用户名: 密码: 验证码:
基于炎症研究白芍总苷抗糖尿病肾病作用及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     最近的研究表明糖尿病发病与机体慢性低度炎症反应和固有免疫系统的激活有关,这一发现更新了以前认为糖尿病仅为代谢紊乱性疾病的概念。糖尿病肾病(Diabetic nephropathy, DN)是严重威胁人类健康的疾病,DN患者随着糖尿病发病率及患病率增加而逐年增多。DN的发病机制及干预治疗措施一直是近年来的研究热点。糖代谢紊乱是DN发病基础,由此产生的肾血流动力学改变、非酶糖基化反应、多元醇通路激活、炎症反应、氧化应激、足细胞损伤、肾小管上皮细胞转分化、蛋白激酶C激活、脂代谢紊乱及遗传背景等都与DN有关。炎症反应与DN的发展有着密切的关系,在很多DN临床及动物实验的研究中发现趋化因子、粘附分子、前炎症因子表达异常。糖尿病的实验研究发现一些药物如霉酚酸酯、甲氨蝶呤、红霉素等可通过抑制炎症反应来防止糖尿病肾损伤的发生。DN进展缓慢,早期不易觉察,目前多以出现微量白蛋白尿做为早期DN的标志。DN一旦进入到显性白蛋白尿期,即临床糖尿病肾病期,则病情发展迅速,所以目前强调只有对早期DN进行合理干预才能有效降低DN患者进入终末期肾衰的风险。白芍总苷(Total glucosides of paeony,TGP)是中药白芍的有效提取物,主要含有芍药苷、羟基芍药苷、芍药花苷、芍药内酯苷、苯甲酰芍药苷等成分,其药理作用有抗炎、抗氧化与免疫调节活性。TGP在类风湿性关节炎的治疗方面已经取得了显著的疗效,在实验性肝损伤、系统性红斑狼疮、肾小球肾炎的研究中亦取得了较好的结果,且无明显的毒副作用。本研究通过建立早期DN大鼠模型并观察经TGP干预的疗效,进一步探讨TGP能否通过干预炎症反应、氧化应激损伤、足细胞损伤、肾小管上皮转分化、细胞内信号转导等多种途径来治疗DN。
     研究方法
     建立链脲佐菌素糖尿病大鼠模型,将50只大鼠随机分为正常对照组、模型组、TGP给药组,TGP分为三个剂量组(50,100,200mg/kg.d)每日灌胃给药,对照组和模型组每日给予等量溶媒灌胃,干预治疗8周。留取大鼠血、尿、肾组织标本,观察以下指标包括肾重、肾重/体重比、血糖、血肌酐、尿肌酐、尿量、肾脏病理形态学、肾脏超微结构、肾组织总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)等。间接免疫荧光法观察nephrin在肾小球内的分布特点。免疫组化法检测转化生长因子β1(TGF-β1)、Toll样受体(Toll-like-receptor, TLR)2、TLR4、骨桥蛋白(OPN)、α-平滑肌肌动蛋白(α-SMA)、E-钙粘附蛋白(E-cad)、波形蛋白(Vim)、ED-1、增殖细胞核抗原(PCNA)、信号转导和转录活化因子3(STAT3)、磷酸化STAT3(p-STAT3)、NF-κB-p-p65等蛋白在肾组织内的表达分布情况。免疫组化双染检测PCNA/ED-1、p-STAT3/ED-1、TLR2/ED-1、TLR4/ED-1阳性细胞在肾组织内的分布情况。Western印迹法检测肿瘤坏死因子α(TNF-α)、细胞间粘附分子-1(ICAM-1)、白细胞介素-1(IL-1)、NF-κB-p65、Ⅳ型胶原、3-硝基酪氨酸(3-NT)、nephrin、磷酸化p38MAPK(p-p38),磷酸化JAK2(p-JAK2)、磷酸化STAT3(p-STAT3)等蛋白在肾组织内的表达情况。
     结果
     模型组大鼠24h尿白蛋白排泄率(UAER)明显高于对照组(P<0.01),TGP给药组UAER较模型组明显降低(P<0.01)。模型组大鼠表现为血糖升高、体重下降、相对肾重增加,TGP(50,100,200mg/kg.d)给药对大鼠血糖升高与体重下降没有明显的影响(P﹥0.05)。模型组大鼠肾小球体积明显高于对照组(P<0.01),TGP(100,200mg/kg.d)给药组肾小球体积较模型组明显减小(P<0.05, P<0.01)。TGP给药组肾脏超微结构的病变较模型组明显改善。TGP(100,200mg/kg.d)给药组肾小管-间质损伤指数(TII)明显低于模型组(P<0.05, P<0.01)。TGP(50,100,200mg/kg.d)给药组肾组织内ICAM-1、TNF-α、IL-1、NF-κB-p65、Ⅳ型胶原等蛋白表达水平较模型组均有明显下降,其中ICAM-1分别下降47.9%、60.4%、72.9%,TNF-α分别下降46.5%、86%、93.8%,IL-1分别下降77.7%、86.4%、88.6%,NF-κB-p65分别下降38.4%、53%、59%,Ⅳ型胶原分别下降47.9%、60.4%、72.9%。模型组大鼠肾组织中TLR2、TLR4表达明显高于对照组(P<0.01)。与模型组相比,TGP(50、100、200mg/kg·d)给药8周对肾小球TLR2表达无明显影响,肾小管-间质TLR2表达明显低于模型组(P<0.01)。TGP(50、100、200mg/kg·d)给药组肾小球与肾小管-间质TLR4表达均明显低于模型组(P<0.01)。
     与对照组相比、模型组肾组织内T-AOC、SOD、CAT活性明显降低(P<0.01),TGP(200mg/kg.d)给药组T-AOC、SOD、CAT活性明显高于模型组(P<0.01)。TGP(50,100,200mg/kg.d)给药组肾组织内3-NT、p-p38蛋白表达水平较模型组明显下降,NT分别下降41.2%、43.8%、57.5%,p-p38分别下降30.8%、24%、60.1%。免疫荧光发现对照组肾小球内nephrin呈线状均匀分布,模型组nephrin表达明显减小、呈颗粒状不均匀分布,TGP给药组nephrin表达部分恢复。TGP(50,100,200mg/kg.d)给药组nephrin蛋白表达较模型组分别增加25.2%、89.2%、73.9%。
     模型组大鼠肾小管-间质E-cad蛋白表达明显低于对照组(P<0.01),TGP (50,100,200mg/kg.d)给药组肾小管-间质E-cad蛋白表达明显高于模型组(P<0.01);模型组肾小管-间质α-SMA蛋白表达明显高于对照组(P <0.01),TGP (50,100,200mg/kg.d)给药组肾小管-间质α-SMA蛋白表达明显低于模型组(P<0.01);模型组肾小管-间质Vim蛋白表达明显高于对照组(P <0.01),TGP (50,100,200mg/kg.d)给药组肾小管-间质Vim蛋白表达明显低于模型组(P<0.01);模型组肾小管-间质OPN蛋白表达明显高于对照组(P<0.01),TGP(100,200mg/kg.d)给药组肾小管-间质OPN蛋白表达明显低于模型组(P<0.01)。
     模型组大鼠肾组织内PCNA+细胞数、ED-1+细胞数、p-STAT3+细胞数、PCNA+/ED-1+细胞数、p-STAT3+/ED-1+细胞数、TLR2+/ED-1+细胞数、TLR4+/ED-1+细胞数、NF-κB-p-p65+细胞数均明显高于对照组(P<0.01)。TGP(50,100,200mg/kg.d)给药组PCNA+、ED-1+、p-STAT3、PCNA+/ED-1+、p-STAT3+/ED-1+、TLR2+/ED-1+、TLR4+/ED-1+、NF-κB-p-p65+阳性细胞数均较模型组明显减少(P <0.01)。模型组肾组织内p-JAK2、 p-STAT3蛋白表达均显著高于对照组(P <0.01),TGP(50,100,200mg/kg.d)给药组使p-JAK2蛋白分别下降22.3%、50.5%、43.2%,使p-STAT3蛋白分别下降20.9%、61.1%、42.3%。
     结论
     TGP对STZ诱导糖尿病大鼠的早期肾损害有明显的保护作用。TGP可能是通过以下多种机制如抑制肾内炎症反应、抗氧化应激损伤、抑制肾小管上皮细胞转分化、抑制肾间质纤维化、抑制巨噬细胞浸润及增殖活化、抑制JAK2/STAT3信号通路的活性等多种途径发挥肾保护作用。
Background and objective
