用户名: 密码: 验证码:
医学CT图像分割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像分割是医学图像处理与分析的基础,该问题的解决不仅直接影响到计算机图形图像技术在医学中成功应用而且有重要的理论和实际意义。医学图像分割是一个提取感兴趣区域的过程,其分割结果可以为随后的疾病诊断、治疗方案规划以及治疗效果评估等提供参考。CT由于具有较高分辨力,能更清晰的彰显解剖结构和病变组织等特点,使其广泛地应用到许多系统的疾病诊断。因此,研究图像分割方法在CT图像中的应用具有非常重要的意义。本文主要针对髋关节、包含胸膜结节的肺部以及肝脏等CT图像进行研究,其目的是构建准确、自动的分割方法为医生的诊断和治疗提供帮助。
     正常的髋关节由股骨头和髋臼两部分组成。在髋关节CT图像中,由于股骨头和髋臼之间连接区域非常狭窄以及一些疾病等原因导致骨密度不均匀,使得准确分割髋关节CT图像变得非常困难。针对上述问题,本文提出一种基于迭代自适应阈值分类和贝叶斯判别分析技术相结合的三维髋关节CT图像自动分割方法。该方法首先利用形态学增强技术提高连接区域与骨组织之间的灰度对比度,在随后过程中,针对阈值分割结果使用基于贝叶斯判别方法的迭代自适应分类最终实现股骨头和髋臼之间的分离。
     由于在上述分割方法中多次使用数学形态学,使得分割出的结果往往被过分光滑而丢失骨边缘的细节;再者,形态学操作依赖于结构元素的选取,选择不同形状或者尺寸的结构元素会对分割结果带来一定的影响。针对上述问题,本文提出一种基于骨曲面顶点法线方向灰度变化的边缘校正算法。通过该校正算法不仅可以实现骨边界体素的准确定位,同时可以得到髋关节的三维可视化结果。实验结果验证了本算法的准确性以及临床适用性。
     由于肺部充满空气,相比于周围组织具有较低密度,因此阈值方法是一种常用的肺部CT图像分割方法。但对于包含胸膜结节的肺部CT图像来说,由于胸膜结节位置以及大小的多变性且与周围组织具有相似的密度,阈值方法难以准确的将其包含;再者靠近纵膈区域的高密度的肺部血管也被阈值方法排除在外导致肺门区域的凸凹不平,传统方法通常采用形态学方法进行光滑,但是形态学过分依赖结构元素的选取。针对上述问题,本文提出一种准确自动的肺部CT图像分割方法和一种有效的肺部边界校正和光滑算法。该方法利用模糊C均值实现肺部的快速自动分割。对于包含胸膜结节或者肺部血管的切片,本文提出一种基于迭代权重平均和自适应曲率阈值相结合的边界修复和光滑算法。该方法可以自动准确检测胸膜结节和肺部血管区域并将其光滑包含在肺部分割结果中。实验结果验证了本算法的快速性以及有效性。
     在肝脏CT图像中,由于腹部器官之间的低对比度、器官病变的存在以及个体之间器官形状的差异,使得传统的仅依赖图像灰度信息的分割方法难以取得较好的肝脏分割结果,传统方法往往容易导致肝脏分割结果的泄露。针对上述问题,本文提出一种基于对比增强CT图像的三维肝脏分割方法。分割方法由训练相和测试相两部分组成。在训练相中,利用主成分分析方法形状训练得到肝脏平均形状强度模型以及在各主成分上的形状变动。对测试集中的每一个目标图像,首先通过与所有图谱进行相似度匹配得到该目标图像的最有可能肝脏区域,随后利用最大化后验概率分类概率地图以及在最有可能肝脏区域应用基于窄带技术的形状强度先验水平集演化方法得到肝脏准确分割结果。实验部分验证了本算法的准确性。
Medical image segmentation is the basis of medical image processing. Solving this problem not only directly affect the successful application of computer graphics technology in medicine but also has important theoretical and practical significance. Medical image segmentation is a process to extract the region of interest and segmentation result can provide a reference for subsequent diagnosis, designment of treatment programms and evaluation of treatment regimens. Due to its higher resolution, sharper highlight anatomical structures and lesions, CT has been widely applied to many systems for disease diagnosis. Therefore, the study of image segmentation method in CT images has very important significance. This paper studies segmentation methods in the hip joint, lungs with juxtapleural nodules and liver CT images, resectively. The aim of this study is to build accurate, automatic segmentation methods to assist the doctor's diagnosis and treatment.
