用户名: 密码: 验证码:
基于CT影像的早期肺癌计算机辅助诊断关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是导致当今世界男女死亡的首要因素。临床研究表明,肺癌的准确分期对疾病的预防和预后起至关重要作用。对分期为T1的恶性肺结节的早期检测和手术,能显著提高肿瘤的预后。计算机辅助诊断(Computer Aided Diagnosis, CAD)方法能帮助减少放射科医生阅片时间,并提高诊断的准确率。通常,肺癌CAD系统包括预处理、疑似结节检测、假阳(False Positive, FP)减少和分类过程。预处理阶段的任务是将肺结节检测的区域局限在肺内的ROI区域,同时,减少噪声和图像的伪迹。为了提高肺结节检测的敏感性,本文研究了作为肺结节检测预处理阶段的肺结节增强滤波算法。
     首先,本文提出了基于形态元分析(Morphological Component Analysis, MCA)的多尺度增强滤波算法。该方法源自稀疏表示和逼近理论,通过构造描述不同特征的字典稀疏表示各向同性和各向异性的特征。本文提出的基于MCA的增强滤波利用wavelet变换表示肺结节结构,curvelet变换描述主要可能构成肺结节检测的假阳的血管结构,并增强wavelet部分以达到增强肺结节的目的。实验结果表明该算法可以成功地根据形状特征将图像中的不同目标分离。
     其次,本文研究基于Hessian矩阵特征值分析方法,提出了基于平移不变冗余小波变换的增强滤波算法。同时,通过利用MPR (Multi-Planar Reconstruction)技术在VOI的不同视角上分析改进Hessian矩阵特征值,相对于仅在二维横断CT层面上的分析,该方法很大程度上减少了如血管横截或末端造成的肺结节检测的假阳数量。
     同时,本文也研究了如何利用形态学和纹理等多重医学影像特征减少肺结节检测的搜寻范围,并提出了相应的有效增强滤波算法。
     除了医学影像的增强技术研究外,本文也对医学影像分割和理解作了深入的研究。图像分割,通常作为计算机图像理解的第一个必要步骤。本文提出了一个基于Sobolev梯度改进的光流计算分割算法,用于提取肺CT影像的VOI (Volume of Interest)。该算法通过利用Sobolev空间下的梯度下降算法取代欧氏空间的梯度,使改进的光流计算对噪声鲁棒,且可以收敛到全局最优。
     本文也提出了基于肺CT影像的血管分割算法。血管分割以及血管的形态及拓扑的分析对于相关疾病的诊断、治疗、预测和手术计划都是至关重要的。本文在总结前人血管分割研究工作的基础上,提出了一个新的水平集分割算法,利用博弈论融合了基于区域的水平集(如CV)和基于边缘的水平集(如GAC)的优势,并通过实验证明该算法确实优于仅利用单一模型的水平集方法。
     因为通过分析随访前后肺结节的生长情况,通过计算倍增时间即能有效判断肺结节的良、恶性。因此,本文提出了基于冗余小波变换和分水岭的肺结节识别算法。通过冗余小波变换,可以增强肺结节的边缘信息,并同时确定疑似肺结节的ROI。利用冗余小波变换多尺度分析结果作为标记,利用快速准确的欧氏距离函数的分水岭变换将肺结节准确分割。对肺CT影像的实验证明,该算法可以获得比较满意的肺结节识别结果。
Lung cancer is the most common cause of cancer death for both men and women around the whole world. Clinical studies show that the stage of the disease is the most important factor in preventing and prognosing lung cancer. Early detection and surgical resection of malignant lung nodules (T1) can improve the prognosis significantly. Computer Aided Diagnosis (CAD) methods can assist radiologists in reducing the reading time as well as in improving the diagnostic accuracy. Usually, CAD schemes for lung cancer consist of preprocessing, candidate detection, false positive (FP) reduction and classification. The preprocessing stage restricts the search space to the lung regions and reduces noise and image artifacts. To improve the sensitivity of candidate detection, a nodule enhancement filter can be applied as a preprocessing step prior to the initial nodule detection.
     First, we developed one enhancement filter to enhance the blob like nodules and suppress the curvilinear structures like vessels which are one of the primary sources for false positives. In the research, the dissertation proposed an enhancement filter to enhance the blob like nodules based on Morphological Component Analysis (MCA) theory, which can represent isotropic and anisotropic features as sparse combinations of atoms of predetermined dictionaries. According to its results, the enhancement can be achieved by separating and analyziong objects with different shapes.