     The notion that chronic low-grade inflammation and activation of the innateimmune system are closely involved in the pathogenesis of diabetes mellitus hassubstantially changed our vision of this disease as a metabolic disorder in the past years.Diabetic nephropathy (DN) is a serious threat to human health. With the increase in theincidence and the prevalence of diabetes, DN is becoming more common. Pathogenesisand therapeutic intervention in DN have been the research focus in recent years.Disorder of glucose metabolism is the fundamental step in DN, resulting renalhemodynamic changes, non-enzymatic glycosylation reaction, polyol pathwayactivation, inflammation, oxidative stress, and podocyte injury, renal tubular epithelialcell transdifferentiation,protein kinase C activation, lipid metabolism disorders andgenetic background etc, are all associated with DN. Development of DN is slow andimperceptible in early stage; microalbuminuria apperance is used to be a sign of earlyDN. A number of experimental and clinical studies have demonstrated the significantrole of various inflammatory molecules in the setting of DN, including chemokines,adhesion molecules, and proinflammatory cytokines. Several works in the setting ofexperimental DN using different drugs, such as mycophenolate mofetil, methotrexate,and erythromycin, have shown that prevention of the development or amelioration ofrenal injury in diabetes was associated with anti-inflammatory actions. When diabeticpatients progress into albuminuria stage, DN becomes irreversible. So the current effortswere stressed that giving the early DN reasonable intervention to reduce the risk of entering end-stage renal failure. Paeonia lactiflora pall is a kind of Chinese traditionalherbal medicine. Effective parts and chemical constituents of TGP have been extractedand purified, their structures have been identified. TGP contains96.2%of paeoniflorinand other components such as hydroxy-paeoniflorin, glycosides of peony flower, peonylactone glycosides, benzoyl paeoniflorin etc. TGP have been extensively proven toexhibit anti-inflammatory, antioxidative, antihepatic injury and immunoregulatoryactivities without evident toxic or side-effects. In this study we established the early DNrat model and investigated the efficacy of the TGP, further explored the possiblemechanisms involving in the TGP renoprotective effects were through interfering withthe inflammatory response, oxidative stress injury, podocyte injury, renal tubularepithelial transdifferentiation and intracellular signal transduction.
     Method
     Diabetes was induced by peritoneal injection of streptozotocin in rats.50rats wererandomly divided into normal group, control diabetic group, TGP administration groupthat was divided into three dose groups (50,100,200mg/kg.d) with daily gavaged,normal group and control diabetic group were given the same amount of solvent foreight weeks. Specimens of rat blood, urine, kidney tissue were collected, detectionindex including kidney weight, kidney weight/body weight ratio, blood glucose, serumcreatinine, urine creatinine,24h urinary albumin excretion rate (UAER), renal pathology,renal ultrastructure, renal tissue total antioxidant capacity (T-AOC), superoxidedismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) using theappropriate method for testing. Indirect immunofluorescence was used to detect nephrindistribution in glomeruli. Immunohistochemical assays of transforming growth factorβ1(TGF-β1), Toll-like-receptor2(TLR2), TLR4, osteopontin protein (OPN), α-smoothmuscle actin (α-SMA), E-calcium adhesion proteins (E-cad), vimentin (Vim), ED-1,proliferating cell nuclear antigen (PCNA), signal transduction and transcription-activating factor3(STAT3), phosphorylation of STAT3(p-STAT) proteinexpressions in renal tissue. Double immunohistochemical assays of PCNA/ED-1,p-STAT3/ED-1, TLR2/ED-1, TLR4/ED-1positive cells in the renal tissue distribution.Western blotting detection of tumor necrosis factor-α (TNF-α), intercellular adhesionmolecule-1(ICAM-1), interleukin-1(IL-1), NF-κB p65, collagen type IV,3-nitrotyrosine (NT), nephrin, phosphorylation of p38MAPK (p-p38), phosphorylationof JAK2(p-JAK2) phosphorylation of STAT3(p-STAT3) protein expression in renaltissue.
