用户名: 密码: 验证码:
新型一氧化氮合酶抑制剂对心肌细胞内游离钙浓度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、实验背景在哺乳动物体内存在三种形式的一氧化氮合酶(nitric oxidesynthase,NOS),即神经元型一氧化氮合酶(neuronal NOS,nNOS or NOS1)、诱导型一氧化氮合酶(inducible NOS,iNOS or NOS2),内皮型一氧化氮合酶(endothelial NOS,eNOS or NOS3),三者均以左旋精氨酸为底物,生成一氧化氮(nitric oxide,NO)和瓜氨酸。NO参与调整包括神经、泌尿、免疫、消化、呼吸等系统的功能。三种亚型的NOS均可以在心肌中表达,一般认为NOS1位于心肌传导系统及神经元中;NOS2在炎症因子刺激下,心脏各种组织均可以表达;NOS3在血管内皮、心肌细胞、心内膜处表达。NOS产生的NO对维持心脏功能起着重要作用,包括对心肌收缩功能的调整,影响细胞的能量产生、底物代谢,细胞生长及存活。NO可以通过两种方式发挥其作用:环磷酸鸟苷(3',5'-cyclic guanosine monophosphate,cGMP)依赖途径及对蛋白巯基的亚硝基化作用。NO可激活的鸟苷酸环化酶,促进cGMP生成,后者继续激活蛋白激酶G而发挥作用。
     NOS亚型的在心肌中的亚细胞定位是调整NO作用的一个重要因素,NOS3位于肌膜的凹穴处,靠近β肾上腺素能受体,NOS3/NO抑制心肌对β肾上腺素能受体激动剂的反应性。而NOS1以肌浆网兰尼碱受体(ryanodine receptor,RyR)为靶组织,可以增强心肌收缩时肌浆网的钙释放。NOS1与NOS3对心肌收缩功能起着相反的调节作用。心肌正常的时候,不表达NOS2,在某些特定的病理状态下,在炎症和细胞因子诱导心肌才丌始表达NOS2,产生大量的NO。心肌中的NOS2位于细胞质的囊泡和内质网中,在缺血再灌注的时候,可以对心脏起到保护作用。但更多的时候,NOS2的表达,严重影响着心肌功能,目前研究较多的是NO对心肌收缩抑制的机制。NOS2的表达可以抑制心肌细胞中钙瞬变、降低心肌收缩力和降低心肌对β受体激动剂反应性。越来越多的证据表明,NO可以对兴奋收缩耦联的多个方面进行调节,包括:受体信号传导、L-型钙通道活性、通过肌浆网RyR进行的钙释放及线粒体呼吸过程。
     精氨酸(文中所提到的精氨酸均为左旋精氨酸)是NOS的唯一底物,同时也是精氨酸酶的底物。因此精氨酸酶可以通过对底物的竞争性利用而限制NO的产生。精氨酸酶一般理解为鸟氨酸循环最后一个酶,体内存在两种形式的精氨酸酶,一种是肝脏型精氨酸酶(精氨酸酶Ⅰ),存在于细胞质中,其主要功能是合成尿素;另一种是线粒体型精氨酸酶(即精氨酸酶Ⅱ),广泛存在体内的多种组织,参与多胺、脯氨酸、谷氨酸等物质的合成。在心脏组织中两种精氨酸酶均可以被检测出。但是在鼠心肌细胞中,仅发现精氨酸酶Ⅱ表达。以BEC抑制精氨酸酶的活性,可以增加钙依赖的NOS的活性和增加NO的产生。
     精氨酸是可以影响NOS的另外一个因素。在内皮细胞中,精氨酸浓度是NOS的Km值的2-3倍,理论上不会因NOS底物耗竭而限制NOS活性和NO的产生。相应的,外源性的精氨酸也不应影响NOS的活性。但是,在一些特定的病理过程中,给予额外的精氨酸能够增加NO的产生。这种现象被成为精氨酸颠倒现象(L-Arginine Paradox):细胞内精氨酸的浓度对于NOS反应来说是饱和的,但是外源性的精氨酸还是可以增加NO的产生。
     二、实验目的液相合成法合成的由两分子精氨酸和一分子赖氨酸组成的三(以下均简称:三),以体外培养的脂多糖(lipopolysaccharide,LPS)诱导表达NOS2的巨噬细胞、表达NOS3的脐静脉内皮细胞、表达NOS1和NOS3的SD乳鼠心肌细胞(cardiac myocytes,CMs)为对象,硝酸还原酶法检测三对不同细胞的NO合成的抑制效果;白介素6(interleukin-6,IL-6)联合LPS诱导心肌NOS2表达,免疫印记法(western blotting)等技术检测NOS2蛋白的表达。以表达NOS2的心肌细胞为研究对象,进一步研究三对β肾上腺素能受体激动剂异丙肾上腺素(isoproterenol,ISO)刺激心肌细胞游离钙浓度变化的影响,给予不同的钙通道阻滞剂,包括肌膜L-型通道、肌浆网兰尼碱受体(ryanodine receptor,RyRs)、肌醇1,4,5-三磷酸受体(inositol 1,4,5,-triphosphate rceptor,IP3R)。明确参与三发挥效应的钙通道类型。同时探讨共同以精氨酸为底物的精氨酸酶对正常心肌细胞和表达NOS2的心肌细胞中ISO诱导心肌细胞内游离钙浓度变化的影响,系统地探讨NOS、精氨酸酶、精氨酸三者对心肌功能影响的程度及相互间的影响。
     三、实验方法
     1、LPS处理巨噬细胞24 h表达NOS2,检测三对乳鼠心肌细胞、脐静脉内皮细胞和表达NOS2的巨噬细胞中NO的浓度,明确三对相应的NOS亚型的抑制效果。
     2、IL-6联合LPS处理心肌细胞24 h,western blouing检测6、12、24 h三个时间点NOS2的蛋白表达情况。
     3、表达NOS2的心肌细胞为对象,给予L-NNA、不同浓度的三处理12 h,研究三对表达NOS2的心肌细胞NO抑制作用,寻找同L-NNA具有相同抑制效果的三浓度。
     4、正常心肌细胞,给予精氨酸酶抑制剂S-(2-boronoethyl)-L-cysteine(BEC)和NOS1抑制剂vinyl-L-N-5-(1-imino-3-butenyl)-L-omithine(L-VNIO)处理,实验分为BEC组、L-VNIO组和BEC+L-VNIO组.给予相应处理后,取上清检测NO值。明确精氨酸酶对心肌细胞NO产生的影响。
     5、表达NOS2的心肌细胞为对象,激光共聚焦显微镜(Laser Scan ConfocalMicroscope,LSCM)检测三对ISO刺激的心肌细胞胞内游离钙浓度变化的影响。同时比较对NO具有相同抑制效果的低浓度的三同高浓度的L-NNA对ISO刺激的心肌细胞内游离钙浓度变化的影响,明确NOS的细胞定位是细胞功能调整的重要方式。
     6、分别以维拉帕米(verapamil)阻滞L-型通道、普鲁卡因(procaine)阻断RyR、肝素(heparin)阻断IP3R后,各组均给予三。检测上述处理后心肌细胞钙浓度的变化。明确三升高心肌内游离钙浓度的途径。
     7、正常的心肌细胞,分为ISO、ISO+BEC、ISO+L-VNIO、ISO+BEC+L-VNIO组,各组给予相应处理后。上机检测细胞内游离钙浓度。明确精氨酸酶及NOS1对心肌功能的影响。
     8、表达NOS2的心肌细胞,分别给予三、L-VNIO、BCE、三+L-VNIO处理。检测各组细胞内钙浓度,明确精氨酸酶对表达NOS2心肌细胞的钙浓度的影响。
     四、统计学处理
     采用SPSS12.0统计软件进行数据分析,结果以(?)+s表示,多组间均数比较采用单因素方差分析,组间两两比较采用LSD检验,方差不齐时采用Tamhane法,处理组同对照组间的多重比较采用Dunnett法;分析各处理方式的主效应及交互效应采用析因设计资料的方差分析;两组间均数比较采用两独立样本t检验,P<0.05为显著性差异。
     五、实验结果
     1、三对各种细胞NO产生的影响
     在表达NOS2的巨噬细胞中,三、L-NNA、及对照组的NO值(umol/L)分别为208.2±19.3、279.5±20.7、308.9±17.1,进行单因素方差分析显示,各组间NO浓度差异有显著性意义(F=73.553,P=0.000)。LSD法进行组间比较结果显示:三能够明显抑制巨噬细胞NO的产生(P=0.000),且其效果优于非选择性的NOS抑制剂L-NNA(P=0.000),三显示出对NOS2的良好的抑制效果。
     在表达NOS3的内皮细胞中,三、L-NNA及对照组的NO值(umol/L)分别为179.5±9.4、157.8±13.9、188.2±11.6,进行单因素方差分析结果显示,三组间NO值差异有显著性意义(F=17.660,P=0.000)。LSD法进行组间比较结果显示:三组与对照组间NO浓度的差异没有显著性意义(P=0.110)。L-NNA组同三组(P=0.000)及对照组相比(P=0.000),则降低了NO的产生。三对内皮细胞中的NOS3活性影响较小。
     在心肌细胞中,三、L-NNA、及对照组的NO值(umol/L)分别为55.5±7.5、30.2±5.9、61.4±9.9,单因素方差分析结果显示,三组间NO值的差异有显著性意义(F=41.061,P=0.000)。LSD法进行组间比较结果显示:三组与对照组NO浓度的差异没有显著性意义(P=0.101),但L-NNA组较其他两组明显降低了心肌NO的产生(P=0.000),三对心肌细胞中的NOS3和NOS1活性影响较小。另外,给予正常的心肌精氨酸处理,对心肌NO的产生的影响没有显著性意义(P=0.228)。值得注意的是,三组同精氨酸组相比,二者NO值的差异有显著性意义(P=0.006),精氨酸组的NO值明显高于三组。
     2、心肌细胞NOS2表达
     IL-6联合LPS处理心肌细胞6、12、24 h,6 h后心肌NOS2开始表达增加,并随着处理时间延长,NOS2表达不断增加,三个时间点的NOS2的蛋白表达量分别是100、157.1±9.4、178.1±11.0。单因素方差分析结果显示,各时间点的NOS2蛋白表达的差异有显著性意义(F=187.101,P=0.000)。以Tamhane法进行各组间比较,24h同6h(P=0.000)及12h(P=0.003)相比,24 h后NOS2蛋白表达最为明显。
     3、NOS抑制剂对表达NOS2心肌细胞NO浓度的影响
     表达NOS2的心肌细胞,给予三、L-NNA、精氨酸处理,检测各组中NO值。对照组、三组、L-NNA组及精氨酸组的NO值分别是:150.0±13.5、111.0±15.2、130.2±15.2和168.2±11.5。采用单因素方差分析显示,各处理组间NO值的差异有显著性意义(F=29.230,P=0.000)。LSD法进行组间比较结果显示:同对照组相比,三(P=0.000)和L-NNA(P=0.001)明显抑制心肌中NO的产生,而精氨酸则促进心肌细胞中NO合成(P=0.003)。三对表达NOS2的心肌NO合成的抑制效果明显优于L-NNA(P=0.002)。
     心肌细胞给予不同浓度的三,检测各组中NO值。0.2、0.4、0.6和0.8mmol/L组的NO值分别是:143.4±11.3、128.6±10.1、119.2±9.2和114.3±12.3。采用单因素方差分析结果显示,各处理组间的NO值的差异有显著性意义(F=20.290,P=0.000)。LSD法进行组间比较结果显示:同对照组相比,三0.2mmol/L对心肌细胞NO的合成具有抑制效果(P=0.004),0.4mmol/L组的NO值,同1mmol/L的L-NNA组相比较,差异没有显著性意义(P=0.490);
     4、BEC和L-VNIO对心肌细胞NO浓度的影响
     在正常的心肌细胞中,给予精氨酸酶抑制剂BEC及NOS1抑制剂L-VNIO处理后,对照组、BEC组、L-VNIO组及BEC+L-VNIO组NO值分别为:61.4±9.9、72.8±9.4、44.8±7.9和51.2±7.0。采用析因设计资料的方差分析,结果显示给予BEC可以增加NO的产生(F=10.620,P=0.002),给予NOS1抑制剂L-VNIO可以显著抑制NO的产生(F=48.909,P=0.000)。同时给予BEC和L-VNIO,两种处理因素的交互效应不显著(F=0.838,P=0.366)。
     5、NOS抑制剂对表达NOS2的心肌细胞游离钙浓度的影响
     同正常心肌给予ISO刺激时的钙离子浓度改变相比,心肌表达NOS2后,对ISO反应性明显减弱。前者钙离子浓度为172.0±8.0,而后者为125.6±14.0,以两独立样本的t检验进行统计分析,结果显示两者的差异有显著性意义(t=9.099,P=0.000)。
     表达NOS2的心肌细胞给予空白对照、精氨酸、三、三+精氨酸处理后,心肌细胞中游离钙浓度峰值分别为123.6±13.1、114.3±9.3、157.4±15.4、135.5±12.9。以单因素方差分析结果显示,各处理组间的差异有显著性意义(F=40.726,P=0.000)。LSD法进行组间比较结果显示:在表达NOS2的心肌细胞中,同对照组相比,三(1mmol/L)做为NOS2抑制剂,可以明显促进ISO刺激的心肌中游离钙浓度的升高(P=0.000)。精氨酸则可以抑制ISO刺激的心肌中游离钙浓度的升高(P=0.007),精氨酸组同三+精氨酸组相比,两组细胞的游离钙浓度的差异有显著性意义(P=0.000),三可以减弱精氨酸对ISO诱导的心肌钙升高的抑制作用,表明精氨酸对心肌钙浓度的影响,可能是通过NOS2途径。分析对心肌细胞NO产生具有相同抑制效果的三(0.4mmol/L)组和L-NNA(1mmol/L)组,结果显示,0.4mmol/L三对ISO诱导心肌细胞游离钙浓度升高的促进作用明显优于后者(P=0.003)。
     6、不同钙通道阻滞剂对三效应的影响。
     表达NOS2的心肌细胞,给予三、三+维拉帕米、三+肝素及三+普鲁卡因处理,ISO刺激心肌,检测各组细胞内钙浓度的变化。上述四组检测钙的结果分别为152.0±13.3、137.1±10.9、150.0±11.0、129.8±8.3。单因素方差分析结果显示,各组问的差异有显著性意义(F=9.273,P=0.000)。以Dunnett法进行处理组同对照组间的多重比较,结果显示,同对照组相比,给予维拉帕米(P=0.009)和普鲁卡因(P=0.000)可以减弱三的效应。肝素(P=0.957)组同对照组的差异不具有显著性差异。提示抑制NOS2引起心肌钙浓度升高的机制可能是通过改善多种钙通道的功能而实现。
     7、精氨酸酶抑制剂对ISO刺激的正常心肌时胞内游离钙浓变化的影响
     给予空白对照、BEC、L-VNIO、BEC+L-VNIO处理,心肌细胞中游离钙浓度峰值四组分别为172.0±8.0、188.5±11.1、143.0±8.9、146.7±8.3。采用析因设计资料的方差分析,结果显示:L-VNIO明显抑制ISO对心肌的钙浓度作用(F=147.008,P=0.000)。BEC明显促进ISO对心肌的钙浓度作用(F=11.460,P=0.002)。同时给予BEC和L-VNIO,两者组合的交互效应显著(F=5.356,P=0.026),分析BEC促进心肌钙浓度,而L-VNIO抑制钙浓度,表明BEC和L-VNIO存在拮抗效应,表明精氨酸酶对心肌钙的影响机制可能是通过NOS1途径。
     8、BEC对ISO刺激的表达NOS2的心肌时胞内游离钙浓变化的影响
     表达NOS2的心肌细胞,分别给予三、L-VNIO、BCE、三+L-VNIO处理。上述各组游离钙浓度分别为:152.0±13.3、109.9±7.6、133.1±10.9和139.2±12.2。检测上述处理对ISO诱导的心肌细胞内钙浓度变化的影响,单因素方差分析结果显示,各处理组间的差异有显著性意义(F=17.633,P=0.000)。LSD法进行组问比较结果显示:在表达NOS2的心肌细胞中,同对照组相比,给予NOS1抑制剂,可以抑制ISO诱导的心肌细胞内游离钙的升高(P=0.017);而给予精氨酸酶抑制剂,对ISO诱导的心肌的钙改变未见明显影响(P=0.427);同对照组相比,同时给予L-VNIO和三,可以促进ISO诱导的心肌细胞的钙升高(P=0.045)。
     五、结论
     1、LPS刺激巨噬细胞可以表达NOS2,LPS+IL-6可以诱导心肌细胞表达NOS2。
     2、三对NOS2具有较好的选择性及抑制性。
