用户名: 密码: 验证码:
脉冲噪声下时间延迟估计方法及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间延迟估计(TDE)是信号处理领域里一个十分活跃的研究课题。噪声是TDE需要考虑的主要问题之一。在实际应用中,常常会遇到一类具有明显脉冲性的非高斯噪声,基于高斯模型二阶统计量的传统TDE方法性能显著退化。因此,需要研究更具韧性的TDE方法。一种广义的高斯分布——Alpha稳定分布可以更准确地描述其统计特性。本文基于脉冲噪声Alpha稳定分布模型和分数低阶统计量(FLOS),重点研究了单径条件下韧性TDE方法及其在生物医学信号分析中的应用、多径条件下韧性高分辨率TDE方法。该项研究有助于完善随机信号分析处理理论方法由传统的二阶统计量向FLOS方向的扩展,有助于提升TDE算法及其应用的整体水平和韧性程度,因而具有重要的理论和应用意义。
     本文的主要工作如下:
     (1)提出了韧性的自适应非整数TDE方法(LMPFTDE)。用Alpha稳定分布模型建模脉冲噪声,基于最小分散系数(MD)准则,对经典的ETDGE算法进行广义化,LMPFTDE算法在高斯及脉冲噪声下均可以较好的工作。为了避免基于FLOS算法中参数的选取问题,基于非线性变换,给出了适用于非时变TDE的Sigmoid相关算法;基于零阶统计量,给出了对数广义平稳性和对数遍历性的概念,提出了用几何功率对收敛因子归一化的自适应TDE方法(NZOSTDE),这两种算法适合用于脉冲性较强的环境。将NZOSTDE算法应用于EP信号潜伏期延长的检测中,取得了较好的效果。
     (2)在脉冲噪声多径TDE问题中,基于FLOS提出了三种韧性的、可以突破相关法分辨极限的高分辨率TDE方法:变换域多径TDE方法(FLOCCS-ESPRIT)、基于EM的韧性多径TDE方法(P-EM)及基于MD的松弛迭代多径TDE(RHMTDE)。FLOCCS-ESPRIT算法将多径信号的分数低阶互协方差谱序列看成时间序列,利用ESPRIT算法,得到高分辨率的多径TDE。P-EM、RHMTDE算法从不同角度将一个多维非线性优化问题转化为多个一维优化的问题。P-EM算法基于EM框架,通过信号分解构造完整数据,用p阶分数相关分别迭代得到各径时间延迟的最小平均p范数(LMP)估计;RHMTDE算法基于FLOS及MD,利用松弛搜索逐次迭代分解信号得到各径的TDE。该项研究有助于提高多径脉冲条件下的定位技术,有助于改善探地雷达在脉冲环境下的检测韧性。
     (3)将脉冲噪声建模为Alpha稳定分布,提出了基于LMP盲信道辨识的韧性TDE算法(BCILMP)及韧性的自适应特征值分解TDE算法(RAED)。BCILMP算法和RAED算法的主要思想均是组合两个输入信号,使其共变矩阵最小特征值对应的特征向量为两个信道的估计,在LMP准则下自适应得到该特征向量,从而得到时间延迟信息。RAED算法对误差信号和输入向量均采用分数阶操作。这两种算法提高了基于高斯模型AED算法的韧性。
     (4)研究了胃电信号及其噪声的特点。胃慢波决定胃电的传导,由于棘波和/或动作伪迹的影响,慢波中常常含有尖峰脉冲。因此,在对胃电信号空间特征的提取中,用Alpha稳定分布建模比用高斯分布建模更合适。基于BCILMP算法对仿真产生的带噪胃慢波信号的传导速率进行估计,与LMSTDE算法比较,该算法在高斯噪声和非高斯脉冲噪声环境下,均可以较好地估计出时间延迟。应用BCILMP算法对四位胃轻瘫病人胃电活动(GEA)的传导进行了估计,结果与医生的视觉评价基本一致。辅助医生人工判断,为胃电刺激(GES)治疗胃病参数的选取提供一定的参考。
Time Delay Estimation (TDE) is a popular issue in signal processing areas. Noise is one of the main problems in TDE. In practice, there is a kind of non-Gaussian noises with obvious impulsion in which cases the TDE algorithms based on second-order statistics of Gaussian model degenerate significantly. Therefore, robust methods in TDE need to be researched. A sort of generalized Gaussian distributions, Alpha-stable distribution, can more precisely describe the statistics of impulsive noise. Based on the impulsive noises of the Alpha-stable distribution model, this paper puts the emphases on the robust single path TDE methods and its applications in biological medical area, and also robust high-resolution multipaths TDE methods. The researches of the paper are helpful to the extension of the random signal analysesand processing theories from second-order statistics to FLOS statistics and upgrade the overall level and the robustness of the TDE algorithms and its applications. Therefore, the paper has great significances both in theories and applications.
