用户名: 密码: 验证码:
偏二甲肼与羟基自由基降解反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏二甲肼(Unsymmetrical dimethylhydrazine, UDMH)是导弹、卫星和飞船发射试验以及运载火箭的主体燃料,其在水中的最高浓度不得超过500mg/m3,长征系列火箭就是以UDMH为主体燃料的。近年来随着我国载人航天事业的蓬勃发展,UDMH使用量不断增加,由此产生的水体污染不能忽视。目前,我国已经开始关注UDMH污水对环境以及参试人员身体健康的影响。因此对UDMH降解机理的研究具有非常重要的意义。
     随着计算方法和计算机技术的飞速发展,计算化学在化学研究中已经占有越来越重要的地位。其中,密度泛函方法由于计算量适中、计算精度较高,已成为计算化学领域中最重要的理论方法之一。
     本文用量子化学计算的方法研究偏二甲肼与?OH在气态室温下发生降解反应生成中间产物二甲基二氮烯、四甲基四氮烯、偏腙、亚硝基二甲胺、甲醛等的反应机理;及二甲基二氮烯和甲醛继续降解反应的机理。采用密度泛函理论的B3LYP方法、6-31+G(d)基组全参数优化了各反应体系中的反应物、中间体、过渡态及产物的几何构型,通过振动分析和内禀反应坐标(IRC)技术确定各反应可能的中间体和过渡态;在频率计算的基础上,得到了各个反应途径的能量曲线。
     研究的主要结果如下:
     1.偏二甲肼在一定的条件下可以降解生成二甲基二氮烯,该反应的势垒较高,反应速率较慢。生成的二甲基二氮烯继续降解的反应主要是它自身的单分子反应:顺反异构反应、异构化为甲醛一甲基腙的反应、分解生成N2与CH3的反应。这些反应的势垒都比较低,是易于进行的反应。故正如实验测得的二甲基二氮烯是偏二甲肼降解过程中的中间产物,而不是最终产物。
     2.生成的中间体1,1-二甲基二氮烯发生耦合生成四甲基四氮烯;同二甲基二氮烯一样,作为对称性的氮烯化合物,四甲基四氮烯也存在着顺反异构反应,且该反应的活化能不高,是个易于进行的反应。
     3.中间体1,1-二甲基二氮烯除了可以发生耦合生成四甲基四氮烯外,1,1-二甲基二氮烯不含甲基的氮原子还可以利用它的孤对电子吸引另一个1,1-二甲基二氮烯的甲基,生成中间体(CH3)2NNCH3,再脱去一个H原子,生成偏腙。从计算得到的相对能量看,这是个相当容易进行的反应。
     4.先用UHF方法、6-31+G(d)基组,研究了H2O2+?OH→H2O+ ?OOH的反应机理,并结合实验结果,证实了反应体系中存在着?OOH自由基,并参与反应。接下来采用密度泛函理论的B3LYP方法和6-31+G(d)基组研究了中间体(CH3)2NN?H与?OOH生成亚硝基二甲胺的反应机理。从计算得到的相对能量看,采用从中间体(CH3)2NN(H)OOH上脱去一个H2O分子的反应途径,是一个易于进行的反应。
     5.用密度泛函理论的B3LYP方法、6-31+G(d)基组研究了生成甲醇及甲醛的反应机理,之后又用同样的方法和基组研究了甲醛与?OH继续降解生成小分子的反应。计算得到甲醛与?OH反应有三条途径:(1)发生抽氢反应,生成CHO和H2O,这是最容易进行的反应途径;(2)HCOH + ?OH→HCOOH + H ,这是次易进行的反应;(3)HCOH + ?OH→COOH + H2 ,这是反应机理最复杂也最难进行的反应。结果表明,采用?OH作为氧化剂,可彻底的消除甲醛带来的二次污染。
     本文利用量子化学计算的方法研究偏二甲肼的降解机理尚属首次,这对进一步改善偏二甲肼污水治理的方法和实验条件将有一定的帮助。
Unsynnetrical dimethylhydrazine(UDMH), the principal component of liquid rocket propellant, is known as a primary eco-toxicant with the maximum permissible concentration in ambient warer as low as 500mg/m3. It is the“long march”series rocketes that employed the UDMH as their main fuel. Recently the spaceflight projectes of our country developes flourishly, and abundant UDMH were used. Sequently, a lot of water area was polluted. It is very bad for environment and participant. So it is very important to research the mechanism of the detoxification of UDMH.