     A normal hip joint is composed of two parts: femoral head and acetabulum. In hip joint CT images, due to the narrow inter-bone space of the connecting area between femoral head and acetabulum and the uneven bone density caused by diseases, it is difficult to segment the femoral head and the acetabulum accurately. In response to these problems, this paper proposes an automatic segmentation method for the hip joint from three-dimentional volumetric CT images, which combines iterative adaptive threshold classification and Bayes discriminant analysis techniques. Our method uses morphological enhancement techniques to highlight the intensity contrast between the connection area and the bone tissue. In the subsequent process, for the segmented results obtained by thresholding, we use iterative adaptive reclassification scheme that is based on Bayes discriminant analysis to achieve the separation of the femoral head and the acetabulum.
     Since the above segmentation method repeatly uses mathematical morphology, this makes the segmented results lose bone details caused by overly smoothing. Moreover, morphological operations depend on the selection of structural elements. Choosing a different shapes or sizes of structural elements will take some influence on segmentation results. In response to these problems, a boundary correction algorithm based on gray changes in the vertex normal direction of bone surface is presented. By the correction algorithm, we can not only locate the bone boundary voxels accurately but also can get three-dimensional visualization results of objects to be segmented. Experimental results demonstrate the accuracy and clinical feasibility of the proposed algorithm.
     As lungs fill with air and have a lower density compared with the surrounding tissue, thresholding is a common method used for lung segmentation. However, for CT images including juxtapleural nodules, due to the variability of the position and size of the juxtapleural nodules and the similarity intensity with surrounding tissue, it is difficult for thresholding to include these juxtapleural nodules accurately. Furthermore, high density pulmonary vessels are also ruled out from the lung area, which bring about indentations and salience in the lung boundary near the mediastinum. Traditionally, mathematical morphology is generally used for smoothing the lung boundary. However, morphology highly relies on the selected structure element. To cope with these problems, we develop an accurate and fully automatic method for segmenting lung boundary in chest CT images and an efficient scheme for smoothing and correcting the segmented lung boundary. The proposed method uses fuzzy c means algorithm to achieve the fast lung segmentation. For the slices containing juxtapleural nodules and pulmonary vessels, a contour correction and smoothing algorithm is proposed which is based on iterative weighted averaging and adaptive curvature threshold. This method can be automatically and accurately detect juxtapleural nodules and pulmonary vessels and smoothly include in the lung segmentation. Experimental results demonstrate the rapidity and effectiveness of the algorithm.
     In liver CT images, due to the low contrast of adjacent organs, the presence of abnormalities and the highly varying shapes between subjects, it is difficult for traditional segmentation methods only relying on gray intensity information to obtain good segmentation results, which often lead to the leakage of liver. In response to these problems, this paper proposes a three-dimensional liver segmentation method from contrast enhancement CT images. The proposed segmentation method contains a training and test phrase. In the training phase, we use principal component analysis method to get the shape-intensity model of the liver as well as the variabilities of shape and intensity on different modes. For each target image in the test phase, the most likely liver region is first obtained by computing the similarities between the atlases and the target image. Then, the precise liver segmentation result is obtained by a maximum a posteriori classification of probability map followed by applying a shape-intensity prior level set segmentation implemented by narrowband technique inside the most likely liver region. Experimental results demonstrate the accuracy of the algorithm.
引文
[1]康晓东.医学影像图像处理[M].北京:人民卫生出版社,2009:5-9.
    [2]田捷,包尚联,周明全.医学影像处理与分析[M].北京:电子工业出版社,2003:1-3.
    [3] Chen H C, Tsai P Y, Huang H H, et al. Registration-based Segmentation ofThree-Dimensional Ultrasound Images for Quantitative Measurement ofFetal Craniofacial Structure[J]. Ultrasound in Medicine&Biology,2012,38(5):811-823.
    [4] Hassanien A E, Moftah H M, Azar A T, et al. MRI Breast Cancer DiagnosisHybrid Approach Using Adaptive Ant-based Segmentation and MultilayerPerceptron Neural Networks Classifier[J]. Applied Soft Computing,2014,14:62-71.
    [5] Pereira D C, Ramos R P, Nascimento M Z. Segmentation and Detection ofBreast Cancer in Mammograms Combining Wavelet Analysis and GeneticAlgorithm[J]. Computer Methods and Programs in Biomedicine,2014,114(1):88-101
    [6] Yushkevich P A, Piven J, Hazlett H C, et al. User-Guided3D Ative CntourSgmentation of Aatomical Sructures: Significantly Improved Eficiency andRliability[J]. Neuroimage,2006,31(3):1116-1128.