     3、在正常心肌细胞中,抑制心肌中的精氨酸酶可以促进心肌对ISO的反应性,其机制可能是通过NOS1实现的。
     4、表达NOS2的心肌对ISO的反应性降低。三抑制NOS2,可以增强心肌对ISO的反应。其机制是通过影响多种钙通道实现的。
     5、精氨酸能够降低表达NOS2的心肌对ISO的反应性。其机制可能是通过NOS2的途径实现。
Background: Three nitric oxide synthase(NOS) enzymes are described in mammalian systems, all of which oxidize the terminal guanidino nitrogen of L-arginine to form nitric oxide (NO) and the amino acid L-citrulline. These isoforms-neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3)-play modulatory roles in essentially all organ systems; including (but not limited to) the nervous, immune, respiratory, urologic, gastrointestinal, and cardiovascular systems. All of them are present in the heart: NOS 1 has been detected in cardiac conduction tissue and intracardiac neurons; NOS2 can be expressed by virtually all cells in the heart, often in conjunction with the expression of inflammatory cytokines; and finally, NOS3 is expressed in coronary endothelium, endocardium, and cardiac myocytes. It has been established that NO also has important effects on myocardial function which include the modulation of contractile function, the tone of vascular smooth muscle cells, energetics, substrate metabolism, cell growth and survival. There are at least two distinct downstream signaling modes for NO: 3',5'-cyclic guanosine monophosphate ( cGMP) production and protein thiol nitrosylation (S-nitrosylation). NO activates soluble guanylyl cyclase (S-GC) by binding to its heme moiety, forming an Fe-nitrosyl complex, leading to the production of cGMP, which in turn activates protein kinase G (PKG) and a cascade of biological signaling events.
     Subcellular localization of NOS with effector molecules is an important regulatory mechanism for NO signalling.NOS3 localizes to caveolae, where compartmentalization with P-adrenergic receptors and L-type Ca~(2+) channels allows NO to inhibitβ-adrenergic-induced inotropy. NOS1,however, is targeted to cardiac SR. NO stimulation of SR Ca~(2+) release via the ryanodine receptor (RyR) in vitro suggests that NOS1 has an opposite, facilitative effect on contractility. NOS2 is not normally present in myocardium, inflammation and/or cytokine activation cause induction of NOS2 and producing NO. It has been reported that NOS2 induction suppresses myocyte Ca~(2+) transients and contributes to depressed myocardial contractility andβ-adrenergic hyporesponsiveness. There is accumulating evidence that NO participates in all aspects of EC coupling, including receptor signal transduction, L-type Ca~(2+)-channel activity, SR calcium release through the RYR, and mitochondrial respiration.
     L-Arginine, the sole substrate for the NOS enzyme in producing NO, is also a substrate for arginase. Thus arginase has a potential role in limiting substrate available for NO production. Arginase, often perceived solely as the last of the now six enzymes of the urea cycle, exists in 2 isoforms, cytosolic form arginase I and mitochondrial form arginaseⅡ. ArginaseⅠis located in the cytosol and thought to be primarily involved in ureagenesis., whereas arginaseⅡis located in the mitochondrial matrix and has been thought to be more widely expressed and to be involved in the biosynthesis of polyamines, the amino acids ornithine, proline, and glutamate and in the inflammatory process, among others. Both arginaseⅠandⅡwere detected in crude myocardial homogenates, but only arginaseⅡwas present in isolated rat myocytes. Arginase inhibition with S-(2-boronoethyl)-L-cysteine (BEC) augmented Ca~(2+)-dependent NOS activity and NO production in myocytes.
     Arginine concentration also governs NOS activity. The intracellular concentration of L-arginine in endothelial cells exceeds its K_m for the NOS enzyme by 2- to 3-fold, indicating that L-arginine availability should not limit NOS activity or NO production. Also, exogenous L-arginine administration should not influence NOS activity and NO production. However, in certain conditions, the addition of extracellular L-arginine enhances NO-dependent relaxation, giving rise to the "arginine paradox". The "arginine paradox" refers to the dependence of cellular NO production on exogenous L-arginine concentration despite the theoretical saturation of NOS enzymes with intracellular L-arginine. decreased availability of L-arginine blocked induction of NO production in cytokine-stimulated astrocytes, owing to inhibition of NOS2 protein expression.
     Objective: Solusion phase synthesis of tripeptide contained L-Arginine and L-Lysine. Primary cultured Human Umbilical Vein Endothelial Cells (HUVEC), cardiac myocytes, macrophages with different treatment and examined the inhibitory effect of tripeptide on NOS activety. Expression of NOS2 was induced by lipopolysaccharide (LPS) and interleukin-6 (IL-6) for 24 hours before NOS2 protein was assayed by western blotting and cardiac myocyes (CMs) were incubated by new arginine analog for 12h before changes of the fluorescence signal of free calcium caused by isoproterenol (ISO), aβ-AR agonist, were measured under laser scanning confocal microscope (LSCM). The roles of ryanodine receptor (RyRs), inositol 1,4,5,-triphosphate rceptor (IP3R) and L-type calcium channel involved tripeptide effects was examined.
     Methods:
     1, Macrophages treated with LPS for 24 h to express N0S2. We examined the inhibitory effect of tripeptine on NO production in HUVEC, CMs and Macrophages.
     2, CMs were treated with LPS and IL-6 for 6. 12, 24 h. NOS2 expression measured by western blotting.
     3, CMs expressed NOS2 and treated with different concentration tripeptide or L-NNA for 12 h, to measure NO production.
     4, CMs expressed NOS2 and treated with BEC and/or L-VNIO, then to test the NO levels.
     5, CMs expressed NOS2 and treated with different NOS inhibitor for 12 h. LSCM measured the changes of fluorescence singal of free calcium caused by ISO.
     6, CMs treated with verapamil(inhibitor of L-type channel), procaine(inhibitor of RyRs) and heparin(inhibitor of IP3R). LSCM measured the changes of fluorescence singal. To study the role of different calcium channel inhibitors in tripeptine effects on free calcium concentration..
     7, Normal CMs treated with ISO, ISO+BEC, ISO+L-VNIO, ISO+BEC+L-VNIO, respectively. LSCM measured the changes of fluorescence singal caused by ISO.
     8, CMs expressed NOS2 and treated with tripeptide, L-VNIO, BEC, tripeptide+L-VNIO. LSCM measured the changes of fluorescence singal caused by ISO.
     Statistical analysis
     All data are expressed as means±SD, and differences among groups were analyzed by one-way ANOVA followed by LSD test or Tambane test when equal variance was not assumed. Differences between two groups were analyzed by Independent - Samples T Test. A value of p<0.05 was considered statistically significant.
     Results:
     1,1, Effects of tripeptide on NO production