     Second, we developed another enhancement filter through employing the shift-invariant undecimated wavelet transform and analyzing the eigenvalues of the Hessian matrix. In contrast with the results obtained when using the blob enhancement filter on 2D slices, most crossings and end points of blood vessels as FPs have been substantially eliminated, by means of analyzing the connectivity between their context slices with MPR techniques.
     Meanwhile, we investigated how to exploit multiple medical image features to limit the search space to the regions of interests.
     Besides medical image enhancement, the dissertation also worked on medical image segmentation and analysis. Segmentation is often a necessary first step to computer analysis. This dissertation proposed a segmentation framework to extract the volumes of interest (VOIs) using optical flow constraint refined with Sobolev gradient. In this work, to avoid using normal gradient that could be sensitive to noise and make the flow converge to local minima, optical flow method was exploited in Sobolev space instead of Euclidean space.
     The dissertation proposed a segmentation framework on analysis of blood vessels in thoracic CT scans. Determination and assessment of vessel morphology and topology is crucial for diagnosing, treatment, outcome prediction, and surgical planning. The dissertation presented a new level set functional combined with both region-based models (e.g. CV) and edge-based models (e.g. GAC) through mutual information sharing based on game theory.
     Finally, the dissertation presented a method to recognize the lung nodules based on undecimated wavelet and watershed transforms, since doubling time of pulmonary nodules is important for estimating malignancy versus benignity. The thoracic CT images are enhanced using translation invariant redundant wavelet transform. The lung nodules can be segmented by exploiting watershed in enhanced volume. Experiments on the thoracic CT images showed that the proposed method obtained satisfactory results of nodule recognition.
引文
1. World Health Organization. Facts and figures 2003, http://www.who.int.
    2. 中华人民共和国卫生部.2001年全国卫生事业发展情况统计公报http://www.moh.gov.cn/.
    3. Hayashi H, Ochiai T, Suzuki T, Shimada H, Hori S, Takeda A, Miyazawa Y. Superiority of a new UICC-TNM staging system for gastric carcinoma. Surgery 2000,127:129-135.
    4. K Doi, Current status and future potential of computer-aided diagnosis in medical imaging [J]. The British Journal of Radiology,2005,78:S3-S19.
    5. K Doi, MacMahon H, Katsuragawa S, et al., Computer-aided diagnosis in radiology: potential and pitfalls [J]. European Journal of Radiology,1999,31:97-109.
    6. Bram van Ginneken, Bart M. ter Haar Romeny, and Max A. Viergever, Computer-Aided Diagnosis in Chest Radiography:A Survey [J]. IEEE Transaction on Medical Imaging, 2001,20:1228-1241.
    7. Yin FF, Giger ML, Doi K, Metz CE, Vyborny CJ, Schmidt RA. Computerized detection of masses in digital mammograms:analysis of bilateral subtraction images [J]. Medical Physics,1991,18:955-63.
    8. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K. Improving breast cancer diagnosis with computeraided diagnosis [J]. Academic Radiology,1999,6: 22-33.
    9. Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center [J]. Radiology 2001, 220:781-786.
    10. Xu XW, Doi K, Kobayashi T, MacMahon H, Giger ML. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images [J]. Medical Physics,1997,24:1395-1403.
    11. Sanada S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography:automated detection of pneumothorax in chest images [J]. Medical Physics,1992,19:1153-1160.
    12. Aoyama M, Li Q, Katsuragawa S, MacMahon H, Doi K. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images [J]. Medical Physics,2002,29:701-708.
    13. Shiraishi J, Abe H, Engelmann R, Aoyama M, MacMahon H, Doi K. Computer-aided diagnosis for distinction between benign and malignant solitary pulmonary nodules in chest radiographs:ROC analysis of radiologists' performance [J]. Radiology,2003,227: 469-474.
    14. Armato SG 111, Giger ML, MacMahon H. Automated detection of lung nodules in CT scans:preliminary results [J]. Medical Physics,2001,28:1552-1561.
    15. Ukai Y, Niki N, Satoh H, et al. Computer aided diagnosis system for lung cancer based on retrospective helical CT image [C]. Proceeding of SPIE,2000,3979:1028-1039.