     Results:
     In the control diabetic group, UAER was significantly higher than the normalgroup (P<0.01); UAER in the three TGP administration groups was significantly lowerthan the control diabetic group (P<0.01). The rats in control diabetic group manifestedas hyperglycemia, weight loss, increased relative kidney weight, TGP (50,100,200mg/kg.d) administration eight weeks had no signifcant effect in preventing the modelrats hyperglycemia and weight loss (P﹥0.01). The glomerular volume (VG) in thecontrol diabetic group was significantly higher than the normal group, in TGP (100,200mg/kg.d) administration groups the VGwere significantly lower than the controldiabetic group (P<0.05, P<0.01). In the TGP (100,200mg/kg.d) administration groupsthe tubulointerstitial injury index (TII) was significantly lower than the control diabeticgroup (P<0.05, P<0.01). The rats renal tissue expressions of ICAM-1, TNF-α, IL-1,NF-κB-p65, type IV collagen protein compared with the control diabetic group weresignificantly reduced by TGP (50,100,200mg/kg.d) administration, ICAM-1weredown47.9%,60.4%,72.9%, respectively; and TNF-α were down46.5%,86%,93.8%respectively; IL-1, were down77.7%,86.4%,88.6%, respectively; NF-κB-p65weredown38.4%,53%,59%, respectively; type IV collagen were down47.9%,60.4%,72.9%, respectively. Compared with the control diabetic group, TGP (50,100,200mg/ kg.d) administration eight weeks had no significant effect on glomerular TLR2expression, tubular-interstitial TLR2expression was significantly lower than that in thecontrol diabetic group (P<0.01). The glomerular and tubular-interstitial TLR4expressions were significantly lower by TGP (50,100,200mg/kg.d) administrationcompared with the control diabetic group (P<0.01).
     The renal tissue T-AOC, SOD and CAT activity in the control diabetic groupdecreased significantly compared with the normal group (P<0.01). T-AOC, SOD andCAT activity in TGP (200mg/kg.d) administration were significantly higher than thecontrol diabetic group (P<0.01). The renal tissue expression of3-NT, p-p38proteinlevels were significantly reduced by TGP (50,100,200mg/kg.d) administrationcompared with the control diabetic group,3-NT was down41.2%,43.8%,57.5%,respectively; p-p38was down30.8%,24%and60.1%, respectively. The nephrin waslinearly uniformly distributed in normal group glomeruli. Nephrin expression wassignificantly reduced, showing granular uneven distribution in control diabetic group.Nephrin expression was partially restored in the glomeruli by TGP administration.Compared with the control diabetic group the nephrin protein expression were up25.2%,89.2%,73.9%, respectively in the TGP (50,100,200mg/kg.d) administration group.
     The tubulointerstitial E-cad protein expression in the control diabetic group wassignificantly lower than that in the normal group (P<0.01), tubulointerstitial E-cadprotein expression was significantly higher than that in the control diabetic group byTGP (50,100,200mg/kg.d)8weeks administration (P<0.01). The tubulointerstitialα-SMA, Vim and OPN protein expression in the control diabetic group weresignificantly higher than the normal group (P<0.01), tubulointerstitial α-SMA, Vim andOPN protein expressions were significantly lower than that in the control diabetic groupby TGP (50,100,200mg/kg.d)8weeks administration (P <0.01).
     The PCNA, ED-1, p-STAT3, PCNA/ED-1, p-STAT3/ED-1, TLR2/ED-1,TLR4/ED-1positive staining cell number in the control diabetic group were significantly higher than that in the normal group (P<0.01). The PCNA, ED-1, p-STAT3,PCNA/ED-1, p-STAT3/ED-1positive staining cell number in TGP (50,100,200mg/kg.d) administered group were significantly lower than that in the control diabetic group(P<0.01). p-JAK2, p-STAT3protein expressions in renal tissue of the control diabeticgroup were significantly higher than that in the normal group (P<0.01). By TGP (50,100,200mg/kg.d) administration, the p-JAK2protein expressions were down22.3%,50.5%,43.2%, respectively; p-STAT3protein expressions were down20.9%,61.1%,42.3%, respectively compared to the control diabetic group.
     Conclusionsdf
     TGP has a significant protective effect on early renal damage in STZ-induceddiabetic rats. The TGP plays a renoprotective effect possiblely by following a variety ofmechanisms, such as the inhibition of intrarenal inflammatory response, anti-oxidativestress damage, inhibition of renal tubular epithelial cell transdifferentiation, inhibition ofrenal interstitial fibrosis, inhibition of macrophage infiltration and proliferation andactivation, inhibition of JAK2/STAT3signaling pathways.
引文
[1] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women inChina [J]. N Engl J Med,2010,362(12):1090–101.
    [2] National Kidney Foundation. KDOQI Clinical Practice Guidelines and ClinicalPractice Recommendations for Diabetes and Chronic Kidney Disease [J]. Am JKidney Dis,2007,49(Suppl2):S1-S180.
    [3] Turgut F, Bolton WK. Potential new therapeutic agents for diabetic kidney disease[J]. Am J Kidney Dis,2010,55(5):928-940.
    [4]徐叔云,陈敏珠,魏伟,等.免疫药理与临床[M].周金黄,刘干中主编.中药药理与临床研究进展(第1册).北京:中国科学技术出版社,1992:49-59.
    [5] Zheng YQ, Wei W, Zhu L, et al. Effects and mechanisms of Paeoniflorin, abioactive glucoside from paeony root, on adjuvant arthritis in rats [J]. Inflamm Res,2007,56(5):182-188.
    [6] Liu DF, Wei W, Song LH. Protective effect of paeoniflorin on immunological liverinjury induced by bacillus Calmette-Guerin plus lipopolysaccharide: modulation oftumour necrosis factor-alpha and interleukin-6MRNA [J]. Clin Exp PharmacolPhysiol,2006,33(4):332-339.
    [7] Zhang LL, Wei W, Wang NP, et al. Paeoniflorin suppresses inflammatory mediatorproduction and regulates G protein-coupled signaling in fibroblast-like synoviocytesof collagen induced arthritic rats [J]. Inflamm Res,2008,57(8):388-395.
    [8] Wu YG, Ren KJ, Liang C, et al. Renoprotective effect of total glucosides of paeonyand its mechanism in experimental diabetes [J]. J Pharmacol Sci,2009,109(1):78-87.
    [9]孙敏,樊宏伟,赖红容,等.中药对高糖作用下牛肾小球系膜细胞增殖的影响[J].中国中医药信息杂志,2004,11(5):399-400.
    [10]Maarten W, Taal. Brenner&Rector’s the kidney [M],9th ed. ELSEVIER,2011:1411-1454.
    [11]高小荣,田庚元.白芍化学成分研究进展[J].中国新药杂志,2006,15(6):416-418.
    [12]李军,李延凤,周爱物,等.白芍总苷的毒性研究[J].中国药理学通报,1991,7(1):53-55.
    [13]王斌,姚余有,周爱武,等.白芍总甙对佐剂性关节炎大鼠的免疫调节作用及其与一氧化氮关系的研究[J].中国免疫学杂志,1996,12(2):104-106.