     Along with the rapid development of computational methods and computer technology, computational chemistry has become more and more important in modern chemistry. Due to its moderate computational consume and high precision, density functional theory (DFT) has become one of the most important methods in computational chemistry.
     We employed quantum chemistry to research the mechanism of the reaction of the UDMH and ?OH in the gas phase at the room temperature to dimethyldiazene, TMT, dimethylhydrazone(FDMH), N-nitrosodimethylamine(NDMA), formaldehyde; and the monomolecular reaction of dimethyldiazene, the reaction of formaldehyde and ?OH to micromolecule.
     All the reactants, middle complexes and transition state structures are fully optimized by using the analytical gradients at B3LYP theory with 6-31+G(d) basis set. All transition states are characterized by one imaginary frequency on the PES. Intrinsic reaction coordinate (IRC) is proceeded to confirm transition states connecting the designated local minima. On the basis of the vibrational calculation, we get the energy curve of all of the reaction.
     The following are the main results:
     1. The results show that UDMH and ?OH react can produce dimethyldiazene. The potential barrier is high, and the reaction rate is low. The dimethyldiazene is instable, they can invert to other products or decompose to other products, including the trans-cis isomerization reaction, the automerization reaction to FMMH, the decomposition reaction to N2 and ?CH3. All the potential barrier are low. So dimethyldiazene is not the final product, but the intermediate product in the process of the UDMH decomposition, just like the experiment results.
     2. The 1,1- dimethyldiazene, which appeared in the Chapter 3, can couple to the TMT. And TMT is also one of the symmetric azo, there is trans-cis imomerization reaction, which has a low potential barrier.
     3. The N atom of 1,1- dimethyldiazene can employ the lone pair electrons pull the ?CH3 of another 1,1- dimethyldiazene to intermediate (CH3)2NNCH3, then a H atom drop from it . FDMH is produced. From the relative energy, we known this reaction is very easy.
     4. In chapter 6, we first use UHF/6-31+G(d) to research the mechanism of the reaction of H2O2+?OH→H2O+?OOH. With the results of the others’experiment, we confirm that there are ?OOH in the reaction system, and take part in the reaction. Then, we use the B3LYP/6-31+G (d) to research the mechanism of the reaction of UDMH and ?OOH to NDMA. This reaction path is drop a H2O molecular form the intermediate (CH3)2NN(H)OOH. From the relative energy, it is a easy reaction.
     5. In chapter 7, we first use the B3LYP/6-31+ G (d) to research the mechanism of the reaction to methanol and formaldehyde. Then research the mechanism of the reaction of formaldehyde and ?OH. There are three paths: (1) the hydrogen abstraction to CHO and H2O, this is the most easiest path; (2) HCOH + ?OH→HCOOH + H, this is the easier path; (3) HCOH + ?OH→COOH + H2, this is the most complicated and most difficult path. The results show that when ?OH as oxidant formaldehyde will not bring secondary pollution.
     This is the first time of using the calculation chemistry to research to mechanism of the detoxification of UDMH. It will be helpful for improving the practical technology.
引文
[1]孟晓红,吴婉娥,傅超然.偏二甲肼污染及治理方法评价[J].云南环境科学, 2000, 19(8):165?168.
    [2] L. A. Fedorov. Liquid missile propellants in the former Soviet Union[J]. Environmental pollution. 1999, 105: 157?161.
    [3] A. E. Roger. Dietary Enhancement of Intestinal Carcinogenesis by Dimethylhydrazine in Rats[J]. Nature . 246, 491?492.