    16. Lawler LP, Wood SA, Paunu HS, Fishman EK. Computerassisted detection of pulmonary nodules:preliminary observations using a prototype system with multidetectorrow CT data sets [J]. Journal of Digital Imaging,2003,16:251-261.
    17. Wyckoff N, McNitt-Gray MF, Goldin JG, et al. Classification of solitary pulmonary nodules (SPNs) imaged on high resolution CT using contrast enhancement and three dimensional quantitative image features [C]. Proceedings of SPIE,2000,3979: 1107-1115.
    18. McCulloch CC, Kaucic RA, Mendonca PRS, et al. Modelbased detection of lung nodules in computed tomography exams [J]. Academic Radiology,2004,11:258-266.
    19. Benjamin L. Odry, et al. The effects of 3D region-based compression on the performance of an automatic lung nodule detection system [C]. Proceedings of SPIE, 2005,5747:883-894.
    20. 包尚联,谢耀钦,周晓东等.基于医学影像计算机辅助诊断的分割方法[J],中国医学物理学杂志,2003,20(2):83-86.
    21. 薛以锋,鲍旭东,马汉林等.基于CT图像的肺结节计算机辅助诊断系统[J],中国医学物理学杂志,2003,23(2):93-96.
    22. 于甬华.原发性肺癌CT图像计算机辅助诊断的方法学研究[D].东南大学博士学位论文,2003,11.
    23. 赵明昌,田捷,薛健等.医学影像处理与分析开发包MITK的设计与实现[J],软件学报,2005,16(4):485-495.
    24. NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA). Digital Imaging and Communicationsin Medicine (DICOM), Draft Standard 2003 [EB/OL]. September 15,2003, http://medical.nema.org/Dicom/2003.html.
    25. S.G. Armato, et al. Lung Image Database Consortium:Developing a Resource for the Medical Imaging Research Community [J]. Radiology 2004,232:739-748.
    26. LE Dodd, RF Wagner, et al. Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in computed tomography:contemporary research topics relevant to the Lung Image Database Consortium [J]. Academic Radiology,2004,11:462-475.
    27. Atam P. Dhawan. Medical Image Analysis [M]. IEEE Engineering in Medicine and Biology, Society, Sponsor 2003,54-99.
    28. Jim Gray. What Next? Some remaining IT problems [C]. Federated Computing Research Conference, May 4,1999.
    29. Azriel Rosenfeld. From Image Analysis to Computer Vision:An Annotated Bibliography,1955-1979 [J]. Computer Vision and Image Understanding,2001,84: 298-324.
    30. D. Marr. Vision:A computational investigation into the human representation and processing of visual information [M]. New York:W.H. Freeman,1982.
    31. 马颂德,张正友著.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998.
    32. OpenCV. Computer Vision Library, http://opencvlibrary.sourceforge.net/,2006.
    33. OpenVIDIA:Parallel GPU Computer Vision, http://openvidia.sourceforge.net/,2008.
    34. 康晓东.现代医学图像技术[M],天津:天津科技翻译出版公司,2000.
    35. J.D. Minna. Harrison's Principles of Internal Medicine [M]. Columbus:McGraw-Hill, 2004,506-516.
    36. 郑君里等,信号与系统[M],北京:高等教育出版社,1981.
    37. J.B.Weaver, X. Yansun, D. M. Healy Jr, and L. D. Cromwell, Filtering noise from images with wavelet transforms [J]. Magnetic Resonance in Medicine,1991,21: 288-295.
    38. Michael Unser, Akram Aldroubi, Andrew Laine, Guest Editorial:Wavelets in Medical Imaging [J], IEEE Transactions on Medical Imaging,2003,22(3):285-288.
    39. S. Mallat. A Wavelet Tour of Signal Processing [M], San Diego, CA:Academic Press, 1998.
    40. S. Mallat. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1989,11:674-693.
    41. J.J. Gibson. The Perception of the Visual World [M]. Cambridge, England:Riverside Press,1950.
    42. B.K.P. Horn, B.G. Schunck. Determingning optical flow [J]. Artificial Intelligence in Medicine,1981,17:185-203.
    43. B.D. Lucas, T. Kanade. An iterative image registration technique with an application to stereo vision [C]. Proc.7th International Joint Conference on Artificial Intelligence, Vancouver,1981,674-679.
    44. D. Terzopoulos. On matching deformable models to images [C]. Topical Meeting on Machine Vision, Technical Digest Series 1987,12:160-167.