    [14]周玲玲,魏伟,沈玉先,等.白芍总苷对小鼠系统性红斑狼疮样改变的保护作用[J].中国药理学通报,2002,18(2):175-177.
    [15]王志坚,陈敏珠,孙桂华,等.白芍总甙治疗类风湿性关节炎的临床药理研究[J].中国药理学通报,1994,10(2):117-121.
    [16]Tuttle KR. Liking metabolism and immunology: diabetic nephropathy is aninflammatory disease [J]. J Am Soc Nephrol,2005,16(6):1537-38.
    [17]Feng Y, Chao W. Toll-like receptors and myocardial inflammation [J]. Int J Inflam,2011,11(1):307-314.
    [18]Li Q, Verma IM. NF-κB regulation in the immune system [J]. Nat Rev Immunol,2012,2(10):725-734.
    [19]Gu HF, Ma J, Gu KT, et al. Association of intercellular adhesion molecule1(ICAM-1) with diabetes and diabetic nephropathy [J]. Front Endocrinol,2012,3(179):1-7.
    [20]Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficientmice are resistant against renal injury after induction of diabetes [J]. Diabetes,2003,52(10):2586-2593.
    [21]Mora C, Navarro JF. The role of inflammation as a pathogenic factor in thedevelopment of renal disease in diabetes [J]. Curr Diab Rep,2005,5(6):399-401.
    [22]王斌,陈敏珠,徐叔云.白芍总甙对大鼠腹腔巨噬细胞产生肿瘤坏死因子的影响[J].中国药理学通报,1995,11(1):36-38.
    [23]Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury inexperimental diabetic rats through anti-inflammatory effects mediated by inhibitionof NF-κB activation [J]. Am J Physiol Renal Physiol,2007,292(4): F1141-F1150.
    [24]Zhu L, Wei W, Zheng YQ, et al. Effects and mechanisms of total glucosides ofpaeony on joint damage in rat collagen-induced arthritis [J]. Inflamm Res,2005,54(5):211-220.
    [25]Zheng YQ, Wei W. Total glucosides of paeony suppresses adjuvant arthritis in ratsand intervenes cytokine-signaling between different types of synoviocytes [J]. IntImmunopharmacol,2005,5(10):1560-1573.
    [1] Xu S, Jiang B, Maitland KA, et a1. The thromboxane receptor antagonist S18886attenuates renal oxidant stress and proteinuria in diabetic apolipoprotein E-deficientmice [J]. Diabetes,2006,55(1):110-119.
    [2]徐叔云,陈敏珠,魏伟,等.免疫药理与临床[M].周金黄,刘干中主编.中药药理与临床研究进展(第1册).北京:中国科学技术出版社,1992:49-59.
    [3] Forbes JM, Cooper ME. Mechanisms of diabetic complications [J]. Physiol Rev,2013,93(1):137-188.
    [4] Beisswenger PJ, Drummond KS, Nelson RG, et al. Susceptibility to diabeticnephropathy is related dicarbonyl and oxidative stress [J]. Diabetes,2005,54(11):3274-3281.
    [5] Mathieson PW. Update on the podocyte [J]. Curr Opin Nephrol Hypertens,2009,18(3):206-211.
    [6]董婧,吴永贵,齐向明,等.霉酚酸酯对糖尿病大鼠肾组织Nephrin与Podocin表达的影响及机制[J].中国药理学通报,2008,24(2):254-258.
    [7] Ceriello A, Mercuri F, Quagliaro L, et a1. Detection of nitrotyrosine in the diabeticplasma: evidence of oxidative stress [J]. Diabetologia,2001,44(7):834-838.
    [8] Kitada M, Koya D, Sugimoto T, et al. Translocation of glomerular p47phox andp67phox by protein kinase C-b activation is required for oxidative stress in diabeticnephropathy [J]. Dibaetes,2003,52(10):2603-2614.
    [9] Ohkita M, Takaoka M, Matsumura Y. Drug discovery for overcoming chronickidney disease (CKD): the endothelin ET B receptor/nitric oxide system functionsas a protective factor in CKD [J]. J Pharmacol Sci,2009,109(1):7-13.
    [10]Gwathmey TM, Westwood BM, Pirro NT, et al. Nuclear angiotensin-(1-7) receptoris functionally coupled to the formation of nitric oxide [J]. Am J Physiol RenalPhysiol,2010,299(5):F983-F990.
    [11]Escames G, Leon J, Macias M, et al. Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats [J].FASEB J,2003,17(8):932-934.
    [12]Wang H, Wei W, Wang NP, et al. Effects of total glucosides of peony onimmunological hepatic fibrosis in rats [J]. World J Gastroenterol,2005,11(14):2124-2129.
    [13]Patrakka J, Tryggvason K. New insights into the role of podocytes in proteinuria [J].Nat Rev Nephrol,2009,5(8):463-468.
    [14]Eto N, Wada T, Inaqi R, et al. Podocyte protection by darbepoetin: preservation ofthe cytoskeleton and nephrin expression [J]. Kidney Int,2007,72(4):455-463.
    [15]Fukasawa H, Bornheimer S, Kudlicka K, et al. Slit diaphragms contain tightjunction proteins [J]. J Am Soc Nephrol,2009,20(7):1491-1503.
    [16]Wang G, Lai FM, Lai KB, et al. Urinary messenger RNA expression ofpodocyte-associated molecules in patients with diabetic nephropathy treated byangiotensin-converting enzyme inhibitor and angiotensin receptor blocker [J]. Eur JEndocrinol,2008,158(3):317-322.
    [17]Davis BJ, Can Z, de Gasparo M, et Al. Disparate effects of anglotensin IIantagonists and calcium channel blockers on albuminuria in experimental diabetesand hypertension;potential role of nephrin [J]. Hypertens,2003,21(1):209-216.
    [18]Menne J, Meier M, Park JK, et al. Nephrin loss in experimental diabeticnephropathy is prevented by deletion of protein kinase C alpha signaling in vivo [J].Kidney Int,2006,70(8):1456-1462.
    [19]Doublier S, Ruotsalainen V, Salvidio G, et al. Nephrin redistribution on podocytesis a potential mechanism for proteinuria in patients with primary acquired nephroticsyndrome [J]. Am J Pathol,2001,158(5):1723-1731.
    [20]Takano Y, Yamauchi K, Hayakawa K, et al. Transcriptional suppression of nephrinin podocytes by macrophages: roles of inflammatory cytokines and involvement ofthe PI3K/Akt pathway [J]. FEBS Lett,2007,581(3):421-426.