    [4] Yu. F. Sasaki, Ayako Saga. Organ-specific genotoxicity of the potent radent colon carcinogen 1,2-dimethylhydrazine and three hydrazine derivatives: difference between intraperitoneal and oral administration[J]. Mutation Research .1998, 415: 1?12.
    [5] Toru Tamura, Makoto Shibutani. Tumor-promoting activities of hydroquinone and 1,1-dimethylhydrazine after initiation of newborn mice with 1-methyl-1-nitrosourea[J]. Cancer Letters . 1999, 143: 71?80.
    [6] Meneghelli. B. J, Hodge. T. R. Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data[C]. The 1997 JANNAF Propellant Development and Characterization Subcommittee and Safety and Environmental Protection Subcommittee Joint Meeting . 1997, 307?313.
    [7] Fleming Elizabeth C, Pennington Judith C, Wachob Benjamin G,Howe Robert A,Hill Donald O. Removal of N-nitrosodimethylamine from waters using physical-chemical techniques[J]. Journal of Hazardous Materials,1996, 51: 151~164
    [8]湛建阶,何斌等.偏二甲肼在阳离子交换柱上的交换过程[J].化学研究,2001 (12) . 29?33
    [9]何息忠,自然净化法处理火箭推进剂污水在航天发射场的应用[J],污染防治.Vol.9 No.1&2 June 1996.
    [10]王浩,高殿森.肼类燃料污染及含肼类物质污水治理方法比较[J].北方环境.2004,29(2):42?48
    [11] Lunn Geroge,Sansone Eric B.Oxidation of 1,1-dimethylhydrazine(UDMH) in aqueous solution with air and hydrogen peroxide[J]. Chemosphere, 1994, 29(7):1577?1590
    [12] Pestunova Oxana P, Elizarova Galina L, Ismagilov Zinfer R, et al. Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation withdioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts[J]. Catalysis Today, 2002, 75:219?225
    [13]宫保安.废水中偏二甲肼的催化脱除[J].烟台大学学报(自然科学与工程版), 1993, 3: 43?46
    [14] Ismagilov. Z. R,Kerzhentsev. M. A,Ismagilov. I. Z,et al. Oxidation of unsymmetrical dimethylhydra-zine over heterogeneous catalysts solution of environmental problems of production, storage and disposal of highly toxic rocket fuels[J]. Catalysis Today, 2002, 75: 277?285
    [15] Tuazon. E. C, Carter. W. P. L, Atkinson. R, Winer. A. M, Pilts Jr J N. Atmospheric reactions of N-nitrosodimethylamine and dimethylnitramine[J]. Environ Sci Technol,1984,18:49?54
    [16] Greene. Benjamin, McClure. Mark. B,Johnson. Harry. T. Destruction or decomposition of hypergolic chemicals in a liquid propellant testing laboratory[J]. Chemical Health & Safety, 2004,1(2): 6?13
    [17] Greene. B, Johnson. H. T. Catalytic decomposition ofpropellant hydrazines , N-nitrosodimethylamine and N-Nitrodimethylamine[C]. Safety and Environmental Protection(18th), Cocoa Beach, FL, United States,2000-05:345?352
    [18] Lunn George,Sansone Eric B. Reductive destruction of hydrazine as an approach to hazard control[J]. Environ Sol Technol, 1983, 17:240?243
    [19] Brubaker. K. L, Bonilla. J. V, Boparai. A. S. Products of the hypocholorite oxidation of hydrazine fuels[R]. AFESC/ESLTR-87-51, ADA-2135572, 1986.
    [20]何斌,王波,苏情.次氯酸钠氧化法处理偏二甲肼污水的研究[C].西宁:首届全国火箭推进剂应用技术学术会议论文集,2003:75?80
    [21]何斌,苏情,候子文.二氧化氯氧化法处理偏二甲肼污水研究[C].西宁:首届全国火箭推进剂应用技术学术会议论文集,2003:95?99
    [22]导弹推进剂偏二甲肼污水自然净化法中试试验报告.国防科工委后勤部军事医学研究所,1988
    [23] Zeff . J. D, Leitis. E. Oxidation of organic compound in water[P]. U. S. Patent: 4,792407, 1988.