    45. M. Kass, A. Witkin, and D. Terzopoulos. Snakes:active contour models [J]. International Journal of Computer Vision,1987,1(4):321-331.
    46. D. Terzopoulos and K. Fleischer. Deformable models [J]. The Visual Computer,1988,4: 306-331.
    47. L. D. Cohen. On active contour models and balloons [J]. CVGIP:image understanding, 1991,53(2):211-218.
    48. T. McInerney and D. Terzopoulos. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis [J]. Computerized Medical Imaging and Graphics,1995, 19(1):69-83.
    49. R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation:a level set approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2):158-175.
    50. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours [C]. Proc.5th Int'l Conf. Comp. Vis.1995,694-699.
    51. G. Sapiro and A. Tannenbaum. Affine invariant scale-space [C]. International Journal of Computer Vision,1993,11(1):25-44.
    52. S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. J. Computational Physics,1988, 79:12-49.
    53. S. Beucher and C. Lantuejoul, Use of watersheds in contour detection [C]. Int. Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, Rennes, France, Sept.17-21,1979.
    54. L. Vincent and P. Soille, Watersheds in digital spaces:an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13 (6):583-598.
    55. F. Meyer, Topographic distance and watershed lines [J]. Signal Processing,1994,38: 113-125.
    56. H.T. Nguyen, M. Worring and R. van den Boomgaard. Watersnakes:energy-driven watershed segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(3):330-342.
    57. Mohammad Pooyan, Ali Taheri, et al. Wavelet Compression of ECG Signals Using SPIHT Algorithm [J]. International Journal of Signal Processing 2005,4(1):219-225.
    58. M.J. Carreira, D.Cabello, et al. Chest X-ray Image Enhancement by Adaptive Processing [C]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1991.
    59. R. Mekle, A.F. Laine, et al. Evaluation of a Multiscale Enhancement Protocol for Digital Mammography [J]. Proceedings of the SPIE in Wavelet Applications in Signal and Image Processing 2000,4119:1038-1049.
    60. A. Pizurica, A. M. Wink, et al A review of wavelet denoising in MRI and ultrasound brain imaging [J]. Current Medical Imaging Reviews,2006,2(2):247-260.
    61. Tim McInerney and Demetri Terzopoulos. Deformable Models in Medical Image Analysis:A Survey [J]. Medical Image Analysis,1996,1(2):91-108.
    62. H. Yoshida, B. Keserci, and K. Doi. Computer-aided diagnosis of pulmonary nodules in chest radiographs:a wavelet-based snake approach [C]. Proceedings of 11th IEEE Symposium on Computer-Based Medical Systems,1998.
    63. Tvrtko Macan and Sven Loncaric.3-D Cardiac Motion Estimation By Point-Constrained Optical Flow Algorithm [C]. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis,2001.
    64. Jianhua Yao, Stacy D. O'Connor, et al. Computer Aided Lytic Bone Metastasis Detection Using Regular CT Images [C]. SPIE Medical Imaging,2006.
    65. G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Sobolev Active Contour [J]. International Journal of Computer Vision,2007,73(3):345-366.
    66. V. Diagalakis, D. G. Manolakis, V. K. Ingle, and A. K. Kok. Automatic adaptive contrast enhancement for radiological imaging [C]. presented at IEEE International Symposium on Circuits and Systems,1993.
    67. Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G Gerig, S. Yoshida, and R. Kikinis.3D Multiscale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images [C]. Proc. Joint Conf. Computer Vision, Virtual Reality, and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery 1997,213-222.
    68. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis. Three-Dimensional Multiscale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images [J]. Medical Image Analysis 1998,2(2): 143-168.
    69. H. Knutsson. Representing Local Structure Using Tensors [C]. Proc. Sixth Scandinavian Conf. Image Analysis 1989, pp.244-251.
    70. T.M. Koller, G Gerig, G Szekely, and D. Dettwiler. Multiscale Detection of Curvilinear Structures in 2-D and 3-D Image Data [C]. Proc. Fifth Int'l Conf. Computer Vision (ICCV'95) 1995,864-869.
    71. A. F. Frangi, W.J. Niessen, et al. Model-based quantitation of 3-D magnetic resonance angiographic images [J]. IEEE Transactions on Medical Imaging,1999,18:946-956.