     The main work of the paper is as follows:
     (1) A robust adaptive fractional TDE method, referred to as LMPFTDE, is proposed. By using impulsive noise modeled Alpha-stable distribution, ETDGE is generalized based on minimum dispersion (MD) criterion. LMPFTDE can work well both in Gaussian and impulsive noise environments. In order to avoid parameter selection, based on non-linear transformation, it proposes sigmoid correlation algorithm that fits for time delay invariance TDE; based on zero order statistics, it proposes the concepts of logarithmic wide sense stationary and logarithmic ergodic random process, and also an adaptive TDE method, referred to as NZOSTDE, with geometric power normalization step factor. These two methods are more suitable for much impulsive noise environments. Using NZOSTDE to detect EP latency delay, good results can be obtained.
     (2) With regard to TDE in impulsive noise multipath environment, based on FLOS, it proposes three robust and high resolution TDE algorithms which could break through the limit of correlation algorithm. They are robust multipath TDE algorithm in transformation domain referred to as FLOCCS-ESPRIT, p-order fractional correlation EM algorithm referred to as P-EM, and robust and high resolution multipath TDE referred to as RHMTDE. The FLOCCS-ESPRIT regards the fractional lower-order cross-covariance spectrum of multipath signal as an equivalent time sequence, then makes use of ESPRIT to obtain high resolution multipath TDE. P-EM and RHMTDE transfer a multi-dimension nonlinearity optimization problem to a multiple one-dimensional optimization problem from different angles. Based on EM frame, P-EM constructs complete data by signal decomposition, iterates respectively by p-order fractional correlation, and obtains the TDE of each path under least mean p-norm (LMP) criterion. Based on FLOS and MD, RHMTDE makes use of relax iteration to acquire TDE of each path. This research can improve position technology and detection robust in ground-penetrating radar under multipath impulsive environment.
     (3) Using Alpha-stable distribution to model impulsive noise, it proposes robust TDE algorithm based on LMP blind channel identification referred to as BCILMP and robust adaptive eigenvalue decomposition referred to as RAED. The main idea of BCILMP and RAED is to assemble two input signals so that the eigenvector corresponding to minimum eigenvalue of covariance matrix is the estimation of two channels. TDE is adaptive obtained under LMP criterion. RAED algorithm uses fractional order operation for error signal and input vector. Both of them improve robustness of AED algorithm based on Gaussian model.
     (4) It studies the characteristics of gastric electrical activity (GEA) with noise. Gastric slow wave decides the propagation of GEA. Due to the effects of spikes and/or motion artifacts, the slow wave often contains sharp impulsion; therefore Alpha-stable distribution is more suitable than Gaussian in GEA research. Based on BCILMP, the propagation velocities of simulative slow wave with noises are estimated. Compared with LMSTDE, BCILMP provides well TDE both in Gaussian and impulsive noise environments. And then, BCILMP is applied to estimate the propagation velocities of GEA in four gastroparetic patients, and the results are mostly consistent with the evaluations of the doctor. It can be the assistant judgments for doctors and also provides the references to select the parameters of gastric electrical stimulation to cure gastric disasters.
引文
[1] Shinde M P, Gupta S N. Signal detection in the presence of atmospheric noise in tropics. IEEE Trans. Communications, 1974, 22(8):1055-1063.
    [2] Bouvet M, Schwartz S C. Comparison of adaptive and robust receivers for signal detection in ambient underwater. IEEE Trans. ASSP, 1989, 37(5):621-626.
    [3] Ma X Y, Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. on Signal Processing, 1996, 44(11):2669-2687.
    [4] Kidmose P. Adaptive filtering for non-Gaussian processes. IEEE ICASSP, 2000, 1:424-427.
    [5] Kidmose P. Blind separation of heavy tail signals: [dissertation]. Denmark: Technical University of Denmark, 2001.
    [6] Kong X, Qiu T S. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation. IEEE Trans. Biomedical Engineering, 1999 46(8):994-1003.
    [7] Matsuba I, Takahashi H. Generalized entropy approach to stable levy distributions with financial application. Elsevier Physica A: Statistical Mechanics and its Applications. 2003, 319:458-468.
    [8] Georgiou P G, Tsakalides P, Kyriakakis C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Trans. on Multimedia, 1999, 1(3):291-301.
    [9] Ahandra A. Measurements of radio impulsive noise from various sources in an indoor environment at 900MHz and 1800MHz. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 2:639-643.