     In macrophages expressing NOS2, after treated with tripeptide, L-NNA, the NO levels was 208.2±19.3, 279.5±20.7 and 308.9±17.1, respectively. The data was analyzed by one-way ANOVA. Significant difference was found in control group, tripeptide group and L-NNA group (F=73.553, P=0.000). The data analyzed by LSD shows that compared with control group, tripeptide significantly inhibited NO production in macrophages (P=0.000) and the effect of tripeptide is better than that of L-NNA (P=0.000).
     HUVEC expresses NOS3. The levels of NO (umol/L) in tripeptide group, L-NNA and control group is 179.5±9.4, 157.8±13.9 and 188.2±11.6, respectively. The data was analyzed by one-way ANOVA. Significant difference was found in control group, tripeptide group and L-NNA group (F= 17.660, P=0.000). Compared with control group, L-NNA could significantly inhibit NO production (P=0.000) and tripeptide had no the effect (P=0.110). Tripeptide has little influence on NO production in HUVEC.
     CMs expressed NOS1 and NOS3. The levels of NO (umol/L) in tripeptide, L-NNA and control group is 55.5±7.5, 30.2±5.9 and 61.4±9.9, respectively. The data was analyzed by one-way ANOVA. Significant difference was found in control group, tripeptide group and L-NNA group (F=41.061, P=0.000). Compared with control group, L-NNA could significantly inhibit NO production (P=0.000) and tripeptide had no the effect (P=0.101).
     2, NOS2 protein expression in response to different treatment
     Cardiac myocytes treated with IL-6 and LPS for 6, 12 and 24 h, NOS2 protein expressions were measured by western blotting. The result showed that NOS2 protein began to express at 6h. The data was analyzed by one-way ANOVA. Significant difference was found in 6h, 12h and 24h group (F=187.101, P=0.000). NOS2 protein expression at 24h was significantly high compared with 6h (P=0.000) and 12h (P=0.003).
     3, Effect of NOS inhibtor on NO production in CMs expressed NOS2
     In CMs expressed NOS2, The NO values were analyzed by one-way ANOVA. Significant difference was found in control group, tripeptide group and L-NNA group (F=29.230, P=0.000). The data analyzed by LSD shows that compared with control group, tripeptide (P=0.000) and L-NNA (P=0.001) significantly inhibit NO production and arginine increased NO production (P=0.003). The effect of tripeptide on inhibiting NO production is better than that of L-NNA (P=0.000).
     CMs treated with different concentration tripeptide. The levels of NO were analyzed by one-way ANOVA. Significant difference was found in control group, tripeptide group and L-NNA group (F=20.290, P=0.000). Compared with control group, tripeptide (0.2mmol/L) could inhibit NO production significantly (P=0.004). On decrease NO production, there was no significant difference between tripeptide (0.4mmol/L) and L-NNA(lmmol/L) group (P=0.490).
     4, Effect of BEC and L-VNIO on NO production in CMs
     In normal CMs treated with L-VINO, a NOS1 inhibitor, and BEC, a arginase inhibitor, the levels of NO were measured. The data was analyzed by factorial analyze. BEC increased NO production significantly (F=10.620, P=0.002) and L-VNIO decreased NO production significantly (F=48.909, P=0.000). BEC and L-VNIO had no interaction (F=0.838, P=0.366).
     5, Effect of NOS inhibitor on free calcium concentration caused by ISO in myocytes expressed NOS2
     Increased NOS2 activity contributes to decreased ISO-induced free calcium concentration. Free calcium concentration induced by ISO in normal myocytes is 172.0±8.0 and that in myocytes expressed NOS2 is 125.6±14.0. The data was analyzed by independent-samples t test. The result showed there is significant difference between two groups (t=9.099, P=0.000).
     The free calcium concentrations in every group were analyzed by one-way ANOVA. Significant difference was found in every group (F=40.726, P=0.000). Compared with control group, specific inhibition of NOS2 by Tripeptide (1mmol/L) dramatically increased free calcium concentration induced by ISO (P=0.000) and arginine significantly decreased free calcium concentration induced by ISO (P=0.007). Tripeptide (0.4mmol/L) is better than L-NNA (lmmol/L) on increasing free calcium concentration (P0.003).
     6, Effects of some drugs inhibiting Ca~(2+) channels
     CMs treated with verapamil-a inhibitor of L-type calcium channel, heparin-a inhibitor of IP3R, and procaine-a inhibitor of RyR, the free calcium concentrations were 152.0±13.3 in control group, 137.1±10.9 in verapamil grouop, 150.0±11.0 in heparin group and 129.8±8.3 in procaine group. The data was analyzed by one-way ANOVA. Significant difference was found in every group (F=9.273, P=0.000). Verapamil (P=0.009) and procaine (P=0.000) could significantly inhibit tripeptide induced increasing in ISO-induced free calcium concentration in myocytes. Heparin has no the effect(P=0.957).
     7, Effect of arginase inhibitor on normal myocyte free calcium concentration caused by ISO
     CMs treated with BEC, L-VNIO and BEC+L-VNIO, the data of free calcium concentrations were analyzed by factorial analyze. Specific inhibition of NOS1 by L-VNIO decreased the ISO-induced free calcium concentration (F=147.008, P=0.000) and arginase inhibitor increased that in CMs (F=11.460, P=0.002). There was significant interaction between BEC and L-VNIO (F=5.356, P=0.026), L-VNIO could inhibit the effect of BEC on free calcium concentration in CMs.
     8, Effect of arginase inhibitor on free Ca~(2+) concentraton caused by ISO in myocyte expressed NOS2.
     CMs expressed NOS2, the value of free calcium concentration was analyzed by one-way ANOVA. Significant difference was found in groups (F=17.633, P=0.000). Compared with control group, L-VNIO could significantly decreased free calcium concentration induced by ISO (P=0.017), L-VNIO+tripeptide could significantly increased free calcium concentration induced by ISO (P=0.045) and BEC had no significant influence on free calcium concentration induced by ISO (P=0.427).
     Conclusions:
     1, macrophages treated with LPS and CMs treated with LPS and IL-6 could express NOS2 protein.
     2, Tripeptide has highly selective and inhibitive effect on NOS2 activety.
     3, Arginase strongly limited ISO-induced increases in free Ca~(2+) concentration in a NOS1-dependent manner.
     4, Increased NOS2 activity contributed to limit ISO-induced myocardial free Ca~(2+) concentration. Tripeptide restored myocardial responsiveness toβ-adrenergic agonist via improving the functions of several calcium channels.
     5, Arginine strongly limited ISO-induced increases in free Ca~(2+) concentration via increasing NO production and expression of NOS2.
引文
[1] Furchgott RF, Zawadki JV. The obligatory role of endothelial cells inrelaxation of arterial smooth muscle by acetylcholine[J]. Nature,1980, 288:373-6.
    
