用户名: 密码: 验证码:
甘蓝型油菜异源白花性状的遗传及相关基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界重要油料作物之一,在我国种植面积和总产均居世界首位,也是我国重要的食用油来源。油菜白花具有重要的理论研究价值和实践应用前景。本研究以甘蓝型油菜异源白花品系HW243为材料,围绕白花性状展开遗传研究。主要研究结果如下:
     1.油菜花色观察方法的比较
     以HW243为母本,黄花品系(品种)HZ21-1和中油821为父本,通过杂交配置出两个杂交组合(HW243×HZ21-1和HW243×中油821)的P1、P2、F1、B1、B2及F2群体。使用各个世代群体内的单株来研究比较目测法、数码扫描法和色素比色法调查花色是否准确可靠。研究发现:(1)使用数码扫描仪扫描得到油菜花瓣颜色的RGB值,对不分离世代群体样本分析时发现,RGB值中R和G值变化幅度很小,B值变化幅度很大,白花的B值最大(>200),黄花的B值很小(<10),乳白花居于之间,且B值的变化与田间花色的变化高度一致。将B值选为数码扫描法调查花色的指标;(2)用无水乙醇提取花瓣中的色素在200-600nm波长范围进行紫外-可见光光谱扫描。发现在439nm处的吸光度值变化与田间花色变化高度一致,黄花的吸光度值很大(>1.4),乳白花较小,白花的吸光度值最小(<0.1)。将439nm处的吸光度值选为色素比色法调查花色的指标;(3)使用RGB值、吸光度值和目测法调查两个杂交组合(HW243×HZ21-1和HW243×中油821)的B1、B2及F2群体的花色。结果显示三种方法具有较一致的观察结果,扫描法和色素法能够减少人为主观等因素造成的误差,可以取代目测法实现对油菜花色的调查。
     2.甘蓝型油菜异源白花性状的遗传模式分析
     使用吸光度值和B值在2年对2组合(HW243×HZ21-1、HW243×中油821)的P1、P2、F1、B1、B2、F2共6个世代的油菜花色变异进行了调查。分析发现,花色既表现出主基因分离的特征,又表现出微效多基因效应的特点。分离群体B1、B2和F2中吸光度值和B值显示出一定的连续分布,其中B1群体呈单峰分布,B2和F2群体中均呈现双峰分布。使用植物数量遗传体系的主基因+多基因模型进一步分析,两种调查方法的结果一致表明,甘蓝型油菜异源白花性状符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型(E-0),花色性状以主基因遗传效应为主,多基因的作用相对较小;其中主基因加性、显性和上位性效应均具有重要的作用。在F2、B1和B2群体中主基因遗传率(46.55%-98.14%)一致高于多基因遗传率(0.32%-46.9%),表明在甘蓝型油菜异源白花性状的遗传变异中主基因作用大于多基因的作用。
     3.甘蓝型油菜分子图谱的构建和异源白花性状的QTL定位
     以杂交组合(HW243×HZ21-1)的F2为作图群体,采用B值调查F2群体内单株的花色,使用SSR、RAPD和SRAP分子标记构建遗传连锁图谱,并对花色性状进行QTL定位。结果构建得到2102cM的连锁遗传图谱,含有217个标记位点,标记间平均距离为9.69cM。QTL扫描发现花色存在2个QTL位点,即qPE4(Nal 2-B06—ME25-EM20-3)和qPE6(Nal 0-H06—ME27-EM26-2),2个QTL位点共解释表型变异为27.45%。同时还检测到3个上位性QTL位点,3个QTL位点,共解释表型变异为13.33%。因此,花色性状是以加性效应为遗传主效应,但上位性也存在一定的遗传作用,不可忽略。
     4.甘蓝型油菜类胡萝卜素代谢相关基因的克隆与分析
     使用RACE技术克隆分离出甘蓝型油菜类胡萝卜素代谢途径相关酶基因BnPSY(HQ260432,HQ260433)、BnPDS(HM989806,HM989807,HM989808,HM989809)、BnZDS (HQ260435, HQ260436)、BnLYCE (HM212502, HM212503)、BnLYCB (HM989810)、BnBCH(HM212504, HM212505)、BnZEP (GU361616, GU561839)、BnNCED3 (HQ260434)、BnCCDl (HQ260430, HQ260431)。
     使用实时荧光定量PCR技术分析了各个基因在不同组织部位及不同花色中的表达,结果显示,黄花花瓣中各个基因的表达均要高于白花花瓣;F1花瓣中除BnZEP和BnCCD1基因的表达略高于黄花外,其他基因的表达均低于黄花,但所有基因的表达均高于白花花瓣。分析HW243不同发育阶段花瓣中各个基因的表达显示,开花过程中花色的变化可能主要是由BnPSY、BnPDS、BnZDS、BnLYCB、BnLYCE、BnNCED3和BnCCD1等基因共同调控的结果。
Rapeseed (Brassica napus L.) is one of the main oil crops widely grown in the word, as well as in China. It is an important source of vegetable oils in China with the largest planting area and the largest production. White flower character in rapeseed is rare and has important research and breeding values. In this paper, the inheritance of white flower character in a Brassica napus line, HW243, was studied by a series of methods, including different ways of observation, quantitative genetic analysis, QTL analysis and real-time quantitative PCR. The main results were summarized as the following:
     1. The three different methods for observation of rapeseed flower colors
     White flower line'HW243'was crossed to two yellow flower B.napus lines,'HZ21-1' and'Zhongyou821', i.e.,'HW243×HZ21-1'and'HW243×Zhongyou821'. Six generations (Pi, P2, F1, RF1, F2, B1, B2) for each of the two combinations were prepared to investigate the variations in flower colors in Brassica napus L. The colors of flower in the six generations were observed with three different methods:naked eye observation and classification, spectrophotometry of extracted pigments, and digital scanning of petals. The following importamt results were discovered:(1) With the digital scanning method, rapeseed flower colors could be characterized by the RGB values of the petals, which were obtained with a reading software. The results showed that the parameters R and G varied to a very little extent, but the parameter B showed a large range of variation, among the different generations. The variations in B values were highly consistent with the variation in flower colour observed by naked eyes. In present study, the B values of flower petals were used to analize the genetic characteristics of the flower colors in rapeseed. (2) The flower pigments were extracted with absolute alcohol, and the extracted solution was examinated with a visible/ultra-violet spectrophotometer at variable wavelengths. It was observed that the absorbance value at wavelength 439nm showed the largest difference among P1, P2 and F1, with yellow, white and milky flower colors, respectively. The absorbance values of the extracted pigments at wavelength 439nm were used for the systematic analysis in later experiments. (3) The variations in flower color in the six generations of the two crosses could be evaluated by B values, absorbance values and naked eye grading. It was shown that the three methods generated highly consistent observation results. The digital scanning and the pigment extraction methods, however, could reduce the subjective observation errors, and could be used to replace'naked eye' observation of flower colour in Brassica napus L.