    72. Y. Sato, S. Nakajima, et al.3D multi-scale line filter for segmentation and visualization of curvilinear structure in medical images [J]. Medical Image Analysis,1998,2: 143-168.
    73. Y. Sato, C. Westin, et al. Tissue classification based on 3D local intensity structure for volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2000,6:160-180.
    74. Q. Li, S. Sone, and K. Doi. Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans [J]. Medical Physics,2003,30: 2040-2051.
    75. R. R. Coifman and D. L. Donoho. Translation-invariant Denoising [J]. in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, eds., Springer Verlag, New York,1995, 125-150.
    76. S. Mallat, A Wavelet Tour of Signal Processing [M]. San Diego, CA:Academic Press, 1998.
    77. S. Mallat, Wavelets for a vision [C]. Proceedings of the IEEE,1996,4:604-614.
    78. M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian, A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform [J]. Wavelets: Time-Frequency Methods and Phase Space, Berlin:Springer-Verlag 1989,286-297.
    79. S. G. Armato and W. F. Sensakovic. Automated lung segmentation for thoracic CT [J]. Academic Radiology,2004,11(9):1011-1021.
    80. S Armato, M Giger, H MacMahonc. Automated lung segmentation in digitized posteroanterior chest radiographs [J]. Academic Radiology,1998,5(4):245-255.
    81. S Hu, E A Hoffman, J M Reinhardt. Automatic lung segmentation of accurate quantitation of volumetric X-Ray CT images [J]. IEEE Transactions on medical imaging,2001,6(20):490-498.
    82. Ingrid Sluimer, Mathias Prokop, Bram van Ginneken. Toward Automated Segmentation of the Pathological Lung in CT [J]. IEEE Transactions on Medical Imaging,2005,24(8): 1025-1038.
    83. Y. Jin, L. Fayad and A.F. Laine. Contrast Enhancement by Multi-Scale Histogram Equalization [C]. Proceedings of the SPIE,2001,4478:206-213.
    84. James E. Fowler. The Redundant Discrete Wavelet Transform and Additive Noise [L]. IEEE Signal Processing Letters,2005,12(9):629-632.
    85. Zimmerman, JB, SB Cousins, ME Frisse, KM Hartzell, MG Kahn. A Psychophysical Comparison of Two Methods for Adaptive Histogram Equalization [J]. Journal of Digital Imaging,1989,2:82-91.
    86. Yu-Li You, M. Kaveh, Fourth-Order Partial Differential Equations for Noise Removal [J]. IEEE Transaction on Image Processing,2000,9(10):1723-1730.
    87. R.C. Gonzalez, R.E. Woods. Digital Image Processing [M]. Addison-Wesley, Reading (Mass) 1992.
    88. G.A. Baxes. Digital Image Processing, Principles and Application [M]. John Wiley & Sons,1994.
    89. J.-L. Starck, M. Elad, and D.L. Donoho. Redundant Multiscale Transforms and their Application for Morphological Component Analysis [J]. Advances in Imaging and Electron Physics,132,2004.
    90. M. Elad, J.-L Starck, D. Donoho and P. Querre. Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA) [J]. Journal on Applied and Computational Harmonic Analysis ACHA,2005,19:340-358.
    91. J.-L. Starck, M. Elad, and D.L. Donoho. Image Decomposition via the Combination of Sparse Representation and a Variational Approach [J]. IEEE Transactions on Image Processing,2005,14(10):1570-1582.
    92. S.S. Chen, D.L. Donoho, and MA Saunder. Atomic decomposition by basis pursuit [J]. SIAM Journal of Scientific Computing,1998,20:33-61.
    93. D.L. Donoho, M.R. Duncan. Digital curvelet transform:Strategy, implementation and experiments [C]. In:Proceedings of SPIE. San Jose, CA:SPIE Press,2000,12-30.
    94. L Rudin, S Osher, and E Fatemi. Nonlinear total variation noise removal algorithm [J]. Physica D.,1992,60:259-268.
    95.3D Doctor, http://www.3d-doctor.com/.
    96. MedINRIA, http://www-sop.inria.fr/asclepios/software/MedINRIA.
    97. J.W. Neuberger. Sobolev Gradients and Differential Equations [M]. Lecture Notes in Mathematics,1670, Springer, New York,1997.
    98. A. C. G. Mennucci, A. Yezzi, G. Sundaramoorthi. Sobolev--type metrics in the space of curves [J]. arXiv:math/0605017vl,2006.