    [7] Yang J, Wei C, Zhang L, et al. A Satistical Modeling Aproach for EvaluatingAuto-Segmentation Methods for Image-Guided Radiotherapy[J].Computerized Medical Imaging and Graphics,2012,36(6):492-500.
    [8] Conversano F, Franchini R, Demitri C, et al. Hepatic Vessel Segmentationfor3D Planning of Liver Surgery: Experimental Evaluation of a New FullyAutomatic Algorithm [J]. Academic radiology,2011,18(4):461-470.
    [9]吴恩惠,冯敢生,白人驹,等.医学影像学[M].北京:人民卫生出版社,2003:20-21.
    [10] Biesdorf A, Rohr K, Feng D, et al. Segmentation and Quantification of theAortic Arch Using Joint3D Model-based Segmentation and Elastic ImageRegistration[J]. Medical Image Analysis,2012,16(6):1187-1201.
    [11] Duquette A A, Jodoin P M, Bouchot O, et al.3D Segmentation of AbdominalAorta from CT-Scan and MR Images[J]. Computerized Medical Imaging andGraphics,2012,36(4):294-303.
    [12] Li C, Wang X, Chen J, et al. PET-Guided Liver Segmentation forLow-Contrast CT via Regularized Chan-Vese Model[C]//IEEE-EMBSInternational Conference on Biomedical and Health Informatics (BHI).2012:816-819.
    [13] Nakagomi K, Shimizu A, Kobatake H, et al. Multi-Shape Graph Cuts withNeighbor Prior Constraints and Its Application to Lung Segmentation from aChest CT Volume[J]. Medical image analysis,2013,17(1):62-77.
    [14] Chen Y, Wang Z, Hu J, et al. The Domain Knowledge based Graph-CutModel for Liver CT Segmentation[J]. Biomedical Signal Processing andControl,2012,7(6):591-598.
    [15] Lee M, Cho W, Kim S, et al. Segmentation of Interest Region in MedicalVolume Images Using Geometric Deformable Model[J]. Computers inBiology and Medicine,2012,42(5):523-537.
    [16] Bogovic J A, Prince J L, Bazin P L. A Multiple Object Geometric DformableModel for Image Segmentation[J]. Computer Vision and ImageUnderstanding,2013,117(2):145-157.
    [17] Chan T F, Vese L A. Active Contours without Edges[J]. IEEE Transactionson Image Processing,2001,10(2):266-277.
    [18] Lee J, Kim S, Kim Y S, et al. Automated Segmentation of the LumbarPedicle in CT Images for Spinal Fusion Surgery[J]. IEEE Transactions onBiomedical Engineering,2011,58(7):2051-2063.
    [19] Janc K, Tarasiuk J, Bonnet A S, et al. Genetic Algorithms as a Useful Toolfor Trabecular and Cortical Bone Segmentation[J]. Computer Methods andPrograms in Biomedicine,2013,111(1):72-83.
    [20]李银波,洪波,高上凯,等.人体CT切片图像中骨骼的分割[J].生物医学工程学杂志,2004,21(02):169-173.
    [21] Natsheh A R, Ponnapalli P V S, Anani N, et al. Segmentation of BoneStructure in Sinus CT Images Using Self-Organizing Maps[C]//IEEEInternational Conference on Imaging Systems and Techniques (IST).2010:294-299.
    [22] Vasilache S, van Najarian K. Automated Bone Segmentation from Pelvic CTImages[C]//IEEE International Conference on Bioinformatics andBiomeidcine Workshops.2008:41-47.
    [23] Kang Y, Engelke K, Kalender W A. A New Accurate and Precise3-DSegmentation Method for Skeletal Structures in Volumetric CT Data[J].IEEE Transactions on Medical Imaging,2003,22(5):586-598.
    [24] Zoroofi R A, Sato Y, Sasama T, et al. Automated Segmentation ofAcetabulum and Femoral Head from3-D CT Images[J]. IEEE Transactionson Information Technology in Biomedicine,2003,7(4):329-343.
    [25] Sato Y, Nakajima S, Shiraga N, et al. Three-Dimensional Multi-Scale LineFilter for Segmentation and Visualization of Curvilinear Structures inMedical Images[J]. Medical image analysis,1998,2(2):143-168.
    [26] Lin P L, Huang P W, Kuo C H, et al. A Size-Insensitive Integrity-basedFuzzy C-Means Method for Data Clustering[J]. Pattern Recognition,2013,47(5):2042-2056.