    [2] Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for thebiological activity of endothelium-derived relaxing factor[J]. Nature, 1987,327(6122): 524-6.
    
    [3]朱元珏。 一氧化氮已成为当前的一个医学研究热点[J]。 中华内科杂志, 1995,34(1):5-7。
    
    [4]刘炳亚。 一氧化氮的生物学与临床。上海医学[J],1997,20(7): 429 -431。
    
    [5] Shah A.M, MacCarthy, P.A. Paracrine and autocrine effects of nitric oxide onmyocardial function[J], Pharmacol Ther 2000, 86, 49-86.
    
    [6] Sears CE, Ashley EA, and Casadei B. Nitric oxide control of cardiac function: isneuronal nitric oxide synthase a key component[J]? Philos Trans R Soc Lond B,2004,359: 1021-1044.
    
    [7] Massion PB, Feron O, Dessy C. Balligand, Nitric oxide and cardiac function: tenyears after, and continuing[J]. Circ Res, 2003,93:388-398.
    
    [8] Petroff MG, Kim SH, Pepe S,et al. Endogenous nitric oxide mechanisms mediatethe stretch dependence of Ca~(2+) release in cardiomyocytes[J]. Nat Cell Biol,2001,3: 867-873.
    
    [9] Ashley E, Sears C, Bryant S,et al. Cardiac nitric oxide synthase 1 regulates basaland β-adrenergic contractility in murine ventricular myocytes[J]. Circulation.2002,105:3011-3016.
    