    [10] Nikias C L, Shao M. Signal processing with Alpha-stable distributions. New York: John Wiley & Sons Inc, 1995.
    [11] 周江文,黄幼才,杨元喜等.抗差最小二乘法.武汉:华中理工大学出版社,1997.
    [12] Feller W. An introduction to probability theory and its applications. New York: John Wiley & Sons Inc, 1966.
    [13] Ho K C, Chan Y T. Solution and performance analysis of geolocation by TDOA. IEEE Trans. Aerospace and Elect. Sys., 1993, 29(4):1311-1322.
    [14] Carter G C. Time delay estimation for passive sonar signal processing. IEEE Trans. ASSP, 1981, 29(3):463-470.
    [15] Li J, Wu R B. An efficient algorithm for time delay estimation. IEEE Trans. on Signal Processing, 1998, 46(8):2231-2235.
    [16] 孟子厚,盛胜我,赵松龄.自来水管网相关检漏技术的时延估计方法的选择与综合.声学技术,1995,14(1):15-21.
    [17] Vaseghi S V. Advanced digital signal processing and noise reduction (Third Edition) . New York: John Willey & Sons, Inc, 2006.
    [18] Wang Z S, He Z Y, Chen J D. Robust time delay estimation of bioelectric signals using least absolute deviation neural network. IEEE Trans, on Biomedical Engineering, 2005, 52(3): 454-462.
    
    [19] 王宏禹,邱天爽.自适应噪声抵消与时间延迟估计.大连:大连理工大学出版社,1999.
    
    [20] Machell F W, Oenrod C S, Ellis G E. Statistical characteristic of ocean acoustic noise processes. New York: Springer, 1989.
    [21] Stuck B W. Minimum error dispersion linear filtering of scalar symmetric stable processes. IEEE Trans. Automatic Control, 1978, 23(3):507-509.
    [22] Shao M, Nikias C L. Signal processing with fractional lower order moments: stable process and their application. Proceedings of the IEEE, 1993, 81(7):986-1010.
    [23] Bodenschatz J S, Nikas C L. Recursive local orthogonality filtering. IEEE Trans, on Signal Processing, 1997, 45(9):2293-2300.
    [24] Bodenschatz J S, Nikas C L. Symmetric Alpha-stable filter theory. IEEE Trans. on Signal Processing, 1997, 45(9):2301-2306.
    [25] Bodenschatz J S, Nikias C L. Maximum-Likelihood symmetric Alpha-stable parameter estimation. IEEE Trans, on Signal Processing, 1999, 47(5):1382-1384.
    [26] Ma X Y, Nikias C L. Parameter estimation and blind channel identification in impulsive signal environments. IEEE Trans, on Signal Processing, 1995, 43(12):2884-1897.
    [27] Ma, X Y. Robust signal processing in impulsive noise with stable distributions: estimation, identification and equalization: [dissertation]. Los Angeles: University of Southern California, 1996.
    [28] Raspanti R, Tsakalides P, Nikias C L, Del Re E. Cramer-Rao bounds for targent angle and Doppler estimation for airborne radar in Cauchy interference. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1996:534-537.
    [29] Tsakalides P, Nikias C L. Wideband array signal processing with Alpha-stable distributions. IEEE Military Communications Conference, 1995, 1:135-139.
    [30] Tsakalides P, Nikias C L. Broadband beamforming with Alpha-stable distributions. Asilomar Conference on Signals, Systems and Computers, 1995, 2:1106-1110.
    [31] Tsakalides P, Nikias C L. Joint location and Doppler estimation with fractional lower-order statistics. IEEE Military Communications Conference, 1996, 3:21-24.
    [32] Tsakalides P, Nikias C L. Robust adaptive beamforming in Alpha-stable noise environments. IEEE ICASSP, 1996, 5:2884-2887.
    [33] Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments, IEEE Trans. on Signal Processing, 1996, 44(7):1623-1633.
    [34] Tsihrintzis G A, Nikias C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an Alpha-stable process. IEEE MILCOM, 1993, 2:658-662.
    [35] Tsihrintzis G A, Nikias C L. Incoherent receivers in Alpha-stable impulsive noise. IEEE Military Communications Conference, 1995, 1:130-134.
    [36] Tsihrintzis G A. Diversity reception in Alpha-stable impulsive interference. IEEE Military Communications Conference, 1996, 3:828-832.
    [37] Tsihrintzis G A, Nikias C L. Fast estimation of the parameters of Alpha-stable impulsive interference. IEEE Trans. on Signal Processing, 1996, 44(6):1492-1503.