    [21]常艳,魏伟,张磊,等.白芍总苷对IL-1α诱导胶原性关节炎大鼠成纤维样滑膜细胞功能的影响[J].中国药理学通报,2007,23(2):185-188.
    [22]路景涛,孙妩弋,刘浩,等.白芍总苷对免疫性肝纤维化大鼠肝组织NF-κB和TGF-β1蛋白表达的影响[J].中国药理学通报,2008,24(5):588-592.
    [23]Schiekofer S, Galasso G, Andrassy M, et al. Glucose control with insulin results inreduction of NF-kappaB-binding activity in mononuclear blood cells of patientswith recently manifested type1diabetes [J]. Diabetes Obes Metab,2006,8(5):473-482.
    [24]Zheng YQ, Wei W. Total glucosides of paeony suppresses adjuvant arthritis in ratsand intervenes cytokine-signaling between different types of synoviocytes [J]. IntImmunopharmacol,2005,5(10):1560-1573.
    [25]Zhu L, Wei W, Zheng YQ, et al. Effects and mechanisms of total glucosides ofpaeony on joint damage in rat collagen-induced arthritis [J]. Inflammation Res2005,54(5):211-220.
    [1] Nickolas TL, Forster CS, Sise ME, et al. NGAL (Lcn2) monomer is associated withtubulointerstitial damage in chronic kidney disease [J]. Kidney Int,2012,82(6):718-722.
    [2] Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia inend-stage renal disease [J]. Nat Rev Nephrol,2010,6(11):667-678.
    [3] Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidneydisease: more than an aftermath of glomerular injury [J]. Kidney Int,1999,56(5):1627-1637.
    [4] Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression ofchronic kidney disease [J]. Pediatr Nephrol,2012,27(6):901-909.
    [5] Liu H. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. JAm Soc Nephrol,2010,21(2):212-222.
    [6] Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition oftubular epithelial cells in human renal biopsies [J]. Kidney Int,2002,62(1):137-146.
    [7] Rhyu DY, Yang Y, Ha H, et al. Role of reactive oxygen species inTGF-beta1-induced mitogen-activated protein kinase activation andEpithelial-mesenchymal transition in renal tubular epithelial cells [J]. J Am SocNephrol,2005,16(3):667-675.
    [8] Ng YY, Huang TP, Yang WC, et al. Tubular epithelial-myofibroblasttransdifferentiation in progressive tubulointerstitial fibrosis in5/6nephrectomizedrats [J]. Kidney Int,1998,54(3):864-876.
    [9] Strutz F, Zeisberg M, et al. Renal fibroblasts and myofibroblasts in chronic kidneydisease [J]. J Am Soc Nephrol,2006,17(11):2992-2998.
    [10]Yang JW, Liu YH. Blockage of tubular epithelial to myofibroblast transition byhepatocyte growth factor prevents renal interstitial fibrosis [J]. J Am Soc Nephrol2002,13(1):96-107.
    [11]Chow FY, Nikolic-Paterson DJ, Atkins RC, et al. Macrophages instreptozotocin-induced diabetic nephropathy: potential role in renal fibrosis [J].Nephrol Dial Transplant,2004,19(12):2987-2896.
    [12]Zheng YQ, Wei W. Total glucosides of paeony suppresses adjuvant arthritis in ratsand intervenes cytokine-signaling between different types of synoviocytes [J]. IntImmunopharmacol,2005,5(10):1560-1573.
    [13]Wang H, Wei W, Wang NP, et al. Effects of total glucosides of peony onimmunological hepatic fibrosis in rats [J]. World J Gastroenterol,2005,11(14):2124-2129.
    [14]Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [15]Xu S, Jiang B, Maitland KA, et al. The thromboxane receptor antagonist S18886attenuates renal oxidant stress and proteinuria in diabetic apolipoprotein E-deficientmice [J]. Diabetes,2006,55(1):110-119.
    [16]周登余,徐星铭,戴宏等.白芍总苷对大鼠系膜增生性肾小球肾炎的保护作用[J].安徽医科大学学报2006,41(2):146-149.
    [17]Zavadil J, B ttinger EP. TGF-beta and epithelial-to-mesenchymal transitions [J].Oncogene,2005,24(37):5764-5774.
    [18]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymaltransition [J]. Cell Res,2009,19(2):156-172.
    [19]Fan JM, Huang XR, Ng YY, et al. Interleukin-1induces tubularepithetlial-myofibroblast transdifferentiation through a transforming growthfactor-beta1-dependent mechanism in vitro [J]. Am J Kidney Dis,2001,37(4):820-831.
    [20]李瑞麟,马勇,魏伟等.白芍总苷治疗四氯化碳致大鼠肝纤维化的作用与其影响肝星状细胞功能的关系[J].中国新药杂志,2007,16(9):685-689.
    [1] Marrero MB, Banes-Berceli AK, Stern DM, et al. Role of the JAK/STAT signalingpathway in diabetic nephropathy [J]. Am J Physiol Renal Physiol,2006,290(4):F762-F768.
    [2] Ortiz-Mu oz G, Lopez-Parra V, Lopez-Franco O, et al. Suppressors of cytokinesignaling abrogate diabetic nephropathy [J]. J Am Soc Nephrol,2010,21(5):763-772.
    [3] Lu TC, Wang ZH, Feng X, et al. Knockdown of Stat3activity in vivo preventsdiabetic glomerulopathy [J]. Kidney Int,2009,76(1):63-71.
    [4] Tuttle KR. Linking metabolism and immunology: Diabetic nephropathy is aninflammatory disease [J]. J Am Soc Nephrol,2005,16(6):1537-1538.
    [5] Chow FY, Nikolic-Paterson DJ, Ozols E, et al. Monocyte chemoattractant protein-1promotes the development of diabetic renal injury in streptozotocin-treated mice [J].Kidney Int,2006,69(1):73-80.
    [6] Zhang LL, Wei W, Wang NP, et al. Paeoniflorin suppresses inflammatory mediatorproduction and regulates G protein-coupled signaling in fibroblast-likesynoviocytes of collagen induced arthritic rats [J]. Inflamm Res,2008,57(8):388-395.
    [7] Brosius FC Ⅲ. New insights into the mechanisms of fibrosis and sclerosis indiabetic nephropathy [J]. Rev Endocr Metab Disord,2008,9(4):245-254.
    [8] Chuang PY, He JC. JAK/STAT signaling in renal disease [J]. Kidney Int,2010,78(3):231-234.
    [9] Amiri F, Shaw S, Wang X, et al. Angiotension Ⅱactivation of the JAK/STATpathway in mesangial cells is altered by high glucose [J]. Kidney Int,2002,61(5):1605-1616.