    [10]Xuan YT, Tang XL, Qiu Y, et al. Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits[J]. Am J Physiol Heart Circ Physiol. 2000, 279(5): H2360-71.
    [11]Nathan C, Xie Q. Nitric oxide synthase: roles, tolls, and controls[J]. Cell, 1994, 78(6): 915-8.
    [12]Olga GMS, Zaid A, Irit R, et al. Role of Myocardial Inducible Nitric Oxide Synthase in Contractile Dysfunction and B-Adrenergic Hyporesponsiveness in Rats With Experimental Volume-Overload Heart Failure[J]. Circulation, 2002, 105:236-243.
    [13]Xu KY, Huso DL, Dawson T,et al. NO synthase in cardiac sarcoplasmic reticulum[J]. Proc Natl Acad Sci U S A, 1999, 96: 657-662.
    [14]Barouch L, Harrison R, Skaf M, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms[J]. Nature, 2002, 416(6878): 337-9.
    [15]Olga G, Zaid A, Irit R, et al. Role of Myocardial Inducible Nitric Oxide Synthase in Contractile Dysfunction and B-Adrenergic Hyporesponsiveness in Rats With Experimental Volume-Overload Heart Failure[J]. Circulation, 2002, 105 (2) : 236-43.
    [16] Feng QP, Lu XR, Douglas L, et al. Increased Inducible Nitric Oxide Synthase Expression Contributes to Myocardial Dysfunction and Higher Mortality After Myocardial Infarction in Mice[J]. Circulation, 2001, 104: 700-4.
    [17] Mark T, Maier M, Lars S, et al. Myocyte Nitric Oxide Synthase 2 Contributes to Blunted B-Adrenergic Response in Failing Human Hearts by Decreasing Ca~(2+) Transients[J]. Circulation, 2004, 109: 1886-91.
    [18] Liu HW, Guo YW, Sidney M, et al. Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation[J]. PNAS, 2001, 98: 9260-9264.
    [19]Hui Li, Cynthia J, Meininger, KA, et al. Activities of arginase I and II are limiting for endothelial cell proliferation[J]. Am J Physiol Regulatory Integrative Comp Physiol, 2002, 282: 64-69.
    [20]Tomomi G, Masataka M. Arginase II Downregulates Nitric Oxide (NO) Production and Prevents NO-mediated Apoptosis in Murine Macrophage- derived RAW 264.7 Cells[J]. J. Cell Biol, 1999,144: 427-434.
    [21] Trinity J, Bivalacqua AL, Burnett WJ, et al. Overexpression of arginase in the aged mouse penis impairs erectile function and decreases eNOS activity: influence of in vivo gene therapy of anti-arginase[J]. Am J Physiol Heart Circ Physiol, 2007, 292: H1340 - H1351.
    [22]Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms[J]. Biochem Pharmacol, 1996, 51(4): 383-94.
    [23] 张奕华。一氧化氮合酶抑制剂研究进展[J]。药学进展,1997,21(3): 147-150.
    [24]Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites[J]. J Biol Chem, 1992, 267(16): 10976-81.
    [25] Snyder SH, Bredt DS. Biological roles of nitric oxide[J]. Sci Am, 1992, 266(5): 68-71.
    [26] Luscher TF, Wenzei RR, Noll G. Local regulation of the coronary circulation in health and disease: role of nitric oxide and endothelin[J]. Eur Heart J, 1995,16 (Suppl C): 51-58.
    [27]Toda N, Okamura T. Mechanism of neurally induced monkey mesenteric artery re laxation and contraction [J]. Hypertension, 1992, 19:161-173.
    [28] Fu TL, Zhang WT, Zhang L, et al. L-arginine administration ameliorates serum and pulmonary cytokine response after gut ischemia-reperfusion in immature rats[J]. World J Gastroenterol, 2005, 11(7): 1070-2.
    [29]Morrell CN, Matsushita K, Chiles K. et al. Regulation of platelet granule exocytosis by S-nitrosylation[J]. Proc Natl Acad Sci U S A, 2005, 102(10) 3782-7.
    [30]Ferrini MG, Davila HH, Valente EG et al. Aging-related induction of inducible nitric oxide synthase is vasculo-protective to the arterial media[J]. Cardiovasc Res, 2004, 61(4): 796-805.
    [31]Snyder SH, Bredt DS. Biological roles of nitric oxide[J]. Sci Am, 1992, 267(5): 28-35.
    [32]Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-drived relaxing factor[J]. Nature, 1987, 327(6122): 524-526.
    [33] Vincent SR, Hope BT. Neurons that say NO[J]. Trends Neurosci, 1992, 15(3): 108-113.
    [34]O'Dell TJ, Hawkins RD, Kandel ER, et al. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messager[J]. Proc Natl Acad Sci USA, 1991, 88(24): 11285-9.
    [35] Williams BA, Liu C, Deyoung L, Brock GB, et al. Regulation of intracellular Ca2+ release in corpus cavernosum smooth muscle: synergism between nitric oxide and cGMP[J]. Am J Physiol Cell Physiol, 2005, 288(3): C650-8.
    [36]Burdelya L. Kujawski M, Niu G, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects[J]. J Immunol, 2005, 174(7): 3925-31.
    [37] Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function[J]. Pharmacol Ther, 2000,86:49-86.
    [38]Sears CE, Ashley EA, Casadei,B. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component[J]? Philos Trans R Soc Lond B, 2004,359:1021-1044.
    [39]Massion PB, Feron O, Dessy C. Balligand, Nitric oxide and cardiac function: ten years after, and continuing[J]. Circ Res, 2003,93:388-398.
    [40]Tada H, Thompson CI, Recchia FA,et al. Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart[J]. Circ. Res, 2000,86, 270-274.
    [41]Takimoto E, Champion HC, Li M. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load[J]. J. Clin. Invest. 2005,115: 1221-1231.
    [42]Andreka P,Nadhazi Z,Muzes G, et al. Bishopric, Possible therapeutic targets in cardiac myocyte apoptosis[J]. Curr. Pharm. Des, 2004, 10: 2445-2461.
    [43]Kanno S, Kim PK, Sallam K,et al. Shears, Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells[J]. Proc Natl Acad Sci, 2004,101: 12277-12281.
    [44] Massion PB, Feron O, Dessy C,et al. Nitric oxide and cardiac function: ten years after, and continuing [J]. Circ Res, 2003,93: 388-398,.
    [45]Chesnais JM, Fischmeister R, Mery PF. Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart[J]. J Physiol 518: 449-461, 1999
    [46]Kojda G, Brixius K, Kottenberg K. The new NO donor SPM3672 increases cGMP and improves contraction in rat cardiomyocytes and isolated heart[J]. Eur J Pharmacol, 1995,284: 315-319.
    [47]Paolocci N, Ekelund UE, Isoda T. cGMP-independent inotropic effects of nitric oxide and peroxynitrite donors: potential role for nitrosylation[J]. Am J Physiol Heart Circ Physiol, 2000, 279: H1982-H1988.
    [48]Ichinose F, Bloch KD, Wu JC et al. Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency[J]. Am J Physiol Heart Circ Physiol, 2004, 286: H1070-H1075.
    [49]Janssens S. Pokreisz P, Schoonjans L, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction[J]. Circ Res, 2004,94:1256-1262.
    [50]Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis[J]. Heart Fail Rev, 2002,7: 317-325.
    [51]Suto N, Mikuniya A, T Okubo, et al. Nitric oxide modulates cardiac contractility and oxygen consumption without changing contractile efficiency[J]. Am. J. Physiol. 1998, 275, H41-H49.
    [52]Saavedra WF. Paolocci N, Skaf MW, et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart [J]. Circ. Res, 2002, 90, 297-304.
    [53]Loke KE, McConnell PI, Tuzman JM,et al. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption[J]. Circ. Res, 1999. 84:840-845.
    [54]Adler A, Huang H, Wang Z, et al. Endocardial endothelium in the avascular frog heart: role for diffusion of NO in control of cardiac O_2 consumption[J]. Am. J. Physiol, Heart Circ. Physiol. 2004,287: H14-H21.
    [55]Tada H, Thompson CI, Recchia FA,et al. Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart[J]. Circ. Res, 2000, 86: 270-274.
    [56]Recchia FA. Role of nitric oxide in the regulation of substrate metabolism in heart failure[J]. Heart Fail,2002, 7: 141-148.
    [57]Stefanelli C, Pignatti C, Tantini B, et al. Nitric oxide can function as either a killer molecule or an antiapoptotic effector in cardiomyocytes[J]. Biochim. Biophys. 1999,1450:406-413.
    [58]Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research [J]. J Mol Cell Cardiol, 2001,33: 1897-1918.
    [59]Arstall MA, Sawyer DB, Fukazawa R, et al. Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation [J]. Circ. Res, 1999, 85: 829-840.
    [60] Brown GC, Cooper CE. Nanomolar concentrations of NO reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase[J]. FEBS Lett, 1994, 356: 295-298.
    [61]Pearce LL, Epperly MW, Greenberger JS,et al. Identification of respiratory complexes I and II as mitochondrial sites of damage following exposure to ionizing radiation and nitric oxide[J]. Nitric Oxide, 2001,5: 128-136.
    [62] Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. The ubiquitous role of nitric oxide in cardioprotection[J]. J Mol Cell Cardiol, 2006; 40(1): 16-23.
    [63]Danson EJ, Choate JK, Paterson DJ. Cardiac nitric oxide: emerging role for NOS1 in regulating physiological function[J]. Pharmacol Ther, 2005, 106: 57-74.
    [64]Feron O, Belhassen L, Kobzik L, et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells[J]. J Biol Chem, 1996, 271: 22810-22814.
    [65]Damy T, Ratajczak P, Robidel E, et al. Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats[J]. FASEB J, 2003, 17:1934-1936.
    [66]Damy T. Ratajczak P, Shah AM, et al. Increased neuronal nitric oxide synthase-derived NO production in the failing human heart[J]. Lancet. 2004, 363:1365-1367.
    [67]Bendall JK, Damy T, Ratajczak P, et al, Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat[J]. Circulation, 2004.110: 2368-2375.
    [68]Fang M, Jaffrey SR, Sawa A.et al. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON[J]. Neuron, 2000, 28(1): 183-93.
    [69]Mery PF, Pavoine C, Belhassen L.et al. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP- inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation[J]. J Biol Chem, 1993, 268: 26286 - 26295.