     2. Genetic analysis of the Allogenous white flower color in Brassica napus
     The flower colors in the six generations (P1, P2, F1, B1, B2 and F2) of the two crosses (HW243×HZ21-1, HW243×Zhongyou 821) were analyzed using the B values and the absorbance values. It was found that Allogenous white flower color in Brassica napus L. was controlled by both major genes and polygene genes. The B values and the absorbance values in the segregating generations showed continuously distribution. One single peak was distributed in B1 population, and bimodal distributed in B1 and F2. The genetic modes of flower color were analyzed with a mixed model for major genes plus polygenes. The results from the both detection methods were consistant. It was shown that Allogenous white flower color in Brassica napus L. was a quantitative trait and its inheritance mode fitted to a mixed genetic model of two major genes with additive-dominant-epistatic effects plus polygenes with additive-dominant-epistatic effects (the E-0 model). The effects of major genes were high and polygenes were relatively small. The effects of additive, dominant and epistatic actions of the two major genes were equally important. The inheritability rates of the two major genes were estimated to be 46.55% to 98.14% in B1, B2 and F2, higher than that of the polygenes, estimated to be 0.32% to 46.9% in B1, B2 and F2 respectively.
     3. Construction of molecular genetic map and QTL identification of Allogenous white flower color in Brassica napus
     Taking the F2 generation of HW243 (white petal parent)×HZ21-1 (yellow petal parent) as a mapping population, a genetic linkage map of Brassica napus L. was constructed using molecular markers of SSR, RAPD and SRAP. QTL's for petal colors were identified. The molecular map included 217 marker loci, covering 2102cM, with an average distance of 9.69cM. Two additive QTL's were checked out for flower colors in Brassica napus L., i.e., qPE4 (Na12-B06—ME25-EM20-3) and qPE6 (Nal0-H06—ME27-EM26-2). The two QTL's explained 27.45% of the phenotypic variation. Additionally, three pairs of epistatic QTL's were detected, which explained 13.33% of the phenotypic variation.
     4. Cloning and Characterization of genes associated with carotenoid biosynthesis in Brassica napus
     A group of genes possibly associated with the carotenoid biosynthesis in Brassica napus were cloned with RACE, including BnPSY (HQ260432, HQ260433), BnPDS (HM989806, HM989807, HM989808, HM989809), BnZDS (HQ260435, HQ260436), BnLYCE (HM212502, HM212503), BnLYCB (HM989810), BnBCH (HM212504, HM212505), BnZEP (GU361616, GU561839), BnNCED3 (HQ260434), BnCCDl (HQ260430, HQ260431). The levels of expression of these genes were detected using real-time quantitative PCR in the different tissues from plants of different flower colors. The results showed that the expression levels of all of these genes were higher in the yellow flower petals than in the white flower petals. The expression level of most of these genes was a little bit lower in flower petals of F1 than in the yellow flower petal. But reverse situations were observed for the genes BnZEP and BnCCD1. The results also showed that the expression levels of these genes were, to some extent, variable during the developmental period of the white flower petals in HW243, which was consistant with the change in flower colour from pale yellow in the earlier stage to full white in the later stage. The changes in the white flower color seemed to be due to the co-regulation of BnPSY, BnPDS, BnZDS, BnLYCB, BnLYCE, BnNCED3 and BnCCD1 gene.
引文
1刘后利.油菜的遗传和育种.上海科学技术出版社,1985.
    2官春云.双低油菜核心竞争力的研究.作物研究,2004,2:88-93.
    3涂金星,张冬晓,张毅等.我国油菜育种目标及品种审定问题的商榷.中国油料作物学报,2007,29(3):350-352.
    4 USDA Foreign Agricultural Service Oilseeds:World Markets and Trade Monthly Circular, http:/ /www.fas.usda.gov/oilseeds/circular/Current.asp,2011.1.11.
    5王汉中.我国油菜产业发展的历史回顾与展望.中国油料作物学报,2010,32(2):300-302.
    6马文杰,刘浩,冯中朝.我国油菜生产的地区比较优势及国际竞争力分析.科技进步与对策,2010,27(14):64-67.
    7安田齐.花色的生理生物化学.北京,中国林业出版社,1989.
    8张承志.花色的秘密.大自然,1989(4):14-16.
    9程金水.园林植物遗传学.北京,中国林业出版社,2000:23-39.
    10 Vainstein A, Lewinsohn E, Pichersky E, et al. Floral fragrance. New inroads into an old commodity. Plant Physiology,2001,127:1383-1389.
    11 Harborne JB. Introduction to Ecological Biochemistry. Academic Press, London,1993:36-70.
    12李绍文.生态生物化学.北京,北京大学出版社,2001:7-20.
    13 Clegg MT, Durbin ML. Flower color variation. A model for the experimental study of evolution. Proceedings of the National Academy of Sciences of USA,2000,97:7016-7023.
    14马荣全.黑颜色花为何少.化石,2001,(4):36.
    15戴思兰.园林植物遗传学.北京,中国林业出版社,2004,161.
    16包满珠.花卉学.北京,中国农业出版社,2003.
    17何小玲,王金发.观赏花卉的品质基因及其基因工程问题.植物生理学通讯,1998,34:462-466.
    18 Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color. Plant and Cell Physiology,1998,39:1119-1126.
    19 Hugo KD, Tinothy PR. Genetic and developmental control of anthocyanin biosynthesis. Annual Review of Genetics,1991,25:173-199.
    20邱辉龙,范明仁.花青素与花色之表现.中国园艺(台湾),1998,44(2):102-115.
    21 Goodwin TW, Britton C. Distribution and analysis of carotenoids. Plant Pigments,Academic Press, London,1988:61-132.
    22吴寿金,赵泰,秦永祺.现代中草药成分化学.北京,中国医药科技出版社,2002:805.
    23郑志亮.花卉作物的花色基因工程.北方园艺,1994(3):37-38.
    24张石宝,胡红,李树云.花卉基因工程研究进展I.花色.云南植物研究,2001,23:479-487.
    25苏焕然.花色与色素.生物学杂志,1996,13(5):46-47.
    26黄明.花色及其变化.生物学通报,1992,27(10):15-17.
    27刘穆.种子植物形态解剖学导论.北京,科学出版社,2001:252-259.
    28 Noda KI, Glower BJ, Linstead P, et al. Flower colour intensity depends on specialized cell shape controlled by Myb-related transcription factor. Nature,1994,369:661-664.
    29孟繁静.植物花发育的分子生物学.北京,中国农业出版社,2000.