    [24]贾瑛,樊秉安,许国根.负载型TiO2固定相催化降解水中偏二甲肼[J].上海环境科学,2000,19(5):230?232
    [25]贾瑛,许国根,樊秉安.TiO2-Cu2+体系降解偏二甲肼的研究.云南环境科学. Vol.19,增刊,Sep.2000.
    [26]胡文祥主编.载人航天工程火箭推进剂安全科学概论[M].北京:解放军出版社,2003:363?366
    [27]王增玉,张敬东.生物降解有机废水处理技术现状与发展[J].工业水处理,2002,22(12):1?5
    [28] Tierney. D. J, Kosar. G. S. UV/Oxidation process optimization for the treatment of hydrazine waste at the John F. Kennedy Space Center[R]. NASA No.19990018529, 1999.
    [29] Kane. D. A,Williamson. K. J. Bacterial toxicity and metabolism of three hydrazine fuel[R]. AFESC/ESL-TR-80-49, AD-A099514, 1979.
    [30]曾健,徐婉琴,虞登洋,石建德.水生植物净化三肼污水的研究[J].环境污染与防治,1997, 19(4): 17?20
    [31]徐婉琴,曾健,杨大桢,虞登洋,沈洪根. UDMH污水对5种主要蔬菜生长的影响和残留研究[J].浙江农业学报,1993,5(2):125?128.
    [32]邓淑芳,白敏冬,百希尧,刘兴旺.羟基自由基特性及其化学反应[J].大连海事大学学报. 2004, 30(3):62?64
    [33] O. P. Pestunova, G. L. Elizarova, Z. R. Ismagolov, Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts[J]. Catalysis Today, 75(2002): 219?225
    [34] Milap. A. Mathur, Harry. H. Sisler. Oxidation of 1,1-dimethylhydrazine by oxygen[J]. Inorg Chem, 1981, 20:426?429.
    [35] H. S. Judeikis, D. E. Damschen. Reaction of Hydrazines with Chemicals Found in Environment, Report 1992, TR?0091(6448)?1, SS?TR?92?03, Order No. AD?A247064.
    [36]国防科工委后勤部编著,火箭推进剂监测防护与污染治理[M].国防科技大学出版社,1993. 780?788.
    [37] W. K. Heisenberg, Z. Phys. 33, 879 (1925).
    [38] E. Schr?odinger, Ann. der. Phys. 79, 36 (1926).
    [39] W. Heitler and F. London, Z. Phys. 44, 455 (1927).
    [40] L. Pauling, The Nature of the Chemical Bond, Cornell University Press (1960).
    [41] R. S. Mulliken, Chem. Rev 9, 347 (1931).
    [42] K. Fukui and H. Fujimoto, Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui, World Scientic Publishing Company (1997).
    [43] D. R. Hartree, Proc. Camb. Phil. Soc. 24, 111 (1928).
    [44] V. Fork, Z. Phys. 61, 126 (1930).
    [45] C. C. J. Roothaan, New developments in molecular orbital theory [J]. Rev. Mod. Phys., 1951, 23: 69?89.
    [46] J. A. Pople, Approximate Molecular Orbital Theory, McGraw Hill (1970).
    [47] E. A. Hylleraas, Z. Phys. 48, 469 (1928).
    [48] J. A. Pople, M. Head-Gorden, and K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87: 5968 ?5975.
    [49] C. M?ller and M. S. Plesset, Note on an approximation treatment for many-electron systems[J]. Phys. Rev., 1934, 46: 618?622.
    [50] R. J. Bartlett and G. D. Purvis, Computational studies of peripheral ring twisting im meso-N-methyl pyridyl-substituted prophyrins[J]. Int. J. Quant. Chem., 1995, 46,701?709.