    [10]Huang JS, Chuang LY, Guh JY, et al. Antioxidants attenuate high glucose-inducedhypertrophic growth in renal tubular epithelial cells [J]. Am J Physiol Renal Physiol,2007,293(4):F1072-F1082.
    [11]Banes-Berceli AK, Shaw S, Ma G, et al. Effects of simvastatin on high glucose-andangiotensin Ⅱ-induced activation of the JAK/STAT pathway in mesangial cell [J].Am J Physiol Renal Physiol,2006,291(1):F116-F12.
    [12]Neria F, Castilla MA, Sanchez RF, et al. Inhibition of JAK2protects renalendothelial and epithelial cells from oxidative stress and cyclosporine A toxicity [J].Kidney Int,2009,75(2):227-234.
    [13]Shi Y, Zhang Y, Wang C, et al. Suppressor of cytokine signaling-1reduces highglucose-induced TGF-beta1and fibronectin synthesis in human mesangial cells [J].FEBS Lett,2008,582(23):3484-3488.
    [14]Williams MD, Nadler JL. Inflammatory mechanisms of diabetic complications [J].Curr Diab Rep,2007,7(3):242-248.
    [15]Mezzano S, Aros C, Droguett A, et al. NF-kappa B activation and overexpressionof regulated genes in human diabetic nephropathy [J]. Nephrol Dial Transplant,2004,19(10):2505-2512.
    [16]Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficientmice are resistant against renal injury after induction of diabetes [J]. Diabetes,2003,52(10):2586-2593.
    [17]Lan HY, Nikolic-Paterson DJ, Mu W, et al. Local macrophage proliferation inmultinucleated giant cell and granuloma formation in experimental Goodpasture'ssyndrome [J]. Am J Pathol,1995,147(5):1214-1220.
    [18]Mohammad MK, Morran M, Slotter beck B, et al. Dysregulated Toll-like receptorexpression and signaling in bone marrow-derived macrophages at the onset ofdiabetes in the non-obese diabetic mouse [J]. Int Immunol,2006,18(7):1101-1113
    [19]Xu HM, Wei W, Jia XY, et al. Effects and mechanisms of total glucosides ofpaeony on adjuvant arthritis in rats [J]. J Ethnopharmacol,2007,109(3):442-448.
    [20]Maziere C, Conte LA, Maziere JC. Activation of JAK2by the oxidative stressgenerated with oxidized low-density lipoprotein [J]. Free Radic Biol Med,2001,31(11):1334-1340.
    [21]Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules inmesangial cells cultured under high glucose [J]. Kidney Int Suppl,2000,77:S19-S25.
    [22]Simon AR, Rai U, Fanburg BL, et al. Activation of the JAK-STAT pathway byreactive oxygen species [J]. Am J Physiol Cell Physiol1998,275(6):1640–1652.
    [23]史永红,段惠军,王丽晖.苯那普利对糖尿病大鼠肾皮质JAK/STAT信号蛋白磷酸化的影响[J].中国病理生理杂志2007,23(6):1230–1232.
    [1] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women inChina [J]. N Engl J Med,2010,362(12):1090-101.
    [2] Iyengar SK, Fox KA, Schachere M, et al. Linkage analysis of candidate loci for endstage renal disease due to diabetic nephropathy [J]. J Am Soc Nephrol,2003,14(7Suppl2):S195-201.
    [3] Maarten W, Taal. Brenner&Rector’s the kidney [M],9th ed. ELSEVIER,2011:1411-1454.
    [4] Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabeticnephropathy [J]. J Am Soc Nephrol,2010,21(4):556-563.
    [5] Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabeticglomerulopathy [J]. Curr Diabetes Rev,2008,4(1):39-45.
    [6] Harris RC, Haraison MA, Badr KF. Continuous stretch-relaxation in culture altersrat mesangial cell morphology, growth characteristics, and metabolic activity [J].Lab Invest,1992,66(5):548-554.
    [7] Riser BL, Varani J, Cortes P, et al. Cyclic stretching of mesangial cells up-regulatesintercellular adhesion molecule-1and leukocyte adherence: a possible newmechanism for glomerulosclerosis [J]. Am J Pathol,2001,158(1):11-17.
    [8] Wolf G and Ziyadeh FN. Cellular and molecular mechanisms of proteinuria indiabetic nephropathy [J]. Nephron Physiol,2007,106(2):26-31.
    [9] Cortes P, Zhao X, Riser BL, et al. Role of glomerular mechanical strain in thepathogenesis of diabetic nephropathy [J]. Kidney Int,1997,51(1):57-58.
    [10]Brosius FC, Heilig CW. Glucose transporters in diabetic nephropathy [J]. PediatrNephrol,2005,20(4):447-451.
    [11]Mishra R, Emancipator SN, Kern T, et al. High glucose evokes an intrinsicproapoptotic signaling pathway in mesangial cells [J]. Kindey Int,2005,67(1):82-93.
    [12]Hemanth KN, Prashanth S, Vidya SJ. Diabetic nephropathy-pathogenesis andnewer targets in treatment [J]. IJPSRR,2011,6(2):91-105.
    [13]Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress anddiabetic nephropathy [J]. Oxid Med Cell Longev,2010,3(2):101-108.
    [14]Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products inpatients with diabetic nephropathy [J]. N Engl J Med,1991,325(12):836-842.
    [15]Boyd-White J, Williama JC. Effect of cross-linking in matrix permeability: a modelfor AGE-modified basement membrances [J]. Diabetes,1996,45(3):348-353.
    [16]Napolic C, Triggiani M, Palumbo G, et al. Glycosylation enhances oxygenradical-induced modifications and decrease acetylhydrolase activity of human lowdensity lipoprotein [J]. Basic Res Cardiol,1997,92(2):96-105.
    [17]Das Evcimen N, King GL. The role of protein kinase C activation and the vascularcomplications of diabetes [J]. Pharmacol Res,2007,55(6):498-510.
    [18]Yamagishi S, Fukami K, Ueda S, et al. Molecular mechanisms of diabeticnephropathy and its therapeutic intervention [J]. Curr Drug Targets,2007,8(8):952-959.
    [19]Kelly DJ, Zhang Y, Hepper C, et al. Protein kinase C beta inhibition attenuates theprogression of experimental diabetic nephropathy in the presence of continuedhypertension [J]. Diabetes,2003,52(2):512-518.
    [20]Dunlop M. Aldose reductase and the role of the polyol pathway in diabeticnephropathy [J]. Kidney Int Suppl,2000,77:S3-S12.