    30于晓南,张启翔.观赏植物的花色素苷与花色.林业科学,2002,38:147-153.
    31 Stewart RN, Noris KH, Asen S. Microspectrophotometric measurement of pH and pH effect on color of petal epidermal cells. Phytochemistry,1975,14:837-942.
    32 Mol J, Cornish E, Mason J. Novel colored flowers. Current Opinion in Biotechnology,1999,10:198-201.
    33 Tanaka SF, Inagaki Y, Yamaguchi T, et al. Color-enchancing protein in blue petals. Nature,2000,407: 581.
    34 Brouillard R, Houbois J. Mechanism of the structure transformations of anthocyanins in acidic media. Journal of the American Chemical Society,1977,99:1359-1363.
    35 Chen LJ, Hrazdina G. Structural aspects of anthocyanin-flavonoid complex formation and its role in plant color. Phytochemistry,1981,20:297-303.
    36 Mazza G, Brouillard R. The mechanism of copigmentation of anthocyanins in aqueous solutions. Phytochemistry,1990,29:1097-1102.
    37 Brouillard R. The in vivo expression of anthocyanin colour in plants. Phytochemistry,1983,22: 1311-1323.
    38 Mol J, Grotewold E, Koes RE. How genes paint flowers and seeds. Trends in Plant Science,1998,3: 212-217.
    39 Yamaguchi T, Tanaka FS, Inagaki Y, et al. Genes encoding the vacular Na+/H+ exchanger and flower coloration. Plant and Cell Physiology,2001,42:451-461.
    40 Weiss D, Halevy A H. Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hybrida. Planta,1989,179:89-96.
    41 Martin C, Gerats T. Control of pigment biosynthesis genes during petal development. The Plant Cell, 1993,5:1253-1264.
    42 Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development. The Plant Cell,1993,5:379-387.
    43 Weiss D, Vander Luit A, Knegt E, et al. Identification of endogenous gibberellins in petunia flowers. Induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. Plant Physiology,1995,107:695-702.
    44程龙军,郭得平,张建华.高等植物花生长和花色苷生物合成的信号调控.植物生理学通讯,2002,38:175-179.
    45陈永宁.当前开花研究中的一些前沿性工作介绍.植物生理学通讯,1994,30:52-54.
    46 Bartley G E, Scolnik P A. Molecular biology of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1994,45:287-301.
    47 Perucka I. Ethephon-induced changes in accumulation of carotenoids in red pepper fruit(Capsicum annuum L.). Horticultural Abstracts,1997,67:4997.
    48惠伯棣.类胡萝卜素化学及生物化学.北京,中国轻工业出版社,2005.
    49姜建国,王飞,陈倩.类胡萝卜素功效与生物技术.北京,化学工业出版社,2007.
    50史宏志,张建勋.烟草生物碱.北京,中国农业出版社,2004.
    51 Tanaka Y, Katsumoto Y, Brugliera F, et al. Genetic engineering in floriculture. Plant cell,tissue and organ culture,2005,80:1-24.
    52李亨.颜色技术原理及其应用.科学出版社,1994:4.
    53荆其诚,焦书兰,喻柏林等.色度学.科学出版社,北京,1979.
    54汤顺青.色度学.北京理工大学,1990.
    55施国生,胡江涛.印花回样的计算机色彩处理模型.浙江丝绸工学院学报,1997,14(3):217-219
    56本恩(李小梅,马如,陈立荣等译).颜色技术原理.北京,化学工业出版社,2002:50-145.
    57 Heinemann P. H., et al. Machine Vision for Color Inspection of Potatoes and Apples. ASAE,1995, 38(5):1555-1561.
    58 Choi k.. Tomato Maturity Evaluation Using Color Image Analysis. Transaction of the ASAE,1995, 38(1):171-176.
    59 Ghate S. R. Matrity Detection in Peanuts Using Machine Vision. Transaction of the ASAE,1993,36 (3):1941-1947.
    60韩仲志,赵友刚.基于计算机视觉的花生品质分级检测研究.中国农业科学,2010,43(18):3882-3891.
    61 Wiggers W. D., et al. Classification of Fungal-damaged Soybeans Using Color-image Processing. ASAE Paper,1988:3053.
    62 Shearer B. K., Delwiche M. J.. Color and Defect Sorting of Bell Peppers Using Machine Vision. ASAE,1990,33(6):2045-2050.
    63 MacCormac.J. K. M. On-line image processing for tobacco grading in Zimbabwe. IEEE,1993:327-331.
    64 CHO, H.K., PAKE, K.H. Feasibility of grading dried burley tobacco leaves using machine vision. Journal of the Korean Society for Agricultural Machinery,1997,22(1):30-40.
    65张建平,吴守一,方如明等.烟叶颜色定量分析的研究.排灌机械,1993,A00:38-40.
    66张建平,吴守一,方如明.烟叶外观品质特征的定量检测.农业工程学报,1996,12(3):158-162.
    67袁卫鹏,施鹏飞,周煦潼.颜色空间变换在烟纸污点检测中的应用.微电脑应用,2001,17(11): 41-42.
    68蔡健荣.利用计算机视觉定量描述茶叶色泽.农业机械学报,2001,31(4):67-70.
    69葛雨萱,王亮生,徐彦军等.蜡梅的花色和花色素组成及其在开花过程中的变化.园艺学报,2008,35(9):1331-1338.
    70李崇晖,王亮生,舒庆艳等.迎红杜鹃花色素组成及花色在开花过程中的变化.园艺学报,2008,35(7):1023-1030.
    71赵昶灵,郭维明,陈俊愉.梅花花色色素种类和含量的初步研究.北京林业大学学报,2004,26(2):68-73.
    72胡国富,李凤兰,李成雁等.一串红花色遗传多样性研究.北方园艺,2009(8):194-198.
    73张萍,刘雅莉,祁银燕等.利用灰色关联分析法选择适宜转蓝色基因的百合品种.中国农学通报,2010,26(20):52-56.
    74谢妤,童晓滨,宋卫军.同株夹竹桃双色花红外光谱分析研究.武夷学院学报,2009,28(2):45-48.
    75孙卫,李崇晖,王亮生等.菊花舌状花花色测定部位的探讨.园艺学报,2010,37(5):777-784.
    76韩江南,樊金玲,巩卫东等.中原牡丹品种基于花色测定的聚类分析.北方园艺,2010(3):75-79.
    77张云,杨宏伟,罗克勇.中华绒螯蟹蟹壳颜色的识别量化研究.江苏农业科学,2005(6):115-117.
    78 Sylven, N. Kreuzungsstudien beim Raps(Brassica napus oleifera) 1. Blutenfarben. Hereditas 1927, 9:380-390.
    79 Sun, P.C. Genetic studies in Brassica juncea Coss. I. Flower colour, leaf shape, seed colour and branching habit. J. Agric. Res. China,1945,50:12-13.