    [27]张保威,钱慎一,宋宝卫.改进FCM在医学图像分割中的应用[J].计算机工程,2012,38(14):193-195.
    [28] Lee S, Crawford M M. Unsupervised Multistage Image Classification UsingHierarchical Clustering with a Bayesian Similarity Measure[J]. IEEETransactions on Image Processing,2005,14(3):312-320.
    [29] Kim E, Li H, Huang X. A Hierarchical Image Clustering CosegmentationFramework[C]//IEEE Conference on Computer Vision and PatternRecognition (CVPR).2012:686-693.
    [30] Wang D, Lu H, Zhang J, et al. A Knowledge-based Fuzzy Clustering Methodwith Adaptation Penalty for Bone Segmentation of CT Images[C]//27thAnnual International Conference of the Engineering in Medicine andBiology Society.2005:6488-6491.
    [31] Zhang J, Yan C H, Chui C K, et al. Fast Segmentation of Bone in CT ImagesUsing3D Adaptive Thresholding[J]. Computers in Biology and Medicine,2010,40(2):231-236.
    [32] Umesh Adiga P S, Chaudhuri B B. An Efficient Method based on Watershedand Rule-based Merging for Segmentation of3-D Histo-PathologicalImages[J]. Pattern Recognition,2001,34(7):1449-1458.
    [33] Grau V, Mewes A U J, Alcaniz M, et al. Improved Watershed Transform forMedical Image Segmentation Using Prior Information[J]. IEEE Transactionson Medical Imaging,2004,23(4):447-458.
    [34] Bieniek A, Moga A. An Efficient Watershed Algorithm based on ConnectedComponents[J]. Pattern Recognition,2000,33(6):907-916.
    [35] Hamarneh G, Li X. Watershed Segmentation using Prior Shape andAppearance Knowledge[J]. Image and Vision Computing,2009,27(1):59-68.
    [36] Yang H, Ahuja N. Automatic Segmentation of Granular Objects in Images:Combining Local Density Clustering and Gradient-Barrier Watershed[J].Pattern Recognition,2013.47(6):2266-2279
    [37] Vasilache S, van Najarian K. A Unified Method based on Wavelet Filteringand Active Contour Models for Segmentation of Pelvic CTimages[C]//ICME International Conference on Complex MedicalEngineering.2009:1-5.
    [38] Li S, Cui X, Naw C T J, et al. Label-Guided Snake for Bone Segmentationand Its Application on Medical Rapid Prototyping[C]//IEEE InternationalConference on Systems, Man, and Cybernetics (SMC).2011:752-757.
    [39] Sebastian T B, Tek H, Crisco J J, et al. Segmentation of Carpal Bones fromCT Images Using Skeletally Coupled Deformable Models[J]. Medical ImageAnalysis,2003,7(1):21-45.
    [40] Kim Y, Kim D. A Fully Automatic Vertebra Segmentation Method Using3DDeformable Fences[J]. Computerized Medical Imaging and Graphics,2009,33(5):343-352.
    [41] Truc P T H, Kim T S, Lee S, et al. A Study on the Feasibility of ActiveContours on Automatic CT Bone Segmentation[J]. Journal of DigitalImaging,2010,23(6):793-805.
    [42] Calder J, Tahmasebi A M, Mansouri A R. A Variational Approach to BoneSegmentation in CT Images[C]//SPIE Medical Imaging. InternationalSociety for Optics and Photonics,2011:79620B-79620B-15.
    [43] Lim P H, Bagci U, Aras O, et al. A Novel Spinal Vertebrae SegmentationFramework Combining Geometric Flow and Shape Prior with Level SetMethod[C]//9th IEEE International Symposium on Biomedical Imaging(ISBI).2012:1703-1706.
    [44] Truc P T H, Lee S, Kim T S. A Density Distance Augmented Chan-VeseActive Contour for CT Bone Segmentation[C]//30th Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society.2008:482-485.
    [45] Klinder T, Ostermann J, Ehm M, et al. Automated Model-based VertebraDetection, Identification, and Segmentation in CT Images[J]. Medical ImageAnalysis,2009,13(3):471-482.
    [46] Lamecker H, Seebass M, Hege H C, et al. A3D Statistical Shape Model ofthe Pelvic Bone for Segmentation[C]//Proceedings of SPIE on MedicalImaging: Image Processing,2004:1341-1351.
    [47] Song W, Li G, Ou Z, et al. Model-based segmentation of Femoral Head andAcetabulum from CT Images[C]//IEEE/ICME International Conference onComplex Medical Engineering.2007:586-590.