    [21]Reeves WB, Rawal BB, Abdel-Rahman EM, et al. Therapeutic Modalities inDiabetic Nephropathy: Future Approaches [J]. Open J Nephrol,2012,2(2):5-18.
    [22]Schweda F, Friis U, Wagner C, et al. Renin realse [J]. Physiology,2007,22:310-319.
    [23]Kang JJ, Toma I, Sipos A, et al. The collecting duct is the major source of proreninin diabetes [J]. Hypertension,2008,51(6):1597-1604.
    [24]Daneman D, Crompton CH, Balfe JW, et al. Plasma prorenin as an early marker ofnephropathy in diabetic (IDDM) adolescents [J]. Kidney Int,1994,46(4):1154-1159.
    [25]Takahashi H, Ichihara A, Kaneshiro Y, et al. Regression of nephropathy developedin diabetes by (pro) renin receptor blockade [J]. J Am Soc Nephrol,2007,18(7):2054-2061.
    [26]Nguyen G. Renin/prorenin receptors [J]. Kidney Int,2006,69(9):1503-1506.
    [27]Ichihara A, Suzuki F, Nakagawa T, et al. Prorenin receptor blockade inhibitsdevelopment of glomerulosclerosis in diabetic angiotensin II type1areceptor-deficient mice [J]. J Am Soc Nephrol,2006,17(7):1950-1961.
    [28]Sharma K, Jin Y, Guo J, et al. Neutralization of TGF-β antibody attenuates kidneyhypertrophy and the enhanced extracellular matrix gene expression in STZinduceddiabetic mice [J]. Diabetes,1996,45(4):522-530.
    [29]Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growthfactors in progressive interstitial fibrosis in diabetic nephropathy [J]. Kidney Int,2000,57(3):1002-1014.
    [30]Sharma K, Eltayeb BO, McGowan TA, et al. Captopril-induced reduction of serumlevels of transforming growth factor-β1correlates with long-term renoprotection ininsulin-dependent diabetic patients [J]. Am J Kidney Dis,1999,34(5):818-23.
    [31]Di Paolo S, Gesualdo L, Ranieri E, et al. High glucose concentration induces theover expression of transforming growth factor-beta through the activation of aplatelet-derived growth factor loop in human mesangial cells [J]. Am J Pathol,1996,149(6):2095-3006.
    [32]Benigni A, Zoja C, Corna D, et al. Add-on anti-TGF-beta antibody to ACEinhibitor arrests progressive diabetic nephropathy in the rat [J]. J Am Soc Nephrol,2003,14(7):1816-1824.
    [33]Dal C, Yang J, Bastacky S, et al. Intravenous administration of hepatocyte growthfactor gene ameliorates diabetic nephropathy in mice [J]. J Am Soc Nephrol,2004,15(10):2637-2647.
    [34]Ferrera N. Vascular endothelial growth factor and the regulation of angiogenesis [J].Recent Prog Horm Res,2000,55:15-35.
    [35]DE Vriese AS, Tilton RG, Elger M, et al. Antibodies against vascular endothelialgrowth factor improve early renal dysfunction in experimental diabetes [J]. J AmSoc Nephrol,2001,12(5):993-1000.
    [36]Ichinose K, Maeshima Y, Yamamoto Y, et al. Antiangiogenic endostatin peptideameliorates renal alterations in the early stage of a type1diabetic nephropathy model[J]. Diabetes,2005,54(10):2891-2903.
    [37]Yamamoto Y, Maeshima M, Kitayama H, et al. Tumstatin peptide, an inhibitor ofangiogenesis, prevents Glomerular hypertrophy in the early stage of diabeticnephropathy [J]. Diabetes,2004,53(7):1831-1840.
    [38]Bortoloso E, Del Prete D, Dalla Vestra M, et al. Quantitative and qualitativechanges in vascular endothelial growth factor gene expression in glomeruli ofpatients with type2diabetes [J]. Eur J Endocrinol,2004,150(6):799-807.
    [39]Baelde HJ, Eikmans M, Lappin DW, et al. Reduction of VEGF-A and CTGFexpression in diabetic nephropathy is associated with podocyte loss [J]. Kidney Int,2007,71(7):637-645.
    [40]Hammes HP, Lin J, Wagner P, et al. Angiopoietin-2causes pericyte dropout in thenormal retina: evidence for involvement in diabetic retinopathy [J]. Diabetes2004,53(4):1104-1110.
    [41]Williams MD, Nadler JL. Inflammatory mechanisms of diabetic complications [J].Curr I)iab Rep,2007,7(3):242-248.
    [42]Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines indiabetic nephropathy [J]. J Am Soc Nephrol,2008,19(3):433-442.
    [43]Tilak P,Khashim Z,Kumpatla S, et al. Clinical significance of urinary MonocyteChemoattractant Protein-1(uMCP-1) in Indian type2diabetic patients at differentstages of diabetic nephropathy [J]. Int J Diabetes Mellitus,2010,2(1):15-19.
    [44]Juna FN, Carmen M, Manuel M, et al. Inflammatory parameter are independentlyassociated with urinary albumin in type2diabetes mellitus [J]. Am J Kidney Dis,2003,42(1):53-61.
    [45]Shelbaya S, Amer H, Seddik S, et al. Study of the role of interleukin-6and highlysenstive C-reative protein in diabetic nephropathy in type1diabetic patients [J]. EurRev Med Pharmacol Sci,2012, l6(2):176-182.
    [46]Devarai SJ, Kumaresan PR, Jialal I. C-reactive protein induces release of bothendothelial micropartic1es and circulating endothelia1cells in vitro and in vivo:evidence of endothelial dysfunction [J]. Clin Chem,2011,57(12):1757-1761.
    [47]Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1deficientmice are resistant against renal injury after induction of diabetes [J]. Diabetes,2003,52(10):2586-2593.
    [48]Chow FY, Nikolic-Paterson DJ, Ozols E, et al. Intercellular adhesion molecule-1deficiency is protective against nephropathy in type2diabetic db/db mice [J]. J AmSoc Nephrol,2005,16(6):1711-1722.
    [49]Fernández-Real JM, Vendrell J, García I, et al. Structural damage in diabeticnephropathy is associated with TNF-α system activity [J]. Acta Diabetol,2012,49(4):301-305.
    [50]Wang X, Feuerstein GZ, Xu L, et al. Inhibition of tumor necrosisfactor-alpha-converting enzyme by a selective antagonist protects brain from focalischemic injury in rats [J]. Mol Pharamcol,2004,65(4):890-896.