    80 Alam, Z., Aziz, M.A.. Inheritance of flower colour in some self-fertile oleiferous Brassicae. Pakistan J. Sci. Res,1954,6:27-36.
    81 Anstey, T.H., Moore, J.F.. Inheritance of glossy foliage and cream petals in green sprouting broccoli. J. Hered,1954,45:39-41.
    82 Singh, D. Rape and mustard monograph. Indian Central Oilseeds Committee,Hyderabad, India, 1958.
    83 Morice, J. Heredite de la couleur des fleurs chez le colza. Ann. Amelior. Plantes,1960,2:155-168.
    84 Singh, D., Pokhriyal, S.C., Mangath, K.S.. Inheritance of some characters in Brassica juncea. Indian J. Genet,1964,24:288-290.
    85 Sampson, D.R. Genetic analysis of Brassica oleracea using nine genes from sprouting broccoli. Can. J. Genet. Cytol,1966,8:404-413.
    86 Pandey, B.P., Singh, A.B.. Note on a new type of flower-colour variant in brown-sarson(Brassica campestris L. var. dichotoma Watt). Indian J. Agric. Sci,1971,41:1115-1116.
    87 Kato, M., Tokumasu, S.. The mechanism of increased seed fertility accompanied with the change of flower colour in Brassica raphanus. Euphytica,1976,25:761-767.
    88 Cours, B.J.. Genetic studies in Brassica campestris L. M.Sc. Thesis, University of Wisconsin, Madison,U.S.A.,1977:126.
    89 Heyn, F.W.. Marker genes in Brassica napus. Cruciferae Newslett,1977,2:9.
    90 James, R.V., Williams, P.H.. Clubroot resistance and linkage in Brassica campestris. Phytopathology, 1980,70:776-779.
    91 Sernyk J L, Stefansson B R. Heterosis in summer rape (Brassica napus L.). Can.J.Plant Sci,1983,67: 147-151.
    92 Orakwue, F.C., Crowder, L.V.. Inheritance of variegation in Brassica campestris L. J.Hered,1983,74: 65-67.
    93 Bhuiyan, M.S.A.. Inheritance of flower colour in Brassica juncea. Indian J. Genet. Plant Breeding, 1986,46:563.
    94 Rawat, D.S., Anand, I.J.. Inheritance of flower colour in mustard mutant. Indian J. Agric. Sci,1986, 56:206-208.
    95 Chen B Y, Jonsson R. Monogenic dominant white flower (petal) in resynthesized Brassica napus. Cruciferae Newslett No.12,1987:25.
    96 Chen, B.Y., Heneen, W.K., Jonsson, R.. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed color. Plant Breeding,1988,101:52-59.
    97 Quazi M H. Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor. Appl. Genet,1988,75:309-318.
    98 Seguin-Swartz, G. Inheritance of a pale yellow petal mutant of summer rape. Cruciferae Newslett, 1988,13:24-25.
    99 Chen, B.Y., Heneen, W.K.. Independent inheritance of flower colour and male-fertility restorer characters in Brassica napus L. Plant Breeding,1990,104:81-84.
    100戚存扣,傅寿仲.甘蓝型油菜白花性状的遗传.中国油料作物学报,1992,(3):58-60.
    101 Getinet, A., Rakow, G., Downey, R.K.. Inheritance of a cream petal mutant in Ethiopian mustard. Can. J. Plant Sci,1993,73:1075-1076.
    102 J(?)rgensen R. B., Chen B. Y., Cheng B. F., et al. Random amplified polymorphic DNA markers of the Brassica alboglabra chromosome of a B. campestris-alboglabra addition line. Chromosome Research,1996,4(2):111-114.
    103 Woods, D. L., Seguin-Swartz, G. Investigation on linkage between white flower colour and erucic acid in summer rape. Can. J. Plant Sci,1997,78(1):109-111.
    104李莓,陈卫江,易冬莲.甘蓝型油菜桔红色恢复系R18的遗传分析.作物研究,1999,4:14-16.
    105张洁夫,浦惠存,戚存扣等.甘蓝型油菜花色性状的遗传研究.中国油料作物学报,2000,(4):1-4.
    106 Rahman M. H.. Inheritance of petal colour and its independent segregation from seed colour in Brassica Rapa. Plant breeding,2001,120(3):197-200.
    107 Rahman M. H., Joersbo M., Poulsen M. H.. Development of yellow-seeded Brassica napus of double low quality. Plant breeding,2001,120(6):473-478.
    108牛应泽,刘玉贞,汪良中等.人工合成甘蓝型油菜特长角突变系的选育初报.四川农业大学学报,2002,20(3):212-215.
    109 Zhang B., Lu C. M., Kakihara F., et al. Effect of genome composition and cytoplasm on petal colour in resynthesized amphidiploids and sesquidiploids derived from crosses between Brassica rapa and Brassica oleracea. Plant breeding,2002,121(4):297-300.
    110王翊,景尚友,吴刚等.甘蓝型油菜白花性状在杂交油菜育种中的应用.黑龙江农业科学,2003,6:13-15.
    111曹涤环.国内育种动态.河南农业,2003,9:11.
    112于澄宇,胡胜武,张春红等.一种花色突变雄性不育油菜的发现.遗传,2004,26(3):330-332.
    113董育红,田建华,李殿荣等.甘蓝型油菜白花基因的RAPD标记.西北农林科技大学学报,2005,33(10):57-61.
    114刘雪平.人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究.[博士学位论文].武汉,华中农业大学,2005:56-57.
    115 Sun H, Xu C K, Zhang J, et al. Preliminary study of white-flowering germplasm resources in rapeseed(Brassical napus L.). The 12th International Rapeseed Congress volume 1:genetics and breeding:genetics and germplasm,, Science Press USA Inc.,2007:358-359.
    116 Tian L S, Jiang G F, Niu Y Z, et al. Preliminary Study on Inheritance of an Artificially Resynthesized White Flower Line in Brassica napus L.. The 12th International Rapeseed Congress volume 1:genetics and breeding:genetics and germplasm, Science Press USA Inc.,2007:302-305.
    117程辉,王友华,胡建涛等.甘蓝型油菜“白花+隐性核不育”两型系2512AB的选育研究.河南农业科学,2009,38(10):73-76.
    118文雁成,张书芬,王建平等.甘蓝型油菜白花性状的遗传学研究和白花胞质雄性不育系的选育.中国农学通报,2010,26(1):95-97.
    119 Ginette Seguin-Swartz, Suzanne I. Warwick, Rachael Scarth. Cruciferae:Compendium of Trait Genetics, Minister of Supply and Services,Canada,1997:29-38.