    [48] Song W, Cao S, Zhang H, et al.3D-SSM based Segmentation of ProximalFemur from Hip Joint CT Data[M]//Advanced Research on ComputerScience and Information Engineering. Berlin Heidelberg: Springer,2011:194-199.
    [49] Yokota F, Okada T, Takao M, et al. Automated Segmentation of the Femurand Pelvis from3D CT Data of Diseased Hip Using Hierarchical StatisticalShape Model of Joint Structure[M]//Medical Image Computing andComputer-Assisted Intervention–MICCAI2009. Berlin Heidelberg: Springer,2009:811-818.
    [50] Ma J, Lu L, Zhan Y, et al. Hierarchical Segmentation and Identification ofThoracic Vertebra Using Learning-based Edge Detection and Coarse-to-FineDeformable Model[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2010. Berlin Heidelberg: Springer,2010:19-27.
    [51] Wu J, Davuluri P, Ward K, et al. A New Hierarchical Method forMulti-Level Segmentation of Bone in Pelvic CT Scans[C]//AnnualInternational Conference of the IEEE Engineering in Medicine and BiologySociety.2011:3399-3402.
    [52] Otomaru I, Nakamoto M, Kagiyama Y, et al. Automated PreoperativePlanning of Femoral Stem in Total Hip Arthroplasty from3D CT Data:Atlas-based Approach and Comparative Study[J]. Medical Image Analysis,2012,16(2):415-426.
    [53] Ehrhardt J, Handels H, Malina T, et al. Atlas-based Segmentation of BoneStructures to Support the Virtual Planning of Hip Operations[J].International Journal of Medical Informatics,2001,64(2):439-447.
    [54] Tseng L Y, Huang L C. An Adaptive Thresholding Method for AutomaticLung Segmentation in CT Images[C]//AFRICON.2009:1-5.
    [55] Lei C, Xiaojian L, Jie Z, et al. Automated Lung Segmentation Algorithm forCAD System of Thoracic CT[J]. Journal of Medical Colleges of PLA,2008,23(4):215-222.
    [56]曹蕾,占杰,余晓锷,等.基于自动阈值的CT图像快速肺实质分割算法[J].计算机工程与应用,2008,44(12):178-181.
    [57] Hu S, Hoffman E A, Reinhardt J M. Automatic Lung Segmentation forAccurate Quantitation of Volumetric X-Ray CT Images[J]. IEEETransactions on Medical Imaging,2001,20(6):490-498.
    [58] Shi Z, Zhou P, He L, et al. Lung Segmentation in Chest Radiographs byMeans of Gaussian Kernel-based FCM with Spatial Constraints[C]//SixthInternational Conference on Fuzzy Systems and Knowledge Discovery.2009,3:428-432.
    [59] Zhang Y, Wu S, Yu G, et al. A Hybrid Image Segmentation Approach UsingWatershed Transform and FCM[C]//Fourth International Conference onFuzzy Systems and Knowledge Discovery.2007,4:2-6.
    [60]徐宇峰,周学海,谢铉洋.一种基于活动轮廓模型的肺部轮廓提取算[J].计算机应用,2005,25(5):1087-1089.
    [61] Meng L, Zhao H. Interactive Lung Segmentation Algorithm for CT ChestImages Based on Live-Wire Model and Snake Model[C]//InternationalConference on Electronic Computer Technology.2009:461-466.
    [62] Meng L, Zhao H. A New Lung Segmentation Algorithm for Pathological CTImages[C]//International Joint Conference on Computational Sciences andOptimization.2009,1:847-850.
    [63] Pu J, Paik D S, Meng X, et al. Shape “Break-and-Repair” Strategy and ItsApplication to Automated Medical Image Segmentation[J]. IEEETransactions on Visualization and Computer Graphics,2011,17(1):115-124.
    [64] Sluimer I, Schilham A, Prokop M, et al. Computer Analysis of ComputedTomography Scans of the Lung: a Survey[J]. IEEE Transactions on MedicalImaging,2006,25(4):385-405.
    [65]袁克虹,向兰茜.用于计算机辅助诊断的肺实质自动分割方法[J].清华大学学报(自然科学版),2011,1:90-95.
    [66] Armato S G, Giger M L, Moran C J, et al. Computerized Detection ofPulmonary Nodules on CT Scans[J]. Radiographics,1999,19(5):1303-1311.
    [67] Kim D Y, Kim J H, Noh S M, et al. Pulmonary Nodule Detection UsingChest CT Images[J]. Acta Radiologica,2003,44(3):252-257.
