SSR标记的小麦骨干亲本育种重要性研究.中国农业科学,2009,42(5):1503-1511
    13韩俊;张连松;李静婷等.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析.作物学报,2009,35(8):1395-1404
    14严建兵;汤华;黄益勤等.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析.科学通报,2006,51(12):1413-142
    15赵峰;孟祥兵;李卫华等.玉米骨干亲本黄早四抗病基因遗传传递规律的初步研究.玉米科学,2008,16(6):15-18
    16胡国华.从加拿大大豆系谱分析谈大豆产量育种.大豆科学,1990,9(2):168-176
    17孙自强;田佩占.东北地区大豆品种血缘组成分析.大豆科学,1990,9(2):112-120
    18彭宝:崔秀红;王大秋等.从大豆育成品种的血缘组成谈骨干亲本的筛选与利用.大豆通报,1996,2:12-13
    19赵洪锟;李启云;王玉民.吉林省大豆骨干亲本及主推品种DNA指纹图谱的构建.中国油料作物学报,2000,22(4):12-16
    20盖钧镒;赵团结.中国大豆育种的核心祖先亲本分析.南京农业大学学报,2001,24(2):20-24
    21马俊奎;史宏;任小俊.抗大豆孢囊线虫4号生理小种育种骨干亲本抗性差异分析.大豆科学,2003,22(3):176-180
    22路运才;王华忠.甜菜多倍体品种骨干亲本的重要农艺性状鉴定与评价.中国糖料,2006,2:15-16
    23李新国;都光辉;王建军.优良甘薯骨干亲本济薯10号的性状特点与应用.山东农业科学,2001,’1:20-21
    24徐新福;唐章林;柴友荣.用分子标记评价甘蓝型油菜骨干亲本的培育效果.河南农业科学,2005,12:22-26
    25李光太;李庆林;金石芬.水稻常规杂交育种主体骨干亲本的应用与效果.吉林农业科学,1989,3:50-52
    26孙岩松.从寒地水稻育种实践看骨干亲本的作用.作物品种资源,1993,1:7-9
    27吕彬;张立民;孟昭斌.日本优质稻育种中骨干亲本的作用.现代化农业,1995,6:3-4
    28张秀茹;李德华;韩勇等.水稻骨干亲本在育种中的作用.垦殖与稻作,1998,3:6-7
    29丛万彪.寒地水稻骨干亲本合江20的育成和利用.黑龙江农业科学,1999,3:65-66
    30袁兴福.杂交粳稻育种配组理论与方法及其骨干亲本的选育与应用研究.杂交水稻,2000,15(2):33
    31冯瑞光;孟令启;宁文书.优质高产稳产型水稻新品种垦优2000的选育及利用.中国农学通报,2005,6:213-214
    32余汉勇;魏兴华;袁筱萍等.水稻国外引种的探讨和建议.植物遗传资源学报,2005,6(1):96-100
    33赵一洲;王绍林;张战.水稻骨干亲本育种价值分析.垦殖与稻作,2006,4:6-9
    34张楷正;明红梅;李平.我国南方稻区水稻骨干亲本纹枯病抗性鉴定与分析.植物保护,2008,34(1):45-48
    35周少川;李宏;黄道强等.水稻核心种质的育种成效.中国水稻科学,2008,22(1):51-56
    36郑康乐;庄杰云;陆军等.籼稻骨干亲本的STS多态性.农业生物技术学报,1997,5(4):325-330
    37何光华;裴炎;杨光伟等.我国中籼杂交稻亲本的DNA变异性研究.作物学报,2000,26(4):449-454
    38段世华;毛加宁;朱英国.红莲型杂交稻(红莲2号)及其骨干亲本的RADP分析与鉴定.武汉植物学研究,2002,20(3):171-176
    39邱福林;庄杰云;华泽田等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测.中国水稻科学,2005,19(2):101-104
    40王玉平;李仕贵;黎汉云等.高配合力优质水稻恢复系蜀恢527的选育与利用.杂交水稻,2004,19(4):12-14
    41李顺武;李贤勇;王楚桃等.高产杂交中籼稻新组合Q优108.杂交水稻,2007,22(6):87-88
    42王德正;杜士云;王守海等.两系杂交中籼稻新组合皖稻181号.杂交水稻,2008,23(2):76-77
    43陈永军;谢崇华.优质高产杂交水稻新组合B优0801.杂交水稻,2006,21(3):84-85
    44范亦新.超级杂交稻“D优527”特征特性及高产栽培技术.福建农业科技,2008,6:7-8
    45周明镜;彭淑彬.优质杂交稻金优527.中国种业,2005,7:64
    46陈建博.优质杂交稻新组合--准两优527.福建稻麦科技,2007,9:34
    47郑秀平;林强;吴志源等.大穗型高产稳产杂交水稻新组合京福1优527的选育及利用.中国稻米,2007,4:23-26
    48竭润生;刘福平;杨春华等.高配合力水稻新恢复系南恢511的选育.杂交水稻,2005,20(5):15-16
    49宋德明;王志;张跃非.重穗型恢复系绵恢9937的选育与应用.安徽农业科技,2007,35(16):4794