    [51] J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd Edition, Gaussian Inc., Pittsburgh (1996).
    [52] W. Kohn, Nobel lecture: electronic structure of matter― wave functions and density [J]. Rev. Mod. Phys., 1998, 71: 1253?1266.
    [53] P. Hohenberg and W. Kohn, Inhomogeneous electron gas [J].Phys. Rev. B., 1964, 136: 864.
    [54] W. Kohn and L. J. Sham, Self?consistent equations including exchange and correlation effects [J]. Phys. Rev. A., 1965, 140: 1133.
    [55] L. S. Thomas, The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc. 1927, 23: 542?548.
    [56] E. Fermi, Z. Phys. 48, 73 (1928).
    [57] C. F. von Weisz?acker, Z. Phys. 96, 431 (1935).
    [58] F. Perrot, Hydrogen-hydrogen interaction in an electron gas [J]. J. Phys. Condens. Matter., 1994, 6: 431?446.
    [59] L. W. Wang and M. P. Teter, Kinetic?energy functional of the electron density [J]. Phys. Rev. B., 1992, 45 : 13196?13220 .
    [60] E. Smargiassi and P. A. Madden, Orbital?free kinetic-energy functionals for first?principles molecular dynamics [J]. Phys. Rev. B., 1994, 49: 5220?5226.
    [61]李震宇,中国科学技术大学博士学位论文(2004).
    [62]代兵,中国科学技术大学博士学位论文(2004).
    [63] R. Stowasser and R. Hoffmann, What do the Kohn-Sham orbitals and eigenvalues mean? [J]. J. Am. Chem. Soc. 1999, 121: 3414?3420 (1999)
    [64] M. Luders, A. Ernst et al., Ab initio angle-resolved photoemission in multiple-scattering formulation [J]. J. Phys.: Cond. Mat., 2001, 13: 8587?8606.
    [65] R. Hoffmann, An Extended Hückel Theory. I. Hydrocarbons [J]. J. Chem. Phys. 1963, 39: 1397?1412.
    [66] J. Muskat, A. Wander, and N. M. Harrison, On the prediction of band gaps from hybrid functional theory [J]. Chem. Phys. Lett., 2001, 342: 397-410.
    [67] J. C. Slater, Quantum Theory of Molecular and Solids, Vol. 4, McGraw-Hill (1974).
    [68] S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis [J]. Can. J. Phys., 1980, 58: 1200?1211.
    [69] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Canbridge University Press (2004).
    [70] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A., 1988, 38: 3098-3100.
    [71] K. Burke, J. P. Perdew, and Y.Wang, Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das, Plenum, (1998).
    [72] C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models [J]. J. Chem. Phys., 1998, 108 : 664?675..
    [73] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [J]. Phys. Rev. Lett. 1996, 77 : 3865?3868.
    [74] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B., 1986, 33 : 8822?8824.
    [75] C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B., 1988, 37: 785-789.
    [76] C. Filippi, C. J. Umrigar, and M. Taut, Comparison of Exact and Approximated Density Functionals for an Exactly Soluble Model [J]. J. Chem. Phys., 1994, 100, 1290?1296.
    [77] X. Xu and W. A. Goddard III, Form the cover : The X3LPY extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties [J]. Proc. Natl. Acad. Sci. USA., 2004, 101 : 2673?2677.
    [78] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys. 1993, 98: 5648?5652.
    [79] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Second Edition, Wiley-VCH (2001).
    [80] M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange?correlation functional [J]. J. Chem. Phys. 1999, 110: 5029?5036..
    [81] M. R. Born, Oppenheimer, Zur Quantentheorie der Molekeln Ann.Phsik. (Quantum Theory of the Molecules Ann.Phys.) , 1927, 84: 457 .
    [82] (a)唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社,1982. (b)徐光宪,王德民.量子化学基本原理和从头算法[M].北京,科学出版社, 1985.
    [83]赵学庄,罗渝然,臧雅茹,万学适.化学反应动力学原理[M].下册,高等教育出版社,1990.