    [51]B hler T, Waiser J, Hepburn H, et al. TNF-alpha and IL-1alpha induce apoptosis insubconfluent rat mesangial cells. Evidence for the involvement of hydrogenperoxide and lipid peroxidation as second messengers [J]. Cytokine,2000,12(7):986-991.
    [52]Koik N, Takamura T, Kaneko S. Induction of reactive oxygen species from isolatedrat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of aphosphodiesterase inhibitor [J]. Life Sci,2007,80(18):1721-1728.
    [53]Dalla Vestra M, Mussap M, Gallna P, et a1. Acute-phase markers of inflammationand glomerular structure in patients with type2diabetes [J]. J Am Soc Nephrol,2005,16(11):78-82.
    [54]Nakamura A, Shikata K, Hiramatsu M, et a1. Serum interleukin-18levels areassociated with nephropathy and atherosclerosis in Japanese patients with type2diabetes [J]. Diabetes Care,2005,28(12):2890-2895.
    [55]Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, et al. Pathophysiological roleand therapeutic implications of inflammation in diabetic nephropathy [J]. World JDiabetes,2012,3(1):7-18.
    [56]Chen YM, Ng YY, Lin SL, et al. Pentoxifylline suppresses renal tumour necrosisfactor-alpha and ameliorates experimental crescentic glomerulonephritis in rats [J].Nephrol Dial Transplant,2004,19(5):1106-1115.
    [57]Navarro JF, Mora C, Rivero A, et al. Urinary protein excretion and serum tumornecrosis factor in diabetic patients with advanced renal failure: Effects ofpentoxifylline administration [J]. Am J Kidney Dis,1999,33(3):458-463.
    [58]Navarro JF, Mora C, Muros M, et al. Additive antiproteinuric effect ofpentoxifylline in patients with type2diabetes under angiotensin II receptorblockade: A short-term, randomised, controlled trial [J]. J Am Soc Nephrol,2005,16(7):2119-2126.
    [59]Utimura M, Fujihara CK, Mattar AL, et al. Mycophenolate mofetil prevents thedevelopment of glomerular injury in experimental diabetes [J]. Kidney Int,2003,63(1):209-216.
    [60]Moriwaki Y, Inokuchi T, Yamamoto A, et al. Effect of TNF-alpha inhibition onurinary albumin excretion in experimental diabetic rats [J]. Acta Diabetol,2007,44(4):215-218.
    [61]Nishikawa T, Kukidome D, Sododa K,et al. Impact of mitochondrial ROSproduction on diabetic vascular complications [J]. Diabetes Res Clin Pract2007,77(suppl1):S41-45.
    [62]Suzuki D, Miyata T, Saotome N, et al. Immunohistochemical evidence for anincreased oxidative stress and carbonyl modification of proteins in diabeticglomerular lesions [J]. J Am Soc Nephrol,1999,10(4):822-832.
    [63]Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPHoxidase in glucose-induced oxidative stress in the kidney: implications in type2diabetic nephropathy [J]. Am J Physiol Renal Physiol,2010,299(6):F1348-58.
    [64]Vasavada N, Agarwal R. Role of oxidative stress in diabetic nephropathy [J]. AdvChronic Kidney Dis,2005,12(2):146-154.
    [65]Liao JK. Endothelium and acute coronary syndrome [J]. Clin Chem,1998,44(8Pt2):1799-808.
    [66]Prabhakar SS. Role nitric oxide in diabetic nephropathy [J]. Semin Nephrol,2004,24(3):333-344.
    [67]Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinicalinformation [J]. Curr Dia Rep,2001,1(3):282-287.
    [68]Weil EJ, Lemley KV, Mason CC, et al. Podocyte detachment and reducedglomerular capillary endothelial fenestration promote kidney disease in type2diabetic nephropathy [J]. Kidney Int,2012,82(9):1010-1017.
    [69]Doublier S, Salvidio G, Lupia E, et al. Nephrin expression is reduced in humandiabetic nephropathy: evidence for a distinct role for glycated albumin andangiotensin II [J]. Diabetes,2003,52(4):1023-1030.
    [70]Benigni A, Gagliardini E, Tomasoni S, et al. Selective impairment of geneexpression and assembly of nephrin in human diabetic nephropathy [J]. Kidney Int,2004,65(6):2193-2200.
    [71]Gross ML, EI-Shakmak A, Szabo A, et al. ACE-inhibitors but not endothelinreceptor blockers prevent podocyte loss in early diabetic nephropathy [J].Diabetologia,2003,46(6):856-868.
    [72]Mifsud SA, Allen TJ, Bertram JF, et al. Podocyte foot process broadening inexperimental diabetic nephropathy: amelioration with renin-angiotensin blockade [J].Diabetologia,2001,44(7):878-882.
    [73]Langham RG, Kelly DJ, Cox AJ, et al. Proteinuria and the expression of thepodocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects ofangiotensin converting enzyme inhibition [J]. Diabetologia,2002,45(11):1572-1576.
    [74]Li JJ, Kwak SJ, Jung DS, et al. Podocyte biology in diabetic nephropathy [J].Kidney Int Suppl,2007,106:S36-S42.
    [75]Steinke JM, Mauer M, International Diabetic Nephropathy Study Group. Lessonslearned from studies of the natural history of diabetic nephropathy in young type1diabetic patients [J]. Pediatr Endocrinol Rev,2008, Suppl4:958-963.
    [76]Harjutsalo V, Katoh S, Sarti C, et al. Population-based assessment of familialclustering of diabetic nephropathy in type1diabetes [J]. Diabetes,2004,53(9):2449-2454.
    [77]Krolewski AS. Genetics of diabetic nephropathy: evidence for major and minorgene effects [J]. Kidney Int,1999,55(4):1582-l596.
    [78]Janssen B, Hohenade1D, Brinkkoetter P, et al. Carnosine as a protective factor indiabetic nephropathy: association with a leucine repeat of the carnosinase geneCNDP1[J]. Diabetes,2005,54(8):2320-2327.
    [79]So WY, Ma RC, Ozaki R, et al. Angiotensin-converting enzyme (ACE)inhibition intype2, diabetic patients-interaction with ACE insertion/deletion polymorphism [J].Kidney Int,2006,69(8):1438-1443.
    [80]Mooyaart AL, Valk EJ, van Es LA, et a1. Genetic associations in diabeticnephropathy: a meta-analysis [J]. Diabetologia,2011,54(3):544-553.
    [81]Hu C, Zhang R, Yu W, et a1. CPVL/CHN2genetic variant is associated withdiabetic retinopathy in Chinese type2diabetic patients [J]. Diabetes,2011,60(11):3085-3089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700