    50 http://www. ricedata. cn/variety/
    51崔金腾;陈冰蠕;石英尧等.供试品种的遗传多样性与籼型水稻优良恢复系回交导入改良.分子植物育种,2008,6(1):25-31
    52王平荣;邓晓建.分子标记及其在作物遗传育种研究中的应用.种子,2001,3:38-41
    53李玥莹;裴忠有;沈平等.分子标记技术及其在作物遗传育种研究上的应用.沈阳农业大学学报,2001-04,32(2):150-154
    54鞠玉栋;李金泉.水稻微卫星标记的发展与应用.安徽农业科学2005,33(10):1921-1923
    55李文涛;张桂权.水稻微卫星标记的发展和应用.生命科学,2000,12(5):234-236
    56吴成钢;必凤.DNA分子标记在水稻遗传育种上的应用.韶关学院学报(自然科学版),2002,23(9):85-89
    57杨志清.分子标记在作物改良中的应用.云南农业科技,2002,5:20-22
    58杨杰;仲维功;王才林等.SSR标记及其在水稻分子生物学研究中的应用.金陵科技学院学报,2004,20(4):34-38
    59石运庆;牟秋焕;李鹏等.DNA分子标记及其作物遗传育种中的应用.2005,18(2):22-29
    60曹明龙;张青;刘传光.水稻微卫星标记及其在遗传育种中的应用.安徽农业科学,2006,34(20):5216-5217
    61黄国庆;郭加沅;肖国樱.SSR标记在水稻遗传育种中的应用.江西农业学报,2007,19(4):20-22
    62余丽琴;张灶秀;熊玉珍等.分子标记及其在水稻育种中的应用.江西农业学报,2007,19(11):14-18
    63陈仲中;汪旭升;朱军.基于水稻基因组序列SSR的多态性分析.中国水稻科学,2005,19(4):303-307
    64袁玲.SSR分子标记丰富水稻遗传图谱的方法.2004,24(6):90-92
    65 B. Kalyan Chakravarthil and Rambabu Naravaneni. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa. L). African Journal of Biotechnology,2006,5(9):684-688
    66 Zeng YW, Li ZC, Yang ZY, Wang XK et al. Ecological and genetic diversity of rice germplasm in Yunnan, China. Plant Genet Resour News,2001,125,24-28
    67赵勇;杨凯;Akbar Cheema等.利用水稻功能基因SSR标记鉴定水稻种质资源.中国农业科学,2002,35(4):340-353
    68 Akagi H,Yokozeki Y,Inagaki A.Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci.TAG,1997,94:61-67
    69陈亮;梁春阳;孙传清等.AFLP和RFLP标记检测水稻遗传多样性比较研究.中国农业科学,2002,35 6:589-595
    70赵炳然;夏红爱;阳和华等.远缘物种DNA导入水稻保持系的种质创新及SSR分析.杂交水稻,2004,19(4):47-50
    71朱明雨;王云月;朱有勇等.SSR标记揭示的云南地方稻品种遗传多样性及其保育意义.华中农业大学学报,2004,23(2):187-191
    72罗洪发;杨正林;钟秉强等.外源DNA导入水稻后代变异性的SSR分析.中国农学通报,2005,21(7):28-30
    73刘炜;李自超;史延丽等.利用SSR标记进行粳稻品种的遗传多样性研究,西南农业学报,2005,18(5):509-513
    74杨致荣;李润植;魏兴华.稻属AA染色体组8个种间SSR多样性与亲缘关系.中国水稻科学,2006,20(6):589-595
    75黄建勋;张凯;江良荣等.SSR标记对籼稻品种的遗传多样性分析.厦门大学学报(自然科学版),2006,45(1):120—124
    76华蕾;袁筱萍;余汉勇等.我国水稻主栽品种SSR多样性的比较分析.中国水稻科学,2007,21(2):150-154
    77金伟栋;程保山;洪德林.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究.中国农业科学,2008,41(11):3822-3830
    78杨静;刘海英;钱春荣等.黑龙江省水稻品种SSR标记遗传多样性分析.东北农业大学学报,2008,(6):1-10
    79李红宇;侯昱铭;陈英华等.用SSR标记评估东北三省水稻推广品种的遗传多样性.中国水稻科学,2009,23(4):383-390
    80吕广磊;蔺忠龙;白现广等.云南栽培稻种SSR遗传多样性比较.植物学报,2009,(4):457-463
    81刘传光;张桂权.用SSR标记分析1949-2005年华南地区常规籼稻主栽品种遗传多 样性及变化趋势.作物学报,2010,36(11):1843-1852