    120刘后利.油菜遗传育种研究的新成就和新进展.中国农学通报,1993,9(4):1-5.
    121刘雪平,涂金星,陈宝元.人工合成甘蓝型油菜中花色与芥酸含量的遗传连锁分析.遗传学报,2004,31(4):357-362.
    122 Goodwin T W. The biochemistry of the carotenoids, Vol.1, pants,2nd ed. London:Chapman and Hall,1980.
    123 Weedon. B C L, Moss, G P. Structure and nomenclature of carotenoids. Pure Appl Chem,1995,41: 407-413.
    124 Isler O. In carotenoids. Isler O. Base:Birkhauser,1971.
    125 Britton G, Liaaen-Jensen S, Pfander H, et al, Carotenoids, Vol.1 A. Isolation and Analysis. Base: Birkhauser,1995.
    126 The official database of Japanese Conference on the Biochemistry of Lipids (JCBL), http://lipidbank.jp/
    127 The Plant Metabolic Network (PMN) Database, http://www.plantcyc.org/
    128 Howitt C.A., Pogson B.J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell and Environment,2006,29:435-445.
    129 Gilmore A M, Govindjee. How higher plants respond to excess light:energy dissipation in photosystem Ⅱ. Concepts in photobiology:Photosynthesis and Photomorphogemsis,New Delhi, India,Norosa Publ.,1999:513-548.
    130 Demmig B, Winter K, Kruger A, et al. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol,1987,84:218-224.
    131 Demmig-Adams B. Carotenoids and photoprotection in plants:A role for the xanthophyll zeaxanthin. Biochim Biophys Acta,1989,1020:1-24.
    132 Gilmore A M, Yamamoto H Y. Linear models relating xanthophylls and lutein acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Plant Cell,1993,35:67-78.
    133 Havaux A, Gruzacki W, Dupont I, et al. Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress. J Photochem photobiol B Biol,1991,8: 361-370.
    134 Gruszecki W I, Strzalka K. Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membranes. Biochem Biophysiol Acta,1991,1060:310-314.
    135 Gruszecki W I, Krupa Z. LHCⅡ, the major light-harvesting pigment-protein complex is a zeaxanthin epoxidase. Biochem biophys Acta,1993,1144(1):97-101.
    136 Krinsky N I. Carotenoids in medicine. In:Carotenoids. Chemistry and Biochemistry. Plenum, New York,1989:279-291.
    137 Matsuno T. Xanthophylls as precursors of retinoids. Pure Appl Chem,1991,63:81-88.
    138韩雅珊.类胡萝卜素功能的研究进展.中国农业大学学报,1999,4(1):5-9.
    139 Ye X, AI-Babili S, Kloti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into(carotenoid-free) rice endosperm. Science,2000,287(5451):303-305.
    140范晓岚,杨军,杨惠等.β-胡萝卜素的抗氧化作用与疾病预防.中国公共卫生,2003,19(4):479-480.
    141王庆伟.类胡萝卜素.的研究进展与临床应用.中国药事,2000,14(1):58-60.
    142马爱国.抗氧化营养素对DNA损伤的保护作用.青岛医学院学报,1996,32(2):95-97.
    143 Bendiah A. Beta-carotene and the immune response. Proc Nutr Soc,1991,50:263-274.
    144赵红霞,詹勇,许梓荣.类胡萝卜素的研究进展.中国饲料,2002(11):10-12.
    145 Mangcls A.R., Holden J.M., et al. Carotenoid content of fruit and vegetables:an evaluation of analytical data. Ann Diet Assoc,1993,93:248-296.
    146丛玲.小麦类胡萝卜素生物合成关键酶基因的克隆与遗传转化研究.[博士学位论文].武汉,华中科技大学,2008.
    147朱蕾.玉米黄色素的分离提取及四种类胡萝卜素测定方法研究.[博士学位论文].北京,中国农业大学,2000.
    148 Reeder, SK, Park, GL. A specific method for determination of provitamin A carotenoids in orange juice. Journal of the Association of Official Analytical Chemists,1975,58(3):595-598.
    149 Rodriguez-Bernaldo de Quiros A, Costa H S. Analysis of carotenoids in vegetable and plasma samples:A review. Journal of Food Composition and Analysis,2006,19:97-111.
    150 Marsili, R., Callahan, D. Comparison of a liquid solvent extraction technique and supercritical fluid extraction for the determination of a-and B-carotene in vegetables. Journal of Chromatogrphic Sciences,1993,31:422-428.
    151 Vagi, E., Simandi, B., Daood, H.G., et al. Recovery of pigments from Origanum majorana L. by extraction with supercritical carbon dioxide. Journal of Agricultural and Food Chemistry,2002,50: 2297-2301.
    152 Careri, M., Furlattini, L., Mangia, A., et al. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae:a chemometric approach. Journal of Chromatography,2001,912:61-71.
    153 Porter J W, Lincoln R E. Lycopersicon selections containing a high content of carotenes and colorless polyenes.Ⅱ. The mechanism of carotene biosynthesis. Arch Biochem Biophys,1950,27(3): 390-403.
    154 Armstrong G A, Alberiti M, Leach F, et al. Nucleotide sequence, organization and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet,1989,216(3):254-268.
    155 Bird C R, Ray J A, Fletcher J D, et al. Using antisense RNA to study gene function:inhibition of carotenoid biosynthesis in transgenic tomatoes. Nature Biotechnology,1991,9(7):635-639.
    156 Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J,1996,15(10):2331-2342.
    157 Romer S, Hugueney P, Bouvier B, et al. Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochem Biophys Res Commun,1993,196(3):1414-1421.
    158 Mann V, Pecker I, Hirschberg J. Cloning and characterization of the gene for phytoene desaturase (Pds) from tomato (Lycopersicon esculentum). Plant Mol Biol,1994,24(3):429-434.
    159 Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J,1999,17(4):341-351.
    160 Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell,2002,14 (2):333-342.
    161 Park H, Kreunen S S, Cuttriss A J, et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis. Plant Cell,2002, 14(2):321-332.
    162 Cunningham F X Jr, Pogson B, Sun Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell,1996,8(9):1613-1626.
    163 Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol,2001,45(3):281-293.
    164 Cunningham F X Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583.
    165 Armstrong G A. Eubacteria showed their true colors:genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol,1994,176:4795-4802.
    166 Kuntz M, Romer S, Suire C, et al. Identification of cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum:correlative increase in enzyme activity and transcript level during fruit ripening. Plant J,1992,2(1):25-34.
    167 Zhu C F, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol Biol,2002,8(3):277-285.
    168 Kajiwara S, Fraser P D, Kondo K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherchia coli. Biochem J,1997,324:421-426.