    [84] D.M.Lemal. In“Nitreenes”, W.Lwowski ed., 1970, 345?404.
    [85]张鸿钊,张岩.光氧化工艺处理偏二甲肼和四氧化二氮燃烧废水[J].工业水处理, 1998,18(4): 27?28
    [86]李志鲲,邹利鹏,胡文祥,刘兆荣.偏二甲肼自氧化产物的气质联用分析[J].现代仪器., 2003, 2: 25?26
    [87]王煊军,刘祥萱,郭和军,李正莉.气相色谱/质谱法分析偏二甲肼初期氧化产物[J].含能材料, 2004,12 (2): 89?92
    [88] David. M. Lemal, Fredric Menger, Eugene Coats, The diazene-hydrazone rearrangement [J]. J.Am.Chem.Soc.1964, 86(12): 2395?2401
    [89] C. Gonzalez and H. B. Schlegel, An improved algorithm for reaction path following [J]. J. Chem. Phys., 1989, 90: 2154?2161.
    [90] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr. J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari,K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul,A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox,D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03, Revision B. 02, Gaussian, Inc., Pittsburgh PA,2003.
    [91] J. A. Dean, Lange’s Chemistry Handbook [M]. 15th. CRC press.
    [92] O.A.Makhotkina, E.V.Kuznetsova, S.V.Preis, catalytic detoxification of 1,1-dimethylhydrazine aqueous solutions in heterogeneous Fenton system [J]. J. applied Catalysis B: Environmental., 2006, 68: 85-91.
    [93] Mansoor Kazemimoghadam, Afshin Pak, Toraj Mohammadi. Dehydration of water/1-1-dimethlhydrazine mixtures by zelite membranes. Microporous and Mesoporous Materials., 2004, 70: 127?134.
    [94] Handbook of Chemistry and Physics [M]. 84th. CRC press.
    [95] (a) Engel, P. S. Mechanism of thermal and photochemical decomposition of azoalkanes [J]. Chem. ReV. 1980, 80 : 99?150. (b) H. Zollinger, Azo Chemistry; Verlag Chemie: Weinheim, 1994. (c) Patai, S. The Chemistry of Functional Groups. Supplement A: The Chemistry of Double-Bonded Functional Groups; John Wiley and Sons: Chichester, U.K., 1989; Vol. 2, Pt. I.
    [96] Miller, C. E. Hydrogenation with diimide [J]. J. Chem. Educ., 1965, 42 : 254.
    [97] Steel, C.; Trotman-Dickenson, A. F. J. Chem. Soc. 1959, 975.
    [98] Burton, K. A.; Weisman, R. B. Stepwise photodissociation of vapor-phase azomethane [J]. J. Am. Chem. Sot., 1990, 112 : 1804?1807.
    [99] Thomas, T. F.; Sutin, C. I.; Steel, C. Distribution and exchange fo excess vibrational energy produced in the photolysis of 2,3-diazabicyclo[2.2.1]-hept-ene [J]. J. Am. Chem. Soc., 1967, 89 : 5107?5115.
    [100] Schaefer, H. F., III; Hu, C. H. Theoretical study of thermal decomposition of azomethane [J]. J. Phys. Chem., 1995, 99 : 7507.
    [101] (a) Dannenberg, J. J.; Rocklin, D. A theoretical study of the mechansism of the thermal decomposition of azoalkanes and 1,1-diazenes [J]. J. Org. Chem., 1982, 47 : 4529?4534. (b) Dannenberg, J. J. A theoretical study of the decomposition of alkyldiazenyl radicals [J]. J. Org. Chem. 1985, 50: 4963?4965.
    [102] Mill, T.; Stringham, R. S. Photoisomerization of azoalkanes [J]. Tetrahedron Lett., 1969, 10: 1853?1856.