    82江云珠;汤圣祥;余汉勇等.利用SSR标记对中国水稻品种进行遗传多样性评价和品种分类的研究.中国稻米,2010,16(4):19-24
    83李茂柏;王慧;白建江等.利用SSR分子标记构建水稻品种DNA指纹图谱的研究进展.中国稻米,2011,17(1):4-6
    84肖小余;王玉平;张建勇等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用.中国水稻科学,2006,20(1):1-7
    85施勇烽;应杰政;王磊等.鉴定水稻品种的微卫星标记筛选.中国水稻科学,2005(3):195-201
    86杨剑波;李莉;赵伟.三系杂交水稻及亲本真实性和品种纯度鉴定DNA分析方法.安徽,GB/T 20396-2006.
    87李云海;肖晗;张春庆等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异.植物学报,1999,41(10):1061-1066
    88李晶熠;何平;李仕贵等.利用微卫星标记鉴定杂交水稻冈优22种子纯度的研究.生物工程学报,2000,16(2):211-214
    89于永红;李云海;马荣荣等.用微卫星DNA标记建立宁2A的指纹图谱.中国水稻科学,2001,15(3):215-217
    90詹庆才.应用SSLP技术鉴定杂交水稻种子纯度的研究.杂交水稻,2002(3):15-18
    91彭锁堂;庄杰云;颜启传等.我国主要杂交稻组合及其亲本SSR标记和纯度鉴定.中国水稻科学,2003,17(1):1-5.
    92刘殊;程慧;王飞等.我国杂交水稻主要恢复系的DNA多态性研究.中国水稻科学,2002,16(1):1-5.
    93朱作峰;孙传清;李自超等.用SSR标记对水稻品种的分类研究.农业生物技术学报,2001,9(1):58-61
    94辛业芸;张展;熊易平等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度.中国水稻科学,2005,19(2):95-100
    95李稳香;詹庆才.杂交水稻种子纯度SSR指纹图谱标记鉴定技术研究.中国种业,2005,21-22
    96李进波;方宣钧;杨国才等.两系杂交稻亲本SSR指纹图谱的建立及其在种子纯度鉴定中的应用.杂交水稻,2005(2):50-53
    97贺浩华;罗小金;朱昌兰等.杂交稻部分不育系与恢复系的SSR分类.作物学报,2006,32(2):169-175
    98谭智丹;余显权;高健强等.利用SSR鉴定杂交水稻种子纯度的研究.种子,2006,25(4):27-33
    99张彦;郭士伟;何冰等.利用SSR标记建立杂交水稻分子指纹图谱数据库.江苏农业学报,2006,22(2):181-183
    100武文;邓启云;周丽洁等.利用SSR分子标记构建Y58S及部分重要两系杂交水稻亲本的DNA指纹图谱.杂交水稻,2008,3:52-56
    101从夕汉;李莉;滕斌等.56个杂交水稻骨干亲本SSR指纹图谱的构建及遗传相似性分析.生物学杂志,2010,27(1):87-91
    102马琳;余显权;赵福胜.贵州地方水稻品种“禾”的SSR指纹图谱构建.西南农业学报,2010,23(1):5-10
    103马红勃;许旭明;韦新宇等.基于SSR标记的福建省若干水稻品种DNA指纹图谱构建及遗传多样性分析.福建农业学报,2010,25(1):33-38
    104 Dudley J W, Saghai M A, Rufer G K. Molecular markers information and selection of parents in corn breeding programs. Crop Sci,1992,32:301-304
    105 Stuber, G. W., S. E. Lincoln et al.Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132:823-839
    106 Melchinger A E, Lee M, Lamkey K R et al. Genetic diversity for restriction fragment length polymorphisms:Relation to estimated genetic effects in maize inbreds. Crop Sci.,1990,30:1033-1040
    107 Boppenmaier 1 et al. Genetic diversity for RFLPs in European maize inbreds: Perfomtance of crosses within versus between hewrotic groups for grain traits. Plant Breeding,1993,111:217-226
    108 Zhang Q F, Zhou Z Q, Yang G P et al. Molecular marker hetemzygmity and hybrid performance in indica and Japorrica rice. Them APPI Genet,1996, 93(8):1218-1224