    169 Dogbo O, Camara B. Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochem Biophys. Acta,1987,920:140-148.
    170 The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815.
    171 Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol, 2000,122:1045-1056.
    172 Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J,1992,2(4):343-349.
    173 Fraser P D, Truesdale M R, Bird C R, et al. Carotenoid biosynthesis during tomato fruit development:Evidence for tissue-specific gene expression. Plant Physiol,1994,105(1):405-413.
    174 Shewmaker C K, Sheehy J A, Daley M, et al. Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J,1999,20(4):401-412.
    175 Fraser P D, Schuch W, Bramley P M. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts-partial purification and biochemical properties. Planta,2000,211:361-369.
    176 Pecker I, Gabbay R, Cunningham F X Jr, et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol,1996,30(4):807-819.
    177 Zhu C, Yamamura S, Nishihara M, et al. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta,2003,1625 (3):305-308.
    178 van Vliet T, van Schaik F, Schreurs W H, et al. In vitro measurement of β-carotene cleavage activity:methodological considerations and the effect of other carotenoids on B-carotene cleavage. Int J Vitam Nutr Res,1996,66(1):77-85.
    179 Von Lintig J, Wyss A. Molecular analysis of vitamin A formation:cloning and characterization of β-carotene 15,15'-dioxygenase. Arch Biochem Biophys,2001,385(1):47-52.
    180 Tian L, Musetti V, Kim J, et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA,2004,101(1):402-407.
    181 Bouvier F, Keller Y, d'Harlingue A, et al. Xanthophyll biosynthesis:molecular and functional characterization of carotenoid hydroxylase from pepper fruits(Capsicum annuum L.). Biochim Biophys Acta,1998,1391(3):320-328.
    182 Sun Z, Gantt E, Cunningham FX. Cloning and functional analysis of the B-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem,1996,271(40):24349-24352.
    183 Bugos R C, Yamamoto H Y. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci USA,1996,93(13):6320-6325.
    184 Yamamoto H Y. Xanthophyll cycles. Method Enzymol,1985,110:303-312.
    185 Al-Babili A, Hugueney P, Schledz M, et al. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett,2000,485(2-3):168-172.
    186 Schwartz S H, Tan B C, Gage D A, et al. Specific oxidative cleavage of carotenoids by VP14 of maize. Science,1997,276(5320):1872-1874.
    187 Ravanello M P, Dangyang K, Julie A, et al. Coordinate expression multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng,2003,5:255-263.
    188 Burkhardt P K, Beyer P, Wunn J, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J,1997,11(5):1071-1078.
    189 Paine J A, Shiptonl C A, Chaggarl S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology,2005,23:482-487.
    190 Romer S, Fraser P D, Kiano J W, et al. Elevation of the provitamin A content of transgenic tomato plant. Nature Biotechnology,2000,18(6):666-669.
    191徐昌杰,陈昆松,张上隆等.甜橙卜胡萝卜素经化酶cDNA克隆及其瞬间反义表达.农业生物技术学报,2003,11(6):593-597.
    192 Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J,2000,24(3):413-420.
    193 Romer S, Lubeck J, Kauder F, et al. Genetic engineering of a Zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Meta Eng,2002,4(4):263-272.
    194 Fray R G, Wallace A, Fraser P D, et a 1. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J,1995,8(5):693-701.
    195 Dharmapuri S, Rosati, Pallara P, et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett,2002,519(1-3):30-34.
    196 Ducreux L J M, Morris W, Hedley P E, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of B-carotene and lutein. J. Exp. Bot,2005,56(409):81-89.
    197梁燕,王鸣,陈杭等.茄红索-β-环化酶反义RNA基因对烟草的遗传转化.西北农林科技大学学报,2003,31(3):73-76.
    198 Misawa N, Yamano S, Linden H, et al. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Plant J,1993,4(5):833-840.
    199 Suzuki S, Nishihara M, Misawa N, et al. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep,2007,26(7):951-959.
    200 Galpaz N, Ronen G, Khalfa Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell,2006,18(8):1947-1960.
    201 Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol,2001,45(3):281-293.
    202方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2000.
    203瞿虎渠,王健康.应用数量遗传.北京:中国农业科学技术出版社,2007.
    204孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2006.
    205徐云碧.分子数量遗传学.北京:中国农业大学出版社,1994.
    206荣廷昭,潘光堂,黄玉碧.数量遗传学.北京:中国科学技术出版社,2003.
    207 Tanksley S D. Mapping polygenes. Annu Rev. Genet,1993,27:203-233.
    208 Keightley P D, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res,1993,62(3):195-203.
    209 Moreno-Gonzalez J. Genetics models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor Appl Genet,1992,85:435-444.
    210 Soller M, Beckmann J S. Marker-based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet,1990,67:25-33.
    211 Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134:1277-1288.
    212吴为人,李维明.基于性状-标记回归的QTL区间检测方法.遗传,2001,23(2):143-146.
    213 Lander E S, Green P, Abrahamson J, et al. MAP MAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987, 1(2):174-181.
    214 Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA,1993,90(23):10972-10976.
    215 Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL ×environment interactions by mixed linear model approaches. Theoretical and Applied Genetics,1999,99(7-8): 1255-1264.
    216 Zhu J, Weir B S. Mixed model approaches for genetic quantitative traits. In:Chen L S, Ruan S G, Zhu J(eds) Advanced Topics in Biomathematics:Proceedings of international Conference on mathematical Biology. Singapore:World Scientific publishing Co,1998,321-330.
    217高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    218 Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (Brassica napus) II: localization of genes controlling emcic acid synthesis and seed oil content. Theoretical and Applied Genetics,1995,91:972-977.
    219 Cheung W Y, Landry B S, Raney P. Molecular mapping of seed quality traits in Brassica juncea L. Czern And Cross. Acta Hort,1998,459:139-147.
    220 Cheung W Y, Gugel R K, Landry B S. Identification of RFLP markers linked to the white rust resistance gene (Acr) in Mustard. Genome,1998,41:626-628.
    221刘列钊.甘蓝型黄籽油菜种皮色泽相关基因的差异显示和QTL定位研究.[博士学位论文],重庆,西南农业大学,2003.
    222刘列钊,林呐,谌利等.甘蓝型油菜5个重要性状QTL分析.农业生物技术学报,2006,14(5):747-751.
    223 Zhao J Y, Becker H C, Zhang D Q, et al. Oil content in an European and Chinese rapeseed population:QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science,2005,45:51-59.
    224 Zhao J Y, Zoran D, Becker H C, et al. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Molecular Breeding,2008,21: 115-125.
    225邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文],武汉,华中农业大学,2007.