    [68] Gurcan M N, Sahiner B, Petrick N, et al. Lung Nodule Detection onThoracic Computed Tomography Images: Preliminary Evaluation of aComputer-Aided Diagnosis System[J]. Medical Physics,2002,29(11):2552-2558.
    [69] Bellotti R, De Carlo F, Gargano G, et al. A CAD System for NoduleDetection in Low-Dose Lung CTs based on Region Growing and a NewActive Contour Model[J]. Medical Physics,2007,34(12):4901-4910.
    [70] Pu J, Roos J, Yi C A, et al. Adaptive Border Marching Algorithm: AutomaticLung Segmentation on Chest CT Images[J]. Computerized Medical Imagingand Graphics,2008,32(6):452-462.
    [71] Varshini P R, Baskar S, Alagappan S. An Improved Adaptive BorderMarching Algorithm for Inclusion of Juxtapleural Nodule in LungSegmentation of CT-Images[M]//Wireless Networks and ComputationalIntelligence. Berlin Heidelberg: Springer,2012:230-235.
    [72] Sluimer I, Prokop M, van Ginneken B. Toward Automated Segmentation ofthe Pathological Lung in CT[J]. IEEE Transactions on Medical Imaging,2005,24(8):1025-1038.
    [73] Sun S, Bauer C, Beichel R. Automated3-D Segmentation of Lungs withLung Cancer in CT Data using a Novel Robust Active Shape ModelApproach[J]. IEEE Transactions on Medical Imaging,2012,31(2):449-460.
    [74] Yim Y, Hong H. Correction of Segmented Lung Boundary for Inclusion ofPleural Nodules and Pulmonary Vessels in Chest CT Images[J]. Computersin Biology and Medicine,2008,38(8):845-857.
    [75] Yim Y, Hong H, Beom Seo J, et al. Correction of Lung Boundary Using theGradient and Intensity Distribution[J]. Computers in Biology and Medicine,2009,39(3):239-250.
    [76] van Rikxoort E M, de Hoop B, Viergever M A, et al. Automatic LungSegmentation from Thoracic Computed Tomography Scans Using A HybridApproach with Error Detection[J]. Medical Physics,2009,36(7):2934-2947.
    [77] Ukil S, Reinhardt J M. Smoothing Lung Segmentation Surfaces in3DX-Ray CT Images Using Anatomic Guidance[C]//Proceedings of SPIEMedical Imaging: Image Processing,2004:1066-1075.
    [78] Jae-Sung H, Kaneko T, Sekiguchi R, et al. Automatic Liver TumorDetection from CT[J]. IEICE Transactions on Information and Systems,2001,84(6):741-748.
    [79]宋红,张春萌,黄小川,等.腹部CT图像序列中的肝脏分割[J].哈尔滨工业大学学报,2013,09:82-87.
    [80] Campadelli P, Casiraghi E, Esposito A. Liver Segmentation from ComputedTomography Scans: A Survey and A New Algorithm[J]. ArtificialIntelligence in Medicine,2009,45(2):185-196.
    [81] Ruskó L, Bekes G, Fidrich M. Automatic Segmentation of the Liver fromMulti-and Single-Phase Contrast-Enhanced CT Images[J]. Medical ImageAnalysis,2009,13(6):871-882.
    [82] Zhan P, Fa L, Shi Z, et al. The Segmentation of Liver and Vessels in CTImages Using3D Hierarchical Seeded Region Growing[C]//IEEEInternational Conference on Computer Science and Automation Engineering(CSAE).2011,2:264-269.
    [83]彭丰平,鲍苏苏,曾碧卿.基于自适应区域生长算法的肝脏分割[J].计算机工程与应用,2010,46(33):198-200.
    [84] Beck A, Aurich V. Hepatux–A Semiautomatic Liver Segmentation System[J].3D Segmentation in the Clinic: A Grand Challenge,2007:225-233.
    [85] Foruzan A H, Zoroofi R A, Hori M, et al. A Knowledge-based Technique forLiver Segmentation in CT Data[J]. Computerized Medical Imaging andGraphics,2009,33(8):567-587.
    [86] Susomboon R, Raicu D S, Furst J. A Hybrid Approach for LiverSegmentation[C]//Proceedings of MICCAI workshop on3D Segmentation inthe Clinic: A Grand Challenge.2007:151-160.
    [87] Li C, Wang X, Li J, et al. Joint Probabilistic Model of Shape and Intensityfor Multiple Abdominal Organ Segmentation From Volumetric CT Images[J].IEEE Journal of Biomedical and Health Informatics,2013,17(1):92-102.