    109李任华;徐国才;何予卿等.水稻亲本遗传分化程度与籼粳杂种优势的关系.作物学报,1998,24(5):564-576
    110孙传清;姜廷波;吴长明等.水稻杂种优势与遗传分化关系的研究.作物学报,2000,26(6):641-649
    111朱作峰;孙传清;姜廷波等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究.遗传学报,2001,28(8):738-745
    112方宣钧;吴为人.分子选择.分子植物育种,2003,1(1):1-5
    113罗小金;贺浩华;彭小松等.利用SSR标记分析水稻亲本间遗传距离与杂种优势的关系.植物遗传资源学报,2006,7(2):209-214
    114罗小金;贺浩华;付军如等.利用SSR分子标记划分籼型水稻杂种优势群.杂交水稻,2006,21(1):61-64
    115应雯.水稻SSR分子标记遗传距离与产量杂种优势相关性研究.安徽,安徽农业大学,2009
    116赵庆勇;朱镇;张亚东等.SSR标记遗传距离与粳稻杂种优势的相关性分析.中国水稻科学,2009,23(2):141-147
    117 Ribaut J M, Jiang C, Gonzalez-de-Leon D et al. Identification of quantitative trait loci under drought conditions in tropical maize.2. Yield components and marker-assisted selection strategies. Theor Appl Genet,1997,94:887-896.
    118秦钢;李杨瑞;陈彩虹.分子标记聚合育种在作物新品种选育中的应用.广西农业科学,2006,37(4):345-349
    119冯建成.分子标记辅助选择技术在水稻育种上的应用.中国农学通报,2006,22(3):43-47
    120 Bernacchi D, Beck-Bunn T, Emmatty D et al. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived fromLycopersicon hirsutumandL. pimpinellifolium. Theor Appl Genet,1998,97:170-180.
    121陈升.应用分子标记辅助选择培育广谱、高抗白叶枯的杂交水稻恢复系.武汉,华中农业大学,2000.
    122何光明;孙传清;付永彩等.水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合研究.遗传学报,2004,31(8):836-841
    123吴建利;庄云杰;李德葆等.水稻对稻瘟病抗性的分子生物学研究进展.中国水稻 科学,1999,13:123-128
    124徐建龙;薛庆中;罗利军等.稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10
    125陈志伟;官华忠;吴为人等.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用.福建农林大学学报(自然科学版),2005,34(1):74-77
    126刘士平;李信;汪朝阳等.利用分子标记辅助选择改良珍汕97的稻瘟病抗性.植物学报,2003,45(11):1346-1350
    127何风华;席章营;曾瑞珍等.利用高代回交和分子标记辅助选择建立水稻单片段代换系.植物学报,2005,8:825-831
    128李进波;夏明元;戚华雄等.水稻抗褐飞虱基因Bph14和Bph15的分子标记辅助选择.中国农业科学,2006,39(10):2132-2137
    129刘洋;徐培洲;张红宇等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用.中国农业科学,2008,41(1):9-14
    130姚姝;陈涛;张亚东等.分子标记辅助选择聚合水稻暗胚乳突变基因Wx-mq和抗条纹叶枯病基因Stv-bi.中国水稻科学,2010,4:341-347
    131黄青阳;陈光荣;李学宝.基因定位的概念和方法.高等函授学报(自然科学版)1997,2:49-56
    132吴金红;蒋江松;陈惠兰等.水稻稻瘟病抗性基因Pi-2(t)的精细定位.作物学报,2002,28(4):505-509
    133何予卿;邢永忠;葛小佳等.水稻米饭延伸指数相关性状的基因定位研究.分子植物育种,2003,1(5/6):613-619
    134祝莉莉;谭光轩;任翔等.5种重要农艺性状基因在水稻重组自交系群体中的定位.武汉大学学报(理学版),2003,49(6):787-792
    135袁玲.水稻抗褐飞虱基因的分子标记定位研究.农业与技术,2005,25(3):92-93
    136金旭炜;王春连;杨清等.水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位.中国农业科学,2007,40(6):1094-1100.