    [38] Tsihrintzis G A, Nikias C L. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data. IEEE Proc. on Radar, Sonar and Navigation, 1997, 144(1):29-38.
    [39] Kogon S M, Manolakis D G. Signal Processing, 1996, 44(4):1006-1010.
    [40] Azzaoui N, Clavier L, Sabre R. Path delay model based on Alpha-stable distribution for 60GHz indoor channel. IEEE GLOBECOM, 2003:1638-1643.
    [41] Kuruoglu E E. Signal processing in Alpha-stable noise environments: a least l_p-norm approach: [dissertation]. Cambridge: University of Cambridge, 1998.
    [42] Kuruoglu E E. Analytical representation for positive Alpha-stable densities. IEEE ICASSP, 2003, 6:729-732.
    [43] Kannan B, Fitzgerald W J. Beamforming in additive Alpha-stable noise using fractional lower order statistics (FLOS). IEEE ICECS, 1999, 3:1755-1758.
    [44] Kannan B, Fitzgerald W J, Kuruoglu E E. Joint DOA, frequency and model order estimation in additive Alpha-stable noise. IEEE ICASSP, 2000, 6:3798-3801.
    [45] Georgiou P G, Kyriakakis C, Tsakalides P. Robust time estimation for sound source localization in noise environments. IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, 1997:19-22.
    [46] Griffith D W, Gonzalez J G, Arce G R. Robust time-frequency representations for signals in Alpha-stable noise using fractional lower-order statistics. Proc. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Canada, 1997:415-419.
    [47] Fabricius T, Kidmose P, Hansen L K. Dynamic components of linear stable mixtures from fractional low order moments. IEEE ICASSP, 2001:3957-3960.
    [48] Kong X, Qiu T S. Latency change estimation for evoked potentials: a comparison of algorithms. Med. & Biol. Eng. & Comput., 2001, 39(2):208-224.
    [49] 吕泽均,肖先赐.基于分数阶矩的测向算法研究.电波科学学报,2002,17(6):561-568.
    [50] 刘建强,冯大政.脉冲噪声中非平稳源的盲分离方法.电子学报,2003,31(12):1921-1923.
    [51] 夏光荣,刘兴钊.基于改进经验特征函数的一种混合分布参数估计法.上海交通大学学报,2004,38(10):22-25.
    [52] 邱天爽,Kong X,鲍海平等.一种基于脑电信号分析的中枢神经系统损伤检测的韧性自适应方法.中国生物医学工程学报,2003,22(1):23-29.
    [53] 邱天爽,王宏禹,孙永梅.一种基于分数低阶协方差的EP潜伏期变化检测方法.电子学报.2004,32(1):91-95。
    [54] Qiu T S, Wang H Y, Zhang Yet al. Non-linear transform-based robust adaptive latency change estimation of evoked potentials. Methods of Inf. in Med., 2002, 41(4):331-336.
    [55] 孙永梅.Alpha稳定分布参数估计与谱分析理论及应用研究:(博士学位论文).大连:大连理工大学,2006.
    [56] 唐洪.广义正态信号处理理论及在通信中应用的研究:(博士学位论文).大连:大连理工大学,2006.
    [57] 查代奉.基于稳定分布白噪声的信号处理新方法研究:(博士学位论文).大连:大连理工大学,2006.
    [58] 张金凤,邱天爽.分数低阶Alpha稳定分布下DLMP算法的收敛特性分析.电子学报,2005(1):74-77.
    [59] Arikan O, Belge M, Cetin A E et al. Adaptive filtering approaches for non-Gaussian stable process. IEEE ICASSP, 1995, 2:1400-1403.
    [60] Douglas S C. A family of normalized LMS algorithms. IEEE Signal Processing Letters, 1994, 1(3):49-51.
    [61] Aydin G, Tanrikulu O, Cetin A E. Robust least mean mixed norm adaptive filtering for Alpha-stable random processes. IEEE International Symposium on Circuits and Systems, 1997, 4:2296-2299.
    [62] Cambanis S, Miller G. Linear problems in pth order stable processes. SIAM Journal on Applied Mathematics, 1981, 41(1):43-69.
    [63] Ilow J, Hatzinakos D, Venetsanopoulos A N. Detection of narrowband signals in Alpha-stable noise environments. IEEE MILCOM, 1994, 1:287-290.
    [64] Brcich R, Zoubir A. Estimation and detection in a mixture of symmetric Alpha-stable and Gaussian interference. IEEE Signal Procssing Workshop on Higuer-order Statistics, 1999:219-223.