    [88] van Rikxoort E, Arzhaeva Y, van Ginneken B. Automatic Segmentation ofthe Liver in Computed Tomography Scans with Voxel Classification andAtlas Matching[C]//Proceeding MICCAI Workshop.2007:101-108.
    [89] Furukawa D, Shimizu A, Kobatake H. Automatic Liver SegmentationMethod based on Maximum A Posterior Probability Estimation and LevelSet Method[J].3D Segmentation in the Clinic: A Grand Challenge,2007:117-124.
    [90] Selver M A. Segmentation of Abdominal Organs from CT using aMulti-Level, Hierarchical Neural Network Strategy[J]. Computer Methodsand Programs in Biomedicine,2014,113(3):830-852.
    [91] Gao J, Kosaka A, Kak A. A Deformable Model for Automatic CT LiverExtraction [J]. Academic radiology,2005,12(9):1178-1189.
    [92] Lu J, Shi L, Deng M, et al. An Interactive Approach to Liver Segmentationin CT based on Deformable Model Integrated with AttractorForce[C]//International Conference on Machine Learning and Cybernetics(ICMLC).2011,4:1660-1665.
    [93] Abdel-massieh N H, Hadhoud M M, Moustafa K A. A Fully Automatic andEfficient Technique for Liver Segmentation from Abdominal CTImages[C]//The7th International Conference on Informatics and Systems(INFOS).2010:1-8.
    [94] Ma L, Zhu L. Liver Contour Extraction Using Snake and Initial BoundaryAuto-Generation[C]//The2nd International Conference on Bioinformaticsand Biomedical Engineering.2008:2669-2672.
    [95] Evans A, Lambrou T, Linney A D, et al. Automatic3D Segmentation of theLiver from Computed Tomography Images, a Discrete Deformable ModelApproach[C]//9th International Conference on Control, Automation,Robotics and Vision.2006:1-6.
    [96] Yang X, Yu H C, Choi Y, et al. A Hybrid Semi-Automatic Method for LiverSegmentation based on Level-Set Methods Using Multiple Seed Points[J].Computer Methods and Programs in Biomedicine,2014,113(1):69-79.
    [97] Wimmer A, Soza G, Hornegger J. Two-Stage Semi-Automatic OrganSegmentation Framework Using Radial Basis Functions and Level Sets[J].3D Segmentation in the Clinic: A Grand Challenge,2007:179-188.
    [98] Pan S, Dawant B M. Automatic3D Segmentation of the Liver fromAbdominal CT Images: a Level-Set Approach[C]//Proceedings of SPIE onMedical Imaging: Image Processing,2001:128-138.
    [99] Lee J, Kim N, Lee H, et al. Efficient Liver Segmentation Using a Level-SetMethod with Optimal Detection of the Initial Liver Boundary fromLevel-Set Speed Images[J]. Computer Methods and Programs inBiomedicine,2007,88(1):26-38.
    [100] Kohlberger T, Uzunba M G, Alvino C, et al. Organ Segmentation with LevelSets using Local Shape and Appearance Priors[M]//Medical ImageComputing and Computer-Assisted Intervention–MICCAI2009. BerlinHeidelberg: Springer,2009:34-42.
    [101] Kohlberger T, Sofka M, Zhang J, et al. Automatic Multi-Organ SegmentationUsing Learning-based Segmentation and Level SetOptimization[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2011. Berlin Heidelberg: Springer,2011:338-345.
    [102] Campadelli P, Casiraghi E, Pratissoli S. A Segmentation Framework forAbdominal Organs from CT Scans[J]. Artificial intelligence in Medicine,2010,50(1):3-11.
    [103] Lamecker H, Lange T, Seebass M. Segmentation of the Liver Using a3DStatistical Shape Model[M]. ZIB Technology Report,2004:1-25.
    [104] Badakhshannoory H, Saeedi P. A Model-based Validation Scheme for OrganSegmentation in CT Scan Volumes[J]. IEEE Transactions on BiomedicalEngineering,2011,58(9):2681-2693.
    [105] Lim S J, Jeong Y Y, Ho Y S. Automatic Liver Segmentation for VolumeMeasurement in CT Images[J]. Journal of Visual Communication and ImageRepresentation,2006,17(4):860-875.
    [106] Zhang X, Tian J, Deng K, et al. Automatic Liver Segmentation Using AStatistical Shape Model with Optimal Surface Detection[J]. IEEETransactions on Biomedical Engineering,2010,57(10):2622-2626.