    [70] Le X, Jerry P, Gerhard Ms,et al. Activation of the Cardiac Calcium Release Channel (Ryanodine Receptor) by Poly-S-Nitrosylation[J]. Science, 1998, 279: 234-236.
    [71] JP Eu, Stamler JS, Meissner G,et al. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions[J]. Cell, 2000, 102(4): 499-509.
    [72]Petroff MG, Kim SH, Pepe S,et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes[J]. Nat Cell Biol, 2001, 3(10): 867-73.
    [73]Hare JM. Spatial confinement of isoforms of cardiac nitric-oxide synthase: unravelling the complexities of nitric oxide's cardiobiology[J]. Lancet, 2004, 363(9418): 1338-9.
    [74]Shakil A, Khan MW, Skaf RW, et al. Nitric Oxide Regulation of Myocardial Contractility and Calcium Cycling: Independent Impact of Neuronal and Endothelial Nitric Oxide Synthases[J]. Circ Res, 2003, 92: 1322 - 1329.
    [75] Olivier F, Fidencio S, Jeffrey B. Michel, and Thomas Michel. The Endothelial Nitric-oxide Synthase-Caveolin Regulatory Cycle[J]. J Biol Chem, 1998, 273: 3125-3127.
    [76] Guillermo GC, Pavel M, Bertie SS,et al. Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAIN IN VIVO[J]. J Biol Chem, 1997,272:25437-41.
    [77] Joshua M, Hare RA, Lofthouse GJ, et al. Contribution of Caveolin Protein Abundance to Augmented Nitric Oxide Signaling in Conscious Dogs With Pacing-Induced Heart Failure[J]. Circ Res, 2000, 86: 1085 - 1092.
    [78] Joshua MH, Michael MG, Mark A. Increased Sensitivity to Nitric Oxide Synthase Inhibition in Patients With Heart Failure : Potentiation of 6-Adrenergic Inotropic Responsiveness[J]. Circulation, 1998, 97: 161 - 166.
    [79]Kai Y X, David LH, Ted MD,et al. Nitric oxide synthase in cardiac sarcoplasmic reticulum[J]. PNAS, 1999, 96: 657 - 662.
    [80]Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms[J]. Nature, 2002, 416(6878): 337-9.
    [81]Hare JM, Kass DA, Stamler JS. The physiological response to cardiovascular 'orphan' G protein-coupled receptor agonists[J]. Nat Med, 1999, 5(11): 1241-2.
    [82]Shakil A, Khan, KL, Khalid MM,et al. From the Cover: Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling[J]. PNAS, 2004, 101: 15944 -15948.
    [83]Varghese P. Harrison RW, Lofthorse RA, et al. beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest, 2000, 106(5): 697-703.
    [84] Robert G, Peter K, Mark C.et al. Modulation of mouse cardiac function in vivo by eNOS and ANP[J]. Am J Physiol Heart Circ Physiol,2000, 278: H971 - H981.
    [85]Heng-JC, Zhu SZ, Katsuya O,et ah Upregulation of Functional β_3-Adrenergic Receptor in the Failing Canine Myocardium[J]. Circ Res, 2001, 89: 599 - 606.
    [86] Schmidt AG, Kadambi VJ, Ball N, et al. Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo[J]. J Mol Cell Cardiol, 2000, 32(9): 1735-44.
    [87]Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy [J]. Cell, 1998, 93(2): 215-28.
    [88] Yang XP, Liu YH, Edward Get al. Endothelial Nitric Oxide Gene Knockout Mice : Cardiac Phenotypes and the Effect of Angiotensin-Converting Enzyme Inhibitor on Myocardial Ischemia/Reperfusion Injury[J]. Hypertension, 1999, 34:24-30.
    [89]Verdecchia P, Schillaci G, Borgioni C,et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass[J]. J Am Coll Cardiol, 1995, 25: 871 - 878.
    [90] Jung F, Palmer LA, Zhou N, et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes[J]. Circ Res,2000, 86:319-325.
    [91]Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase[J]. Biol Chem, 2003,384: 1343-1364.
    [92]Drexler H, Kastner S, Strobel A, et al. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart[J]. J Am Coll Cardiol,1998, 32: 955-963.
    [93]Belder AJ, Radomski MW, Why HJ, et al. Nitric oxide synthase activities in human myocardium [J]. Lancet, 1993, 341: 84-85.
    [94]Mizuno T, Watanabe M, Sakamoto T, et al. L-Arginine, a nitric oxide precursor, attenuates ischemia-reperfusion injury by inhibiting inositol-1,4,5- triphosphate[J]. J Thorac Cardiovasc Surg, 1998,115:931-936.
    [95]Lefer DJ, Nakanishi K, Johnston WE, et al. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs[J]. Circulation, 1993,88:2337-2350.
    [96] Beresewicz A, Karwatowska PE, Lewartowski B, et al. A protective role of nitric oxide in isolated ischaemic/reperfused rat heart[J]. Cardiovasc Res, 1995,30:1001-1008.
    [97] Das DK, Kalfin R, Maulik N, et al. Coordinated role of vasoactive intestinal peptide and nitric oxide in cardioprotection[J]. Ann N Y Acad Sci. 1998,865:297-308.
    [98]Weyrich AS, Ma XL, Lefer AM. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat[J]. Circulation, 1992,86:279-288.
    [99]Yoshida K, Mizukami Y, Kitakaze M. Nitric oxide mediates protein kinase C isoform translocation in rat heart during postischemic reperfusion[J]. Biochim Biophys Acta, 1999,1453:230-238.
    [100] Jones SP, Girod WG, Palazzo AJ, et al. Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase [J]. Am J Physiol, 1999,276:H1567-H1573.
    [101] Xi L, Jarrett NC, Hess ML, et al. Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice[J]. Circulation, 1999,99:2157-2163.
    [102] Shinichi K, Paul CL, Yuqing Z. Attenuation of Myocardial Ischemia/ Reperfusion Injury by Superinduction of Inducible Nitric Oxide Synthase[J]. Circulation, 2000.101:2742-1745.
    [103]Leist M. Single B, Naumann H, et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis[J]. Exp Cell Res, 1999, 249: 396-403.
    [104]Shen W, Hintze TH, Wolin MS. Nitric oxide: an important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption[J]. Circulation, 1995, 92:3505-3512.
    [105]Recchia FA, McConnell PI, Bernstein RD, et al. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog[J]. Circ Res, 1998, 83:969-979.
    [106] Hu H, Chiamvimonvat N, Yamagishi T, et al. Direct inhibition of expressed cardiac L-type Ca~(2+) channels by S-nitrosothiol nitric oxide donors[J]. Circ Res. 1997,81:742-752.
    [107] Parrino PE, Laubach VE, Gaughen JR.et al. Inhibition of inducible nitric oxide synthase after myocardial ischemia increases coronary flow[J]. Ann Thorac Surg, 1998,66:733-739.
    [108] Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart: evidence for peroxynitrite-mediated reperfusion injury[J]. J Biol Chem. 1996,271:29223-29230.
    [109]Flogel U, Decking UK, Godecke A, et al. Contribution of NO to ischemia-reperfusion injury in the saline-perfused heart: a study in endothelial NO synthase knockout mice[J]. J Mol Cell Cardiol. 1999,31: 827-836.
    [110]Igarashi J, Nishida M, Hoshida S, et al. Inducible nitric oxide synthase augments injury elicited by oxidative stress in rat cardiac myocytes[J]. Am J Physiol. 1998,274: C245-C252
    [111] Mizuno T, Watanabe M, Sakamoto T, et al. L-Arginine, a nitric oxide precursor, attenuates ischemia-reperfusion injury by inhibiting inositol-l,4,5-triphosphate. J Thorac Cardiovasc Surg, 1998, 115:931-936.
    [112] Qingping Feng, MD, PhD; Xiangru Lu, MD; Douglas L. Jones, PhD. Increased Inducible Nitric Oxide Synthase Expression Contributes to Myocardial Dysfunction and Higher Mortality After Myocardial Infarction in Mice[J]. Circulation, 2001,104:700-704.
    [113]Drexler H, Kastner S, Strobel A, et al. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart[J]. J Am Coll Cardiol. 1998, 32: 955-963.
    [114] Balligand JL. Regulation of cardiac beta-adrenergic response by nitric oxide[J]. Cardiovasc Res, 1999, 43: 607-620.
    [115]Olga GMSc, Zaid A, Irit R, et al. Role of Myocardial Inducible Nitric Oxide Synthase in Contractile Dysfunction and B-Adrenergic Hyporesponsiveness in Rats With Experimental Volume-Overload Heart Failure[J]. Circulation, 2002,105:236-239.
    [116]Ziolo MT, Katoh H, Bers DM. Positive and negative effects of nitric oxide on Ca~(2+)sparks: influence of β-adrenergic stimulation[J]. Am J Physiol, 2001, 281: H2295-H2303.
    [117]Luss H. Watkins SC, Freeswick PD, et al. Characterization of inducible nitric oxide synthase expression in endotoxemic rat cardiac myocytes in vivo and following cytokine exposure in vitro[J]. J Mol Cell Cardiol, 1995, 27: 2015-2029.
    [118] Mark T Z, Hideki K, Donald MB. Expression of Inducible Nitric Oxide Synthase Depresses β-Adrenergic-Stimulated Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes[J]. Circulation, 2001.104:2961-2969.
    [119] Andrew JL, Nathan AM, Sivan VM. Increased Nitration of Sarcoplasmic Reticulum Ca~(2+)-ATPase in Human Heart Failure[J]. Circulation, 2005, 111:988-995.
    [120]Toshio H, Hisako MH, Akiko u,et al. Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism[J]. Atherosclerosis. 2006(187): 316-324.
    [121] Oyadomari S, Gotoh T, Aoyagi, K, et al. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats[J]. Nitric Oxide. 2001,5:252-260.
    [122] Solomonson LP. Flam. BR, Pendleton LC, et al. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells[J]. J Exp Biol, 2003, 206:2083-2087.
    [123]Shuttleworth CW, Burns AJ, Ward SM., et al. Recycling of L-citrulline to sustain nitric oxide-dependent enteric neurotransmission. Neuroscience,1995, 68:1295-1304.
    [124] Yu JG, Ishine T, Kimura T, L-citrulline conversion to L-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig[J]. Am J Physiol, 1997, 273: H2192-H2199.
    [125] Daniel EE, Wang, YF, Salapatek, AM. Arginosuccinate synthetase, arginosuccinate lyase and NOS in canine gastrointestinal tract: immunocytochemical studies[J]. Neurogastroenterol. Motil, 2002, 12:317-334.
    