    226 Qiu D, Morgan C, Shi J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics,2006,114:67-80.
    227 Burns M J, Barnes S R, Bowman J G, et al. QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) Seed oil content and fatty acid composition. Heredity,2003,90:39-48.
    228张洁夫,戚存扣,浦惠明等.甘蓝型油菜含油量的遗传与QTI定位.作物学报,2007,33(9):1495-1501.
    229张洁夫,戚存扣,浦惠明等.甘蓝型油菜主要脂肪酸组成的QTL定位.作物学报,2008,34(1):54-60.
    230付福友.甘蓝型油菜遗传图谱的构建和品质相关性状QTL分析.[博士学位论文],重庆:西南大学,2007.
    231梅德圣,张垚,李云昌等.油菜油分、蛋白质和硫苷含量相关性分析及QTL定位.植物学报,2009,44(5):536-545.
    232邵玉锁,倪西源,黄吉祥等.利用BC3F1群体定位和分析甘蓝型油菜A7-含油量QTL.中国农业科学,2010,43(1):20-28.
    233 Jin M Y, Li J N, Fu F Y, et al. QTL Analysis of the oil contentand the hull content in Brassica napus L.. Agricultural Sciences in China,2007,6(4):414-421.
    234 Cao Z Y, Tian F, Wang N et al. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. Journal of Genetics and Genomics,2010,37(4):231-240.
    235李超,李波,曲存民等.两种环境下甘蓝型油菜含油量的差值QTL分析.作物学报,2011,37(2):249-254.
    236 Zhao J, Becker H C, Zhang D Q, et al. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics,2006,113:33-38.
    237刘雪平,涂金星,刘志文等.甘蓝型油菜遗传图谱的构建及芥酸含量的QTL分析.作物学报,2005,31(3):275-282.
    238 Liu X P, Tu J X, Liu Z W, et al. Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. Acta Agronomica Sinica,2005,31(3): 275-282.
    239 Howell P M, Lydiate D J, Marshall D F. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome,1996,39:348-358.
    240 Thormann C E, Romero J, Mantet J, et al. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L.. Theoretical and Applied Genetics,1996,93: 282-286.
    241 Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brass'ca napus genome. Genome,2003,46(2):291-303.
    242王峰,官春云.甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析.遗传,2010,32(3):271-277.
    243易斌,陈伟,马朝芝等.甘蓝型油菜产量及相关性状的QTL分析.作物学报,2006,132(5):676-682.
    244张书芬,傅廷栋,朱家成等.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135-1142.
    245 Shen J X, Fu T D, Yang G S, et al. Prediction of heterosis using QTLs for yield traits in rapeseed (Brassica napus L.). Euphytica,2006,151:165-171.
    246 Li Y Y, Shen J X, Wang T H, et al. QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Australian Journal of Agricultural Research,2007,58: 759-766.
    247 Kole C, Thormann C E, Karlsson B H, et al. Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Molecular Breeding,2002,9(3): 201-210.
    248刘春林,官春云,李栒等.油菜分子标记图谱构建及抗菌核病性状的QTI定位.遗传学报,2000,27(10):918-924.
    249 Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theoretical and Applied Genetics,2003,106(4): 759-764.
    250尹向锐.甘蓝型油菜抗菌核病QTL的定位和分析.[硕士学位论文],武汉:华中农业大学,2007.
    251 Manzanares-Dauleux M J, Delourme R, Baron F, et al. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theoretical and Applied Genetic,2000,101 (5-6):885-891.
    252 Susanne W, Elke D, Martin F, et al. Genetic mapping of clubroot resistance genes in oilseed rape. The 12th international rapeseed congress. Ⅱ.Sustainable development in cruciferous oilseed crops production,USA:Science Press USA Inc,2007:30-33.
    253 Pilet M L, Delourme R, Foisset N, et al. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics,1998,97(3):398-406.
    254 Pilet M I, Duplan G, Archipiano H, et al. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Science,2001,41:197-205.
    255 Wang Z N, Sun Z D, Li G Y, et al. Fine mapping and cloning of the LepR3 blackleg (Leptosp-haeris maculans) resistance gene in "Surpass 400". The 12thinternational rapeseed congress. Ⅱ.Sustainable development in cruciferous oilseed crops production. USA:Science Press USA Inc,2007:226-228.
    256顾慧,戚存扣.甘蓝型油菜(Brassica napus L.)抗倒伏性状的QTL分析.江苏农业学报,2009,25(3):484-489.
    257张文华.甘蓝型油菜抗倒伏相关性状的遗传分析和QTL定位.[硕士学位论文],武汉:华中农业大学,2010.
    258韩毅强,段海燕,王运华等.甘蓝型油菜磷营养高效种质的筛选与QTL定位.见:吕世华,朱波,编.第九届中国青年土壤科学工作者学术讨论会暨第四届中国青年植物营养与肥料科学工作者学术讨论会论文集.成都.中国土壤学会,2004.
    259韩毅强,段海燕,王运华等.甘蓝型油菜磷营养高效种质的筛选与QTL定位.西南农业学报,2004,17(增刊):220-223.
    260杨美.甘蓝型油菜根系形态对低磷胁迫的反应及其QTL分析.[博士学位论文],武汉:华中农业大学,2010.
    261 Xu F S, Wang Y H, Meng J. Mapping boron eficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding,2001,120(4):319-324.
    262 Samija A, Wolfgang E, Heiko C, et al. QTL analysis of phytosterol content in rapeseed(Brassica napus L.). in:Fu T D.Guan C Y. eds. The 12th international rapeseed congress. Ⅰ. Sustainable crops production-Genetics and breeding, Wuhan:Science Press USA Inc,2007:247-250.
    263梅德圣.甘蓝型油菜株高和开花时间的QTL定位及黄籽性状的分子标记.[博士学位论文],武汉:华中农业大学,2004.
    264龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文],武汉:华中农业大学,2007.
    265阎星颖,李加纳,金梦阳等.甘蓝型油菜角果皮叶绿素含量的QTL分析.中国油料作物学报,2009,31(3):269-273.
    266黄杰恒,徐新福,曲存民等.甘蓝型油菜种胚叶绿素含量的QTL定位.植物遗传资源学报,2010,11(6):766-771.
    267马爱芬,王雯,李加纳等.甘蓝型油菜种子发芽率QTL定位及相关生理性状.遗传,2009,31(2):206-212.
    268冯发强.甘蓝型油菜种子胎萌的遗传与QTL定位.[博士学位论文],武汉:华中农业大学,2009.
    269张洁夫,戚存扣,栗根义等.甘蓝型油菜遗传图谱构建与无花瓣性状QTI定位.作物学报,2007,33(8):1246-1254.