    [107] Heimann T, Wolf I, Meinzer H P. Active Shape Models for A FullyAutomated3D Segmentation of the Liver–an Evaluation on ClinicalData[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2006. Berlin Heidelberg: Springer,2006:41-48.
    [108] Okada T, Shimada R, Hori M, et al. Automated Segmentation of the Liverfrom3D CT Images Using Probabilistic Atlas and Multilevel StatisticalShape Model[J]. Academic Radiology,2008,15(11):1390-1403.
    [109] Okada T, Yokota K, Hori M, et al. Construction of Hierarchical Multi-OrganStatistical Atlases and Their Application to Multi-Organ Segmentation fromCT Images[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2008. Berlin Heidelberg: Springer,2008:502-509.
    [110] Yao J, Summers R M. Statistical Location Model for Abdominal OrganLocalization[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2009. Berlin Heidelberg: Springer,2009:9-17.
    [111] Song Y, Bulpitt A J, Brodlie K W. Liver Segmentation Using AutomaticallyDefined Patient Specific B-Spline Surface Models[M]//Medical ImageComputing and Computer-Assisted Intervention–MICCAI2009. BerlinHeidelberg: Springer,2009:43-50.
    [112] Tomoshige S, Oost E, Shimizu A, et al. A Conditional Statistical ShapeModel with Integrated Error Estimation of the Conditions; Application toLiver Segmentation in Non-Contrast CT Images[J]. Medical Image Analysis,2014,18(1):130-143.
    [113] Zhou X, Kitagawa T, Hara T, et al. Constructing A Probabilistic Model forAutomated Liver Region Segmentation Using Non-Contrast X-Ray TorsoCT Images[M]//Medical Image Computing and Computer-AssistedIntervention–MICCAI2006. Berlin Heidelberg: Springer,2006:856-863.
    [114] Park H, Bland P H, Meyer C R. Construction of An Abdominal ProbabilisticAtlas and Its Application in Segmentation[J]. IEEE Transactions on MedicalImaging,2003,22(4):483-492.
    [115] Shimizu A, Ohno R, Ikegami T, et al. Segmentation of Multiple Organs inNon-Contrast3D Abdominal CT Images[J]. International Journal ofComputer Assisted Radiology and Surgery,2007,2(3-4):135-142.
    [116] Ji H, He J, Yang X, et al. ACM-based Automatic Liver Segmentation from3D CT Images by Combining Multiple Atlases and Improved Mean ShiftTechniques[J]. IEEE Journal of Biomedical and Health Informatics,2013,17(3):690-698
    [117] Zhou Y, Bai J. Multiple Abdominal Organ Segmentation: An Atlas-basedFuzzy Connectedness Approach[J]. IEEE Transactions on InformationTechnology in Biomedicine,2007,11(3):348-352.
    [118] Linguraru M G, Li Z, Shah F, et al. Automated Liver Segmentation Using aNormalized Probabilistic Atlas[C]//SPIE Medical Imaging. InternationalSociety for Optics and Photonics,2009:72622R-72622R-8.
    [119] Linguraru M G, Sandberg J K, Li Z, et al. Automated Segmentation andQuantification of Liver and Spleen from CT Images Using NormalizedProbabilistic Atlases and Enhancement Estimation[J]. Medical Physics,2010,37(2):771-783.
    [120] Li C, Wang X, Xia Y, et al. Automated PET-Guided Liver Segmentation fromLow-Contrast CT Volumes Using Probabilistic Atlas[J]. Computer Methodsand Programs in Biomedicine,2012,107(2):164-174.
    [121] Perona P, Malik J. Scale-Space and Edge Detection Using AnisotropicDiffusion[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1990,12(7):629-639.
    [122] Catté F, Lions P L, Morel J M, et al. Image Selective Smoothing and EdgeDetection by Nonlinear Diffusion[J]. SIAM Journal on Numerical Analysis,1992,29(1):182-193.
    [123] Otsu N. A Threshold Selection Method from Gray-Level Histograms[J].IEEE Transactions on Systems, Man and Cybernetics,1975,9(1):62-66.
    [124] Ahmed M N, Yamany S M, Mohamed N, et al. A Modified Fuzzy C-MeansAlgorithm for Bias Field Estimation and Segmentation of MRI Data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
    [125] Bezdek J C, Ehrlich R, Full W. FCM: The Fuzzy C-Means ClusteringAlgorithm[J]. Computers&Geosciences,1984,10(2):191-203.
    [126] Saint-Marc P, Chen J S, Medioni G. Adaptive Smoothing: a General Tool forEarly Vision[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1991,13(6):514-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700