    [126]Nussler AK, Billiar TR, Liu ZZ. Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production[J]. J Biol Chem, 1994, 269:1257-1261.
    
    [127]Hattori Y, Campbell EB, Gross SS. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration of arginine for nitric oxide synthesis[J]. J Biol Chem, 1994, 269:9405-9408.
    
    [128] Flodstrom M, Niemann A, Bedoya F. Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic β-cells: induction of argininosuccinate synthetase by cytokines[J]. Endocrinology, 1995, 136:3200-3206.
    
    [129] Nagasaki A, Gotoh T, Takeya M, Coinduction of nitric oxide synthase, argininosuccinate synthetase, and argininosuccinate lyase in lipopolysaccharide-treated rats. RNA blot, immunoblot, and immunohistochemical analyses[J]. J Biol Chem, 1996, 271:2658-2662.
    
    [130] Nagasaki A, Gotoh T, Isobe H. Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide[J]. Am J Physiol, (1999) 277: E110-E117.
    
    [131] Xu W, Kaneko FT, Zheng S, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension[J]. FASEB J, 2004, 18 1746-1748.
    
    [132] McDonald KK, Zharikov S, Block ER, et al. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "Arginine Paradox" [J]. J Biol Chem, 1997, 272: 31213-31216.
    [133] Bogle RG, Baydoun AR., Pearson JD et al. Regulation of 1-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells[J]. J Physiol, 1996, 490. 229-241.
    [134]Taylro T, Poston L, The effect of hyperglycaemia on function of rat isolated mesenteric resistance artery[J]. Br J Pharmacol, 1994, 113: 801-808.
    [135] Lee JY, Rudich SM, Schreiner RJ et al. Meyerhoff, Improved planar amperometric nitric oxide (NO) sensor based on platinized platinum anode: 2. Direct real time measurement NO generated from porcine kidney slices in the presence of 1-arginine, 1-arginine polymers, and protamine[J]. Anal. Chem. 2004,76,545-551.
    [136] Kurz S. Harrison DG. Insulin and the arginine paradox[J]. J. Clin. Invest, 1997, 99 : 369-370.
    [137]Rainer HB. Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the "L-Arginine Paradox" and Acts as a Novel Cardiovascular Risk Factor[J]. J Nutr, 2004, 134:2842S-2847.
    [138] Nina V, Dov J, Kenneth A. et al. Quantifying the 1-arginine paradox in vivo[J]. Microvascular Research, 2006, 71(1): 48-54.
    [139] Cooke JP, Andon NA, Girerd XJ, et al. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta[J]. Circulation, 1991, 83:1057-1062.
    [140]Boger RH, Bode SM, Mugge A, et al. Supplementation of hypercholest erol- aemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production[J]. Atherosclerosis , 1995, 117:273-284.
    [141]Boger RH, Bode SM, Phivthong-ngam L, et al. Dietary L-arginine slows the progression of atherosclerosis in cholesterol-fed rabbits—comparison with lovastatin[J]. Circulation, 1997, 96: 1282-1290.
    [142]Candipan RC, Wang BY, Buitrago R, et al. Regression or progression. Dependency on vascular nitric oxide[J]. Arterioscler Thromb Vasc Biol, 1996, 16: 44-50.
    [143]Tsao PS, Theilmeier G, Singer AH., et al. L-Arginine attenuates platelet reactivity in hypercholesterolemic rabbits[J]. Arterioscler Thromb, 1994, 14:1529-1533.
    [144]Tsao PS, McEvoy LM, Drexler H, et al. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine[J]. Circulation, 1994, 89: 2176-2218.
    [145] Boger RH, Bode SM, Kienke S, et al. Dietary L-arginine decreases myointimal cell proliferation and vascular leukocyte accumulation in cholesterol-fed rabbits[J]. Atherosclerosis, 1998, 136: 67-77.
    [146] Junghee L Hoon R, Robert JF. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox[J]. PNAS, 2003,100:4843-4848.
    [147] Stefan EG, Heike TN, Josef Pr, et al. Translational Control of Inducible Nitric Oxide Synthase by IL-13 and Arginine Availability in Inflammatory Macrophages[J]. J Immu, 2003, 171: 4561-4568.
    [148]Haraguchi Y, Takiguchi M, Amaya Y, et al. Molecular cloning and nucleotide sequence of cDNA for human liver arginase[J]. Proc Natl Acad Sci, 1987, 84: 412-415.
    [149] Kawamoto S, Amaya Y, Murakami K, et al. Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase[J]. J Biol Chem, 1987,262:6280-6283.
    [150]Gotoh T, Sonoki T, Nagasaki A, et al. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line[J]. FEBS Lett, 1996, 395:119-122.
    [151] Vockley JG, Jenkinson CP, Shukla H, et al. Cloning and characterization of the human type II arginase gene[J]. Genomics, 1996. 38:118-123.
    [152] Morris SM, Bhamidipati D, Kepka LD. Human type II arginase: sequence analysis and tissue-specific expression[J]. Gene , 1997, 193:157-161.
    [153] Boucher JL, Custot J, Vadon S, et al. N wmega-hydroxyl-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase [J]. Biochem Biophys Res Commun, 1994, 203:1614-1621.
    [154]Daghigh F, Fukuto JM, Ash DE. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, N-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase[J]. Biochem Biophys Res, 1994, Commun, 202:174-180.
    [155] Morris SM, Kepka LD, Chen LC. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol. 1998, 275, E740-E747.
    [156]Gotoh T, Sonoki T, Nagasaki A, et al. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line[J]. FEBS Lett, 1996,395,119-122.
    [157] Wang WW, Jenkinson CP, Griscavage JM, et al. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide[J]. Biochem. Biophys Res Commun, 1995. 210: 1009-1016.
    [158] Sonoki T, Nagasaki A, Gotoh T, et al. Coinduction of Nitric-oxide Synthase and Arginase I in Cultured Rat Peritoneal Macrophages and Rat Tissues in Vivo by Lipopolysaccharide[J]. J Biol Chem, 1997,272: 3689-3693.
    [159] Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells[J]. J Cell Biol, 1999, 144:427-434.
    [160] Ochoa JB, Bernard AC, O'Brien WE, et al. Arginase I expression and activity in human mononuclear cells after injury[J]. Ann Surg, 2001, 233:393-399.
    [161]Currie GA. Activated macrophages kill tumour cells by releasing arginase[J]. Nature, 1978,273:758-759.
    [162] Albina JE, Mills CD, Barbul A,et al. Arginine metabolism in wounds[J]. Am J Physiol, 1988, 254: E459-E467.
    [163] Granger DL, Hibbs JB, Perfect JR., et al. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages[J], J Clin Invest, 1990, 85:264-273.
    [164]Berkowitz DE, White R, Li D,et al. Arginase Reciprocally Regulates Nitric Oxide Synthase Activity and Contributes to Endothelial Dysfunction in Aging Blood Vessels[J]. Circulation, 2003, 108, 2000-2006.
    [165] Demougeot C, PrigentTA, Marie C, et al. Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats[J]. J Hypertens, 2005, 23, 971-978.
    [166] Johnson FK, Johnson RA, Peyton KJ. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension[J]. Am J Physiol, 2005, 288, R1057-R1062.
    [167] Ming XF, Barandier C, Viswambharan H, et al. Thrombin Stimulates Human Endothelial Arginase Enzymatic Activity via RhoA/ROCK Pathway: Implications for Atherosclerotic Endothelial Dysfunction[J]. Circulation, 2004, 110:3708-3714.
    [168] Bivalacqua TJ. Hellstrom WJ, Kadowitz PJ et al. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction[J]. Biochem. Biophys Res Commun, 2001, 283: 923-927.
    [169]Buga GM, Singh R, Pervin S, et al. Arginase activity in endothelial cells: inhibition by N -hydroxy-L-arginine during high-output NO production[J]. Am JPhysiol. 1996.271:1988-1998.
    [170] Li H, Meininger CJ, Hawker JR et al. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells[J]. Am Jphysiol, 2001. 280:E75-E82.
    [171]Hein TW, Zhang C. Wang W, et al. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J, 2003, 17:2328-2330.
    [172] Berkowitz DE. White R, Li D, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels[J]. Circulation, (2003, 108:2000-2006.
    [173] Albert S. Rachel W.Steven R. Modulation of contractility by myocyte-derived arginase in normal and hypertrophied feline myocardium[J]. Am J Physiol Heart Circ Physiol, 2006, 290: H1756-H1762,.
    [174]Jochen St, Sungwoo R, Karl H, et al.Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism[J].PNAS,2006, 21,(103): 4759-4764.
    [175]Csordas G, Thomas AP, Hajnoczky G. Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle[J]. Trends Cardiovasc. Med (2001)11:269-275.
    [176] Simon A. Plies L. Habermeier A, et al. Role of Neutral Amino Acid Transport and Protein Breakdown for Substrate Supply of Nitric Oxide Synthase in
    ??Human Endothelial Cells[J]. Circ Res, 2003, 93: 813-820.
    