    [103] (a) Schmittel, M.; Rueckardt C. Aliphatic azo compounds. XVI. Stereoisomerization and hemolytic decomposition of cis and trans bridgehead diazenes [J]. J. Am. Chem. Soc., 1987, 109: 2750?1759. (b) Neuman, R. C., Jr.; Gunderson, H. J. High pressure studies.29.On the solvent dependence of cis-diazene invesion [J]. J. Org. Chem., 1992, 57: 1641?1643.
    [104] H. C. Ramsperger, The decomposition of azomethane. A homogeneous unimolecular reaction [J]. J. Am. Chem. Sot., 1927, 49: 912.
    [105] P. L. Holt, K. E. McCurdy, J. S. Adams, K. A. Burton, R. B. Weisman, and R S. Engel, Direct studies of photodissociation fo azomethane vapor using transient CARS spectroscopy [J]. J. Am. Chem. Sot., 1985, 107: 2180?2182.
    [106] K. A. Burton and R. B. Weisman, Dynamics of the two-step photodissociation of azomethane [J]. J. Chem. Phys., 1992, 96: 1111.
    [107] Hu. C. H., Schaefer, H. F., III. Reaction barrier for the methldiazenyl radical decomposition (CH3N2→CH3+N2) [J]. J. Chem. Phys., 1994, 101: 1289.
    [108] Bruce. A. Tomkins, Wayne. H. Griest, Cecll. E. Higgins. Determination of N-Nitrosodimethylamine at Part-per-Trillion Levels in Drinking Waters and Contaminated Groundwaters [J]. Anal. Chem., 1995, 67: 4387-4395.
    [109] William A Mitch, David L Sedlak. Formation of N-nitrosodimethylamine(NDMA) form Dimethylamine during Chlorination[J]. Environ. Sci. Technol., 2002, 36: 588-595.
    [110] Lai Gui, Robert W Gillham, Marek S Odziemkowski. Reduction of N-Nitrosodimethylaminewith Granular Iron and Nickle-Enhanced Iron. 1. Pathways and Kinetics [J]. Environ. Sci. Technol. 2000, 34: 3489-3494.
    [111] Junghoon Choi, Richard L Valentine. Formation of N-nitrosodimethylamine(NDMA) from reaction of monochloramine: a new disinfection by-product [J]. Water research, 2002, 36: 817?824.
    [112] Liao. C. H, Gurol. M. D, Chemical Oxidation by Photolytic Decomposition of Hydrogen Peroxide. Environ.Sci.Technol., 1995, 29: 3007
    [113] B. Wang, H. Hou, Y. Gu, Existence of hydrogen bonding between the hydroxyl radical and hydrogen peroxide : OH ? H2O2 [J]. Chem. Phys. Lett., 1999, 309: 274?278.
    [114] Y. Tarchouna, M. Bahri, N. Ja?¨dane, Z. Ben Lakhdar, J.P. Flament, Ab initio transition state theory calculation of the rate constant for the hydrogen abstraction reaction H2O2+H→H2+HO2 [J]. J. Chem. Phys., 2003, 118: 1189.
    [115] M. Bahri, N. Ja?¨dane, Z. Ben Lakhdar, J.P. Flament, J.Chim.Phys. 1999, 96: 634.
    [116] T. N. Truong, D.G. Truhlar, Ab initio transition state theory calculations of the reaction rate for OH+CH4→H2O+CH3 [J]. J. Chem. Phys., 1990, 93: 1761.
    [117] V. S. Melissas, D.G. Truhlar, Interpolated variational transition-state theory and semicalassical tunneling calculations of the rate constant of the reaction hydroxyl and ethane at 200-3000K [J]. J. Phys. Chem., 1993, 98: 875?886.
    [118] K. D. Dobbs, D.A. Dixon, A. Komornicki, Ab initio prediction of the barrier height for abstraction of H from CH4 by OH [J]. J. Chem. Phys., 1993, 98: 8852.
    [119] J. M. Martell, A.K. Mehta, P.D. Pacey, R.J. Boyd, Properties of transition species in the reaction of hydroxyl with ethane form ab initio calculations and fits to experimental data [J]. J. Phys.Chem., 1995, 99: 8861?8668.