    137肖珂;左海龙;巩迎军等.控制水稻穗伸出度和株高的数量性状基因定位.中国农学通报,2008,24(5):95-99
    138余东;吴海滨;杨文韬等.水稻单侧卷叶突变体B157遗传分析及基因初步定位.分子植物育种,2008,6(2):220-226
    139郑崇珂;王春连;于元杰等.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位.作物学报,2009,35(7):1173-1180.
    140汪得凯;刘合芹;李克磊等.一个水稻窄叶突变体的鉴定和基因定位.科学通报,2009,54(3):360-365
    141唐彦强;杜川;胡思淋等.一个水稻长穗颈突变体euil(t)的鉴定和基因定位.种子,2010,5:341-347
    142陈佳颖;赵剑;刘晓等.一个新水稻温敏感叶色突变体的遗传分析及其基因分子定位.植物学报,2010,4:419-425
    143苗丽丽;王春连;郑崇珂等.水稻抗白叶枯病新基因的初步定位.中国农业科学,2010,43(15):3051-3058
    144姚国新;李金杰;张强等.利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL.作物学报,2010,8:1310-1317
    145李万昌;王永飞;马三梅等.水稻多分蘖突变体htl的遗传分析和分子定位.遗传,2010,32(10):1065-1070
    146方宣钧;吴为人;唐纪良.作物DNA标记辅助育种.北京,科学出版社,2001,2
    147沈利爽;朱立煌;SR. Mc Cuch等.利用微卫星标记扩充水稻双单倍体群体的遗传图谱.科学通报,1997,42(20):2220-2223
    148段远霖;赵守环;吴为人等.用SSR标记提高水稻分子连锁图谱密度.分子植物育种,2003,1(4):475-479
    149兰涛;郑军;吴为人等.用微卫星标记构建两系稻培64s/E32的分子遗传连锁图.遗传,2003,25(5):557-562.
    150江良荣;黄建勋;张凯等.基于优质早籼稻品种佳辐占的遗传图谱的构建.厦门大学学报(自然科学版),2007,46(2):262-267
    151黄燕娟;华亚鹏;刘华清等.三个基于水稻明恢86的SSR电子遗传图谱的构建.分子植物育种,2008,6(4):655-663
    152陈庆全;张玉山.籼型水稻SSR标记遗传连锁图谱的构建及偏分离分析.分子植物育种,2009,7(4):685-689
    153徐小岚;刘喜;赵志刚等.培矮64S/93-11重组自交系分子图谱构建及千粒重QTL检测.南京农业大学学报,2011,34(1):8-13
    154傅彬英;杨代常;朱英国等.水稻抗稻瘟病基因Pi-2(t)物理图谱的构建.遗传学 报,2000,27(9)787-791
    155邵元健;陈宗祥;张亚芳等.一个水稻卷叶主效QTL的定位及其物理图谱的构建.遗传学报,2005,32(5):501-506
    156刘华招;称温福;刘延.水稻Pi基因分子标记的物理图谱锚定.华北农学报,2009增刊,24:5-8
    157叶少平;张启军;李杰勤等.用培矮64S/日本晴F2群体对水稻6个农艺性状的QTL定位.中国水稻科学,2007,21(1):39-43
    158王林生;李毓珍;马晓玉.植物数量性状的QTL定位分析.安徽农业科学,2006,34(18):4527-4529
    159张帆:万雪琴;袁亮等.作物数量性状(QTL)基因研究进展.生物技术,2004,14(6):67-70
    160 Tanksley S. D:Mapping polygenes. Annu. Rev. Genet 1993,27:205-233
    161 Retter E, Gebhardte et al. Estimatien of recombination Frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parants. Genetics,1990,125:645-654
    162 Thoday J M. Location of polygenes. Nature,1961,191:368-370
    163 Lander E. S, Botstein D. Mapping mendelian factors underlying guantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    164 Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor Appl Gennt,1989, 78:613-618
    165 Knapp S J, BRIDGES W C. Using molecular markers to estmate quantitative trait locus parameters:Power and genetic variances for unreplicated and replicated progeny. Genetics,1990,126:769-777