    [177]Closs El, Scheld JS, Sharafi M, et al. Substrate Supply for Nitric-OxideSynthase in Macrophages and Endothelial Cells: Role of Cationic Amino AcidTransporters. [J] Mol. Pharmacol, 2000, 57:68-74.
    
    [178] Yan DH, Nishimura K, Yoshida K, et al. Different intracellular polyamineconcentrations underlie the difference in the inward rectifier K~+ currents in atriaand ventricles of the guinea-pig heart[J]. J Physiol, 2005, 563: 713-724.
    
    [179] Ventura C, Ferroni C, Flamigni F, et al. Polyamine effects on [Ca~(2+)]_ihomeostasis and contractility in isolated rat ventricular cardiomyocytes[J]. AmJ Physiol Heart Circ Physiol, 1994, 267: H587-H592.
    
    [180] Harris SP, Patel JR, Marton LJ, et al. Polyamines decrease Ca~(2+) sensitivity oftension and increase rates of activation in skinned cardiac myocytes[J]. Am JPhysiol Heart Circ Physiol, 2000, 279: H1383-H1391.
    
    [181]魏文利、关永源、孙家钧。血管平滑肌和内皮细胞Ca~(2+)内流机制及其于CI 通道的关系。中国药理学通报,1999,15(3):212-215。
    
    [182]Barelaud B, Paul D, Dubarry B,et al.Principles of an Electronic NeutronDosemeter Using a PIPS Detector[J]. Radiat Prot Dosimetry, 1992,44: 363 -366.
    
    [183] Varadi G, Mori Y, Mikala G. Molecular determinants of Ca2+ channel functionand drug action[J]. Trends Pharmacol Sci, 1995, 16(2): 43-9.
    
    [184] Mori Y, Mikala G, Varadi G,et al. Molecular pharmacology ofvoltage-dependent calcium channels[J]. Jpn J Pharmacol, 1996, 72(2): 83-109.
    
    [185]宋龙生、任国钧、陈兆銮。心肌细胞L型钙通道研究进展。生理科学进展, 1996,27(4):362-364。
    
    [186] Miller RJ. Multiple calcium channels and neuronal function[J]. Science, 1987, 235:46-52.
    [187]Xiong Z, Sperelakis N. Regulation of L-type calcium channels of vascular smooth muscle cells[J]. J Mol Cell Cardiol, 1995, 27(1): 75-91.
    [188] Putney JW. A model for receptor-regulated calcium entry[J]. Cell Calcium, 1986.7(1): 1-12.
    [189] Putney JW. Capacitative calcium entry revisited[J]. Cell Calcium, 1990, 11(10): 611-24.
    [190] Stephen R, Ikeda. SIGNAL TRANSDUCTION:Calcium Channels-Link Locally, Act Globally[J]. Science,2001,294: 318-323.
    [191] Pablo JP, Josefina RF, Michael F,et al. Identification and Functional Reconstitution of the Type 2 Inositol 1,4,5-Trisphosphate Receptor from Ventricular Cardiac Myocytes[J]. J Biol Chem, 1997, 272: 23961-23965.
    [192] Zahradnikova A, Palade P.Procaine effects on single sarcoplasmic reticulum Ca2+ release channels[J]. Biophys J, 1993, 64: 991 - 1003.
    
    [193] Chen SJ, Bradley ME, Lee TC. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: modulation by calcium-regulated proteases and protein kinases[J]. Mol Cell Biochem, 1998, 178(1-2): 141-9.
    [194] Berridge MJ. Inositol trisphosphate and calcium signalling[J]. Nature, 1993, 361(6410): 315-25.
    [195] Yamamoto H, Kanaide H. Release of intracellularly stored Ca2+ by inositol 1,4,5-trisphosphate--an overview[J]. Gen Pharmacol, 1990, 21(4): 387-93.
    [196] Berridge MJ. Inositol trisphosphate and calcium signalling[J]. Nature, 1993, 361(6410): 315-25.
    [197]Rouxel FP, Hilly M, Mauger JP. Characterization of a rapidly dissociating inositol 1,4,5-trisphosphate- binding site in liver membranes[J]. J Biol Chem, 1992,267:20017-20023.
    [198] Lee HC. A Signaling Pathway Involving Cyclic ADP-Ribose, cGMP, and Nitric Oxide[J]. News Physiol Sci, 1994, 9: 134-140.
    [199]Brune B, Dimmeler S, Molina L,et al. Nitric oxide: a signal for ADP-ribosylation of proteins[J]. Life Sci, 1994, 54(2): 61-70.
    [200] Xu ZC, Kirchberger MA. Modulation by polyelectrolytes of canine cardiac microsomal calcium uptake and the possible relationship to phospholamban[J]. J Biol Chem, 1989, 264: 16644 -16651.
    [201] Jorgensen AO, Shen AC, Campbell KP,et al. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections[J]. J Cell Biol, 1983, 97: 1573.
    [202] Michalak M, Milner RE, Burns K,et al. Calreticulin, Biochem J, 1992, 285(3): 681-92.
    [203] Pokidyshev DA, Bondarenko NA, Malyshev IIu, er al. Selective inhibition of inducible NO-synthase by nonselective inhibitor[J]. Ross Fiziol Zh Im I M Sechenova, 1998, 84(12): 1420-7.
    [204] Mitaka C, Hirata Y, Yokoyama K, et al. A selective inhibitor for inducible nitric oxide synthase improves hypotension and lactic acidosis in canine endotoxic shock[J]. Crit Care Med, 2001, 29(11): 2156-61
    [205] Grover R, Zaccardelli D, Colice G, et al. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med, 1999,27(5):913-22.
    [206] Hussein Z, Beerahee M, Grover R, et al. Pharmacokinetics of the nitric oxide synthase inhibitor L-NG-methylarginine hydrochloride in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Clin Pharmacol Ther, 1999, 65(1): 1-9.
    [207] Bakker J, Grover R, Mcluckie A, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004, 32(1):1-12.
    
    [208] Watson D, Grover R, Anzueto A, et al.Cardiovascular effects of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) in patients with septic shock: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med, 2004, 32(1):13-20.
    
    [209] Gad C, Edo K, Alex B, et al. Olga Milovanov. MD. L-NMMA (a Nitric Oxide Synthase Inhibitor) is Effective in the Treatment of Cardiogenic Shock. Circulation. 2000;101:1358-1361.
    
    [210] Gad C, Edo K, Olga M, et al. LINCS: L-NAME (a NO synthase inhibitor) In the treatment of refractory Cardiogenic Shock. European Heart Journal 2003 24(14):1287-1295.
    
    [211] Alexander JH, Reynolds HR, Stebbins AL, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA, 2007 Apr 18;297(15): 1657-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700