    270 Chen B Y, Wu X M, Lu G Y, et al. Inheritance of two rapeseed mutants with apetalous flowers and molecular mapping of the genes controlling petal-loss traits in Brassica napus L.. in:Fu T D, Guan C Y, EdS. The 12th international rapeseed congress. I. Sustainable Crops Production. Wuhan: Science Press USA Inc,2007:313-315.
    271张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略.生物工程进展,2000,20(4):3-5.
    272 Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science,1985,230(4732):1350-1354.
    273 Lindberg A M, Polacek C, Johansson S. Amplification and cloning of complete enterovirus genomes by long distance PCR. J Virol Methods,1997,65(2):191-199.
    274刘阳.甘蓝型油菜突变体Cr3529抑制性反向消减文库的构建和BnCr4基因全长cDNA的克隆.[硕士学位论文],成都:四川大学,2005.
    275李小艳.甘蓝型油菜矮化突变体“NDF-1”抑制性消减文库的构建和BnD5、BnDll基因全长cDNA的克隆.[硕士学位论文],成都:四川大学,2006.
    276许本波,谢伶俐,严寒等.RACE方法在甘蓝型油菜基因克隆中的应用.河南农业科学,2007,36(9):45-47,51.
    277王敏培.甘蓝型油菜(Brassica napus)异胡豆苷合成酶基因cDNA及其启动子的克隆与分析.[硕士学位论文],成都:四川大学,2007.
    278王敏培,周云涛,王茂林等.甘蓝型油菜异胡豆苷合成酶(Strictosidine synthase)cDNA的克隆与分析.四川大学学报(自然科学版),2008,45(5):1277-1280.
    279田振东,柳俊,谢从华等cDNA文库与RACE方法结合克隆一个马铃薯病程相关蛋白基因cDNA遗传学报,2003,30(11):996-1002.
    280李广存,金黎平,王晓武等cDNA文库与RACE方法结合克隆马铃薯DnaJ-like基因全长cDNA园艺学报,2007,34(3):649-654.
    281鲁国东,王宗华,郑学勤等cDNA文库和PCR技术相结合的方法克隆目的基因.农业生物技术学报,1998,6(3):257-261.
    282刘伟,孙海峰,郭小青等RACE法在连翘花蕾全长cDNA文库构建中的应用.山西医科大学学报,2009,40(10):902-905.
    283刘光德,雷兴华,祝钦泷等.金荞麦二氢黄酮醇4-还原酶基因(FdDFR1)的克隆及序列分析.中国农业科学,2009,42(1):55-63.
    284陈大明.胡萝卜茄红素B-和e-环化酶及辣椒红/辣椒玉红素合酶基因的分离及特性研究.[博士后论文],北京:中国科学院,2001.
    285 Carney J P, McKnight C, VanEpps S, et al. Random rapid amplification of cDNA ends (RRACE) allows for cloning of multiple novel human cDNA fragments containing (CAG)n repeats. Gene, 1995,155(2):289-292.
    286 Klein M, Pieri I, Uhlmann F, et al. Cloning and characterization of promoter and 5'-UTR of the NMDA receptor subunit 2:evidence for alternative splicing of 5'-non-coding exon. Gene,1998,208 (2):259-269.
    287汪良中,刘玉贞.甘蓝型油菜的合成.西南农业学报,1992,5(3):12-17.
    288田露申.人工合成甘蓝型油菜白花性状的遗传研究.[硕士学位论文],雅安:四川农业大学,2007.
    289韩晓军,苗长云,王亚青等.基于标准图像文件格式的数字图像处理方法.辽宁工程技术大学学报(自然科学版),2000,19(5):516-518.
    290张玉霞,高复兴,曹启亮等.油菜花中黄色素的提取及稳定性研究.信阳师范学院学报(自然科学版),2001,14(1):101-103.
    291杨政水,罗显华,黄静.油菜花色素的稳定性研究.食品研究与开发,2005,26(6):122-124.
    292盖钧镒,王建康,章元明.植物数量性状遗传体系.北京:科学出版社,2003.
    293高之仁.数量遗传学.成都:四川大学出版社,1986.
    294章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000,26(6):699-706.
    295魏听,李丽华,王娟等.玉米丝裂病发生的数量遗传分析.中国农业科学,2008,41(8):2235-2240.
    296李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因-多基因混合遗传分析.遗传,2006,28(4):458-462.
    297罗晓梅,司龙亭,尹维娜.黄瓜黄色线与瓜长比的主基因+多基因的遗传分析.华北农学报,2008,23(2):88-91.
    298 Kianian S F, Quiros C F. Trait inheritance, fertility, and genomic relationships of some n= 9 Brassica species. Genetic Resources and Crop Evolution,1992,39:165-175.
    299 Zhang B, Lu C M, Kakihara F, et al. Effect of genome composition and cytoplasm on petal colour in resynthesized amphidiploids and sesquidiploids derived from crosses between Brassica rapa and Brassica oleracea. Plant Breeding,2002,121:297-300.
    300 Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461.
    301金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状QTL定位.[硕士学位论文],重庆:西南大学,2006.
    302刘仁虎,孟金陵MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321.
    303 Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics,2007,23:1527-1536.
    304 Yang J, Hu C C, Hu H, et al. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics,2008,24:721-723.
    305 Sun Z D, Wang Z N, Tu J X, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theoretical and Applied Genetics.2007,114(8):1305-1317.
    306 Darvasi A, Weinreb A, Minke V, et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics,1993,134:943-951.
    307 Hyne V, Kearsey M J, Pike D J, et al. QTL analysis:unreliability and bias in estimation procedures. Mol Breed,1995,1:273-282.
    308 Charmet G. Power and accuracy of QTL detection:simulation studies of one-QTL models. Agronomie,2000,20:309-323.
    309 Henikoff S, Henikoff J G, Alford W J, et al. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene-COMBIS, Gene,1995,163:17-26.
    310 Rose T M, Schultz E R, Henikoff J G, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research,1998,26(7):1628-1635.
    311 Sambrook J, Fritsch E F, Maniatis T著.金冬雁,黎孟枫等译.分子克隆实验指南,第2版.北京:科学出版社,1992.
    312 Taylor C F, Field D, Sansone S A, et al. Promoting coherent minimum reporting guidelines for biological and biomedical investigations:the MIBBI project. Nature biotechnology,2008,26(8):889-896.
    313 Bustin S A, Benes V, Garson J A, et al. The MIQE Guidelines:Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry,2009,55(4):611-622.
    314 Vandesompele J, Preter K D, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology,2002,3(7): 1-12.
    315 Chen X, Truksa M, Shah S, et al. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus.2010,405(1):138-140.
    316 Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology,2006,142:-1193-1201.
    317 Yamamizo C, Kishimoto S, Ohmiya A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. Journal of Experimental Botany,2010,61(3):709-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700