    166 Zeng Z-B. Precision mapping of quantitative trait loci. Genetics,1994, 136:1457-1468
    167 Martinez,0. and R. N. Curnow. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet,1992,85:480-488.
    168 Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping guantitative trait loci. Proc Natl Acad Sci USA,1993,90: 10972-10976
    169 JIANG C. and Z. B. ZENG. Multiple trait analysis and genetic mapping for quantitative trait loci. Genetics,1995,140:1111-1127
    170 Kao C H, Zeng Z-B Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203-1216
    171朱军;王连铮;戴景瑞.复杂性状基因定位的混合线性模型方法.全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998.
    172 Wang D L, Zhu J, Li Z K L et al. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theoretical and Applied Genetics,1999,99:1255-1264.
    173高用明;朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    174 Li H;Ye G;Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374
    175 Li H; Ribaut J M; Li Z; Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in bi-parental populations. Theor Appl Genet,2008,116:243-260
    176 Zhang L; Li H; Li Z et al. Interactions between markers can be caused by the dominance effect of QTL. Genetics,2008,180:1177-1190
    177王建康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239-245
    178李杰勤;张启军;叶少平等.四种不同作图方法的比较研究.作物学报,2005,31(11):1473-1477
    179邢光南,赵团结,盖钧镒.关于Mapmaker/Exp遗传作图中标记分群和排序操作技术的讨论.作物学报,2008,34(2):217-223
    180周元昌;陈启锋;吴为人等.作物QTL定位研究进展.福建农业大学报,2000,29(2):138-144
    181穆平;李自超;李春平等.水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析.遗传学报,2004,31(7):717-723
    182万建林;翟虎渠;万建民.水稻耐亚铁毒QTLs的定位,遗传学报,2005,32(11):1156-1166
    183张启军;梁永书;叶少平等.利用已测序水稻品种分析其农艺性状基因座.作物学报,2006,32(10):1503-1510
    184康乐;李宏;孙勇等.应用导入系群体进行水稻产量相关性状的遗传剖析.作物学报,2008,34(9):1500-1509
    185聂元元.水稻抗旱性相关QTL精细定位.武汉,华中农业大学,2009
    186徐群;袁筱萍;余汉勇等.水稻苗期抗旱性的QTL分析.中国水稻科学,2010,24(5):469-473
    187包劲松;Harold Corke;何平等.利用一个水稻RIL群体定位控制淀粉特性的QTL(英文).Acta Botanica Sinica,2003,8:986-994
    188沈圣泉;庄杰云;王淑珍等.水稻米粒延伸性QTLs定位和基因型与环境互作分析.中国水稻科学,2005,19(4):319-322
    189周立军;江玲;刘喜等.水稻千粒重和垩白粒率的QTL及其互作分析.作物学报,2009,35(2):255-261
    190樊叶杨;吴建利;庄杰云等.应用候选基因定位水稻抗稻瘟病QTL.中国水稻科学,2001,15(4):53-56
    191杨长登,曾大力,马良勇等.水稻籼粳交DH群体白叶枯病抗性的QTL定位.中国水稻科学,2006,20(1):102-104
    192王宝祥;江玲;陈亮明等.水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位.作物学报,2010,36(8):1-7
    193邢永忠;谈移芳;徐才国等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001,43(8):840-845
    194严长杰,梁国华,陈峰等.利用籼粳回交群体分析水稻粒形性状相关QTL.遗传学报,2003,30(8):711-716
    195林荔辉;吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342
    196曹立勇;占小登;庄杰云等.水稻产量性状的QTL定位与上位性分析.中国农业科学,2003,36(11):1241-1247
    197梁永书;张启军;王世全等.测序水稻品种SSR遗传连锁图谱的构建及其农艺性状基因座分析.中国生物工程杂志,2007,27(1):28-34
    198马大鹏;罗利军;汪朝阳等.利用重组自交系群体对水稻产量相关性状的QTL分 析.分子植物育种,2004,2(4):507-512
    199张光恒;张国平;钱前等.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,2004,18(1):16-22
    200王一平;曾建平;郭龙彪等.水稻顶部三叶与穗重的关系及其QTL分析.中国水稻科学,2004,19(1):13-20
    201雷东阳;谢放鸣;徐建龙等.稻米粒形和垩白度的QTL定位和上位性分析.中国水稻科学,2008,22(3):255-260