    99. Ganesh Sundaramoorthi, Jeremy D. Jackson, Anthony Yezzi. Tracking with Sobolev active contours [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2006:674-680.
    100. Ganesh Sundaramoorthi, Anthony J. Yezzi, Andrea Mennucci. Sobolev Active Contours [C]. Variational, Geometric, and Level Set Methods in Computer Vision (VLSM),2005: 109-120.
    101. Cemil Kirbas and Francis Quek. A Review of Vessel Extraction Techniques and Algorithms [J]. ACM Computing Surveys,2004,36(2):81-121.
    102. Raphael Sebbe, Bernard Gosselin, et al. Pulmonary Arteries Segmentation and Feature Extraction through Slice Marching [C]. Proc. of the 14th ProRISC workshop on Circuits, Systems and Signal Processing (ProRISC 2003), Veldhoven (Netherland), 2003.
    103. Jens N. Kaftan, A.P. Kiraly, et al. Fuzzy Pulmonary Vessel Segmentation in Contrast Enhanced CT data [C]. SPIE Medical Imaging 2008:Image Processing,6914:1-12.
    104. L.M. Lorigo, O.D. Faugeras, et al. Curves:Curve evolution for vessel segmentation [J]. Medical Image Analysis,2001,5:195-206.
    105. S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces [M]. Springer Verlag,2002.
    106. J. Sethian. Level Set Methods and Fast Marching Methods [M]. Cambridge University Press,1999.
    107. T. Ohtsuka. A level set method for spiral crystal growth [J]. Advances in Mathematical Sciences and Applications 2003,13(1):225-248.
    108. A.W. BARGTEIL, T.G GOKTEKIN, et al. A Semi-Lagrangian Contouring Method for Fluid Simulation [J]. ACM Transactions on Graphics,2006,25(1):19-38.
    109. D. Shafrir, N. Sochen and R. Deriche. Regularization of Mappings between Implicit Manifolds of Arbitrary Dimension and Codimension [C]. in Proceedings of the International Conference on Variational, Geometry and level-Sets methods in Computer Vision, Beijing, China,2005,3752:344-355.
    110. K. Mikula and D. Sevcovic. Solution of nonlinearly curvature driven evolution of planes curves [J]. Applied Numerical Mathematics,1999,31(2):191-207.
    111. G Dziuk. Discrete anisotropic curve shortening flow [J]. SIAM Journal of Numerical Analysis,1999,36(6):1808-1830.
    112. J. Bence, B. Merriman, and S. Osher. Diffusion motion generated by mean curvature [C]. In Computational Crystal Growers Workshop, American Mathematical Society, 1992.
    113. L. Alvarez and J.M. Morel. Formalization and computational aspects of image analysis [J]. Acta Numerica,1994:1-59.
    114. K. Deckelnick. Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow [J]. Interfaces and Free Boundaries,2000,2(2):117-142.
    115. D. Mumford, J. Shah. Optimal Approximation by Piecewise Smooth Functions and Assoeiated Variational problems [J]. Communications On Pure & Applied Mathematics, 1989,42:577-685.
    116. T.F. Chan and L.A. Vese. Aetive Contours without Edges [J]. IEEE Transactions on Image Processing,2001,10(2):266-277.
    117. L.A. Vese and T.F. Chan. A MultiPhase Level Set Framework for Image Segmentation Using the Mumford and Shah Model [J]. International Journal of Computer Vision, 2002,50(3):271-293.
    118. L.M. Lorigo, O. Faugeras, et al, Codimension-two geodesic active contours for the segmentation of tubular structures [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2000,1:444-451.
    119. L. Ambrosio, H.M. Soner. Level set approach to mean curvature flow in arbitrary codimension [J]. Journal of Differential Geometry,1996,43:693-737.
    120. Pingkun Yan and Ashraf A. Kassim. MRA image segmentation with capillary active contours [J]. Medical Image Analysis,2006,10(3):317-329.
    121. Ali Gooya, Hongen Liao, et al. A Shape Induced Anisotropic Flow for Volumetric Vascular Segmentation in MRA [C].4th IEEE International Symposium on Biomedical Imaging:From Nano to Macro, (ISBI 2007), Metro Washington, D.C., U.S.A.,2007.