    [120] M. Bahri,Y.Tarchouna, N.Ja?dane, Z.B.Lakhdar, J.P.Elament, Ab inito study of the hydrogen abstraction reaction H2O2+OH→HO2+H2O [J]. Journal of Molecular Structrue (Theochem)., 2003, 664-665 : 229-236
    [121] J. R. Alvarez-Idaboy, N. Mora-Diez, R.J. Boyd, A. Vivier-Bunge, On the importance of prereactive complexes in molecule-radical reactions: Hydrogen abstraction form aldehydes by OH [J]. J.Am. Chem. Soc., 2001, 123: 2018?2024.
    [122] E.D. Morris, H. Niki, Mass spectrometric study of the reaction of hydroxyl radical with formaldehyde [J]. J. Chem. Phys., 1991, 55: 1991.
    [123] M.R. Soto, M. Page, Featrures of the potential enerfy surface for reactions of hydroxyl with formaldehyde [J]. J. Phys. Chem., 1990, 94: 3242?3246.
    [124] L.J. Stief, D.F. Nava, W.A. Payne, J.V. Michael, Rate constant for the reaction of hydroxylradical with formaldehyde over the temperature range 228?362K [J]. J. Chem. Phys., 1980, 73: 2254.
    [125] M. Dupuis, W.A. Lester, Hydrogen atom abstraction form aldehydes: OH+H2CO and O+H2CO [J]. J. Chem. Phys., 1984, 81: 847.
    [126] H. Niki, P.D. Maker, C.M. Savage, L.P. Breitenbach, An Fourier transform infrared of the kinetics and mechanism for the reaction of hydroxyl radical with formaldehyde [J]. J. Phys. Chem., 1984, 88 : 5342?5344.
    [127] R.A.Yetter, H. Rabitz, F.L. Dryer, Evaluation of the rate constant for the reaction OH+H2CO: Application of mideling and sensitivity analsisi techniques for determination of the product branching ratio [J]. J. Chem. Phys., 1989, 91: 4088.
    [128] H.Y. Li, M. Pu, Y.Q. Ji, Zh.F. Xu, W.L. Feng, Theoretical study on the reaction path and rate constants of the hydrogen atom abstraction reaction of CH2O with CH3/OH [J]. Chem. Phys., 2004, 307: 35?43.
    [129] D. Barbara, B. Vebjon, B.A. Jon, N.J. Claus, B. Katarzyna, Phys. Chem. Chem. Phys. 5 (2003) 1790.
    [130] Y.C. Zhao, B.X.Wang, H.Y.Li, L.Wang, Theoretical studies on the reactions of formaldehyde with OH and OH? [J]. J. Mol. Structrue (Theochem)., 2007, 818: 155?161
    [131] B. Veyret, J.C. Rayez, R. Lesclaux, Mechanism of the photooxidation of formaldehyde studied by flash photolysis of formaldehyde-oxygen-nitric oxide mixtures [J]. J. Phys. Chem., 1982, 86: 3424?3430.
    [132] B. Veyret, R. Lesclaux, M.T. Rayez, J.C. Rayez, R.A. Cox, G.K. Moortgat, Kinetics and mechanism of the photo-oxidation of formaldehyde. 1. Flash photolysis study [J]. J. Phys. Chem., 1989, 93: 2368?2374.
    [133] F. Zabel, K.A. Sahetchian, C. Chachaty, ESR spectra of free radicals formed during the gas-phase phtot-oxidation of formaldehyde: thermal stability of the HOCH2OO radical [J]. Chem. Phys. Lett., 1987, 134: 433?437.
    [134] R. Atkinson, D.L. Baulch, R.A. Cox, R.F.J.A.K. Hampson Jr., M.J.Rossi, J. Troe, Evaluated kinetic, photochemical and heterogeneous datafor atomspeheric chemistry: supplement V.IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry [J]. J. Phys. Chem. Ref. Data, 1997, 26: 521?1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700