    202杜景红;樊叶杨;吴季荣等.水稻第6染色体短背产量性状QTL簇的分解.中国农业科学,2008,,4(4):939-945
    203陈深广;沈希宏;曹立勇等.水稻产量性状杂种优势的QTL定位.中国农业科学,2010,43(24):4983-4990
    204叶少平;李杰勤;张启军等.不同环境条件下水稻株高的QTL定位分析.四川农业大学学报,2006,2(1):20-24
    205陈利华;万杉.不同温度条件下水稻种子活力QTL的定位分析.武汉植物学研究,2005,23(2):125-130
    206胡茂龙;王春明;杨权海等.水稻光合功能相关性状QTL分析.遗传学报,2005,32(8):818-824
    207彭茂民;杨国华;张菁晶等.不同遗传背景下水稻剑叶形态性状的QTL分析.中国水稻科学,2007,21(3):247-252
    208冯琳琳;荆彦辉;黄成等.水稻柱头外露率的QTL分析.北方水稻,2010,3:20-22
    209 McCouch S. R., Teytelman L., Xu Y. et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.), DNA Research, Supplement, 2002,9(6):257-279
    210 Temnykh S., Park W. D., Ayres N.et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.), Theor Appl Genet, 2000,100(5):697-712
    211 Temnykh S., DeClerck G., Lukashova A. et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency, length variation, transposon associations and genetic marker potential, Genome Res,2001,11(8):1441-1452
    212王珍;方宣钧.分子植物育种实验室方法(一).植物DNA分离.分子植物育种,2003,1(2):281-288
    213 Murray M. G., and Thompson W. F.. Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research,1980,8(19):4321-4326
    214刘仁虎;孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    215申宗坦.作物育种学实验.北京,中国农业出版社,1992
    216 http://www.isbreeding.net
    217张强;姚国新;胡广隆.利用极端材料定位水稻粒形性状数量基因位点.作物学报,2011,3,24 (http://www.chinacrops.org/zwxb/)
    218 http://www. ricedata. cn/maps. aspx
    219 http://www.gramene.org
    220程式华;闵绍楷.中国水稻品种:现状与展望.中国稻米,2000,1:13-16
    221万常照;陆家安;范洪良等.水稻超高产育种研究进展.上海农业学报,2000,16(4):38-42
    222 Song X. J., Huang W., Shi M., Zhu M. Z. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, Nature Genetics,2007,39:623-630
    223方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京,科学出版社,2001
    224谭震波.水稻分子图谱的构建及数量性状基因的研究.四川,四川农业大学,1996
    225李平.水稻分子图谱的构建与基因分析.四川,四川农业大学,1994
    226李仕贵.几个水稻重要性状的遗传分析和分子标记定位.四川,四川农业大学,1998
    227 Song K, Slocum M. K and Osborn T. C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet,1995,90:1-10
    228李泽福,万建民,夏加发等.水稻外观品质的数量性状基因位点分析.遗传学报,2003,30(3):251-259
    229 Ken Ishimaru. Identification of a locus in creasing rice yield and physiological analysis of its function. Plant Physiology,2003,133:1083-1090
    230 Thomson M. J., Tai T. H., McClung A. M. et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetic,2003,107:479-493
    231庄杰云,樊叶杨,吴建利等.应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001,28(5):458-464
    232郭龙彪,罗利军,邢永忠等.水稻重要农艺性状的两年QTL剖析.中国水稻科学,2003,17(3):211-218)
    233姜恭好,徐才国,李香花等.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1):63-72)
    234 Yu S. B., Li J. X., Xu C. G. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America,1997,94:9226-9231
    235刘海燕;崔金腾;高用明.遗传群体偏分离研究进展.植物遗传资源学报,2009,10(4):613-617
    236张帆;万雪琴;潘光堂.玉米F2群体分子标记偏分离的遗传分析.作物学报,2006,32(9):1391-1396
    237 Chen J G. A statistical method for mapping QTL linked with segregation-distorting locus.Journal of Biomathematics,2005,20(3):273-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700