    122. A.K. Klein, F. Lee, A.A. Amini. Quantitative coronary angiography with deformable spline models [J]. IEEE Transactions on Medical Imaging,1997,16:468-482.
    123. P.J. Yim, G. Boudewijn, et al. Isosurfaces as deformable models for magnetic resonance angiography [J]. IEEE Transactions on Medical Imaging,2003,22:875-881.
    124. J. Chen, A.A. Amini. Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models [J]. IEEE Transactions on Medical Imaging, 2004,23:1251-1262.
    125. E. Borel. The Theory of Play and Integral Equations with Skew Symmetrical Kernels. On Games That Involve Chance and Skill of the Players. On Systems of Linear Forms of Skew Symmetric Determinants and the General Theory of Play [J]. Econometrika, 1953,21:97-117.
    126. J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior [M]. Princeton, N.J.:Princeton Univ. Press,1944.
    127. John Nash. Equilibrium points in n-person games [C]. Proceedings of the National Academy of Sciences,1950,36(1):48-49.
    128. John Nash. Non-Cooperative Games [J]. The Annals of Mathematics,1951,54(2): 286-295.
    129. H.I. Bozma and J.S. Duncan. A Modular System for Image Analysis Using a Game Theoretic Framework [J]. Image and Vision Computing,1992,10:431-443.
    130. Amit Chakraborty and James S. Duncan. Game-theoretic integration for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(1):12-30.
    131. G. L. Zorn and J. C. Nesbitt. Surgical management of early stage lung cancer [J]. Seminars in Surgical Oncology,2000,18:124-136.
    132. Munden RF, Pugatch RD, Liptay MJ, et al. Small pulmonary lesions detected at CT: clinical importance [J]. Radiology,1997,202:105-110.
    133. A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture processing [J]. Ass. Comput. Mach.1966,13:471-494.
    134. G. Borgefors. Distance transformations in digital images [J]. Computer Vision, Graphics, and Image Processing,1986,34 (3):344-371.
    135. P.E. Danielsson. Euclidean distance mapping [J]. Computer Graphics and Image Processing,1980,14:227-248.
    136. G.Z. Ye. The signed Euclidean distance transform and its applications [J]. Pattern Recognition,1988,1:495-499.
    137. T. Saito and J.I. Toriwaki. New algorithms for Euclidean Distance Transformation of an n-Dimensional Digitized Picture with Applications [J]. Pattern recognition,1994, 27(11):1551-1565.
    138. T. E. Schouten, H. C. Kuppens, and E. L. van den Broek. Timed fast exact euclidean distance (tfeed) maps [C]. Proceedings of Real-Time Imaging IX, N. Kehtarnavaz and P. A. Laplante, eds.,2005,5671:52-63.
    139. T. E. Schouten, H. C. Kuppens and E. L. van den Broek. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps [C]. Proceedings of SPIE (Vision Geometry ⅩⅣ), 2006,6066,60660F.
    140. J.B.T.M. Roerdink, A. Meijster. The watershed transform:definitions, algorithm and parallelization strategies [J]. Fundamenta Informaticae,2001,41:187-228.
    141. S. G. Armato, M. L. Giger, et al. Three-dimensional approach to lung nodule detection in helical CT [C]. SPIE Medical Imaging 1999,3661:553-559.
    142. Thomas F. Coleman, Yuying Li and Adrian Mariano. Segmentation of Pulmonary Nodule Images Using Total Variation Minimization, Technical Report TR98-1704, Cornell University, Ithaca,1998.
    143. Ning Xu, Narendra Ahuja and Ravi Bansal. Automated Lung Nodule Segmentation Using Dynamic Programming and EM Based Classification [C]. SPIE Medical Imaging, 2002,4684(70):666-676.
    144. K. Okada, D. Comaniciu, A. Krishnan. Robust Anisotropic Gaussian Fitting for Volumetric Characterization of Pulmonary Nodules in Multislice CT [J]. IEEE Transactions on Medical Imagining,2005,24(3):409-423.
    145. I. Abdou and W. Pratt. Quantitative Design and Evaluation of Enhancement/ Thresholding Edge Detectors [C]. Proceedings of IEEE,1979,67(5):753-763.
    146. K. Bowyer, C. Kranenburg, and S. Dougherty. Edge Detector Evaluation Using Empirical ROC Curves [C]. Proc. Conf. Computer Vision and Pattern Recognition, 1999,1:354-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700