    [65] Hsu Y, Fractional lower order moment based adaptive algorithms. Asilomar Conference on Signals, Systems and Computers, 1996, 1:334-338.
    [66] Sahmoudi M, Abed-Meraim K, Benidir M. Blind separation of heavy-tailed signals using normalized statistics. Proc. ICA, Granada, Spain, 2004:22-24.
    [67] Sahmoudi M, Abed-Meraim K, Benidir M. Blind separation of impulsive Alpha-stable using minimum dispersion criterion. IEEE Signal Processing Letters, 2005, 12(4):281-284.
    [68] Sahmoudi M. Robust separation and estimation of non-stationary 2nd/or non-Gaussian signal: [dissertation]. France: University Paris-Sud, Gif-sur-Yvette, 2004.
    [69] Shereshevski Y, Yeredor A, Messer H. Super-efficiency in blind signal separation of symmetric heavy-tailed sources. IEEE Workshop Statistics SP, 2001:78-81.
    [70] Banerjec A, Chellappa H. Tumor detection in digital mammograms. Pro. Of the International Conference on Imaage Processing, 2000, 3:4432-435.
    [71] Knapp C, Carter G. The generalized correlation method for estimation of time delay. IEEE Trans, on ASSP, 1976, 24(4):320-327.
    [72] Feder M, Weinstein E. Parameter estimation of superimposed signals using the EM algorithm, IEEE Trans, on ASSP, 36(1):477-489.
    [73] Azenkot Y, Gertner I. The least squares estimation of time delay between two signals with unknown relative phase shift, IEEE Trans, on ASSP, 1985, 33(1):308-309.
    [74] So H C. Spontaneous and explicit estimation of time delays in the absence/presence of multipath propagation: [dissertation] Hong Kong: Chinese University of Hong Kong, 1995.
    [75] So H C. Adaptive TDOA estimation in presence of impulsive noise. IEE Electronics Letters, 1998, 34(15):1455-1456.
    [76] So H C, Ching P C, Chan Y T. A new algorithm for explicit adaptation of time delay. IEEE Trans, on Signal Processing, 1994, 42(7):1816-1820.
    [77] So H C, Ching P C, Chan Y T. An improvement to the explicit time delay estimator. IEEE ICASSP, 1995, 5:3151-3154.
    
    [78] So H C, Ching P C. Performance analysis of ETDGE-an efficient and unbiased TDOA estimator for source localization. IEE Proc. Radar, Sonar and Navigation, 1998, 145 (6):325-330.
    
    [79] So H C, Ching P C. A comparative study of five LMS-based adaptive algorithms for nonstationary delay estimation. IEE Proc. Radar, Sonar and Navigation, 2001, 148(1): 9-15.
    [80] Ma X, Nikias C L. On blind channel identification for impulsive signal environments. IEEE ICASSP, 1995, 3:1992-1995.
    [81] Gonzalez J G. Zero-order statistics: a signal processing framework for very impulsive processes. Article website, http://www.ee.udel.edu/gonzales/PUBS/H0S97a, 1997.
    [82] Gonzalez J G, Griffith D W, Arce G R. Zero-order statistics: a signal processing framework for very impulsive processes. IEEE Signal Processing Workshop on Higher-Order statistics, 1997:254-258.
    
    [83] Miller. Properties of certain symmetric stable distribution. J. Multivariate Anal., 1978, 8:346-360.
    [84] Achim A M, Canagarajah C N, Bull D R. Complex wavelet domain image fusion based on fractional lower order moments. IEEE International Conference on Information Fusion, 2005:515-521.
    [85] Garel B, d' Estampes L, Tjostheim. Revealing some unexpected dependence properties of linear combinations stable random variables using symmetric covariation. Communication Statistics Theory and Methods 2004, 33(4):769-786.
    [86] Ludeman L C. Random processes: filtering, estimation, and detection. New York: John Wiley and Sons, Inc., 2004.
    [87] Youn D, Chiou S, Mathews V. Adaptive realization of the phase transform for time delay estimation. IEEE ICASSP, San Diego, California, 1984:648-651.
    [88] Ching P C, Chan Y T. Adaptive time delay estimation with constraints. IEEE Trans. on ASSP, 1988, 36(4):599-602.
    [89] 邱天爽.LMS自适应时间延迟估计.海洋技术,1993,12(2):1-13.
    [90] Etter D M, Stearn S D. Adaptive estimation of time delay in sampled system. IEEE Trans. on ASSP, 1981, 29(3):582-587.
    [91] Nikias C L, Pan R. time delay estimation in unknown Gaussian spatially correlated noise. IEEE Trans. ASSP, 1988, 36(11):1706-1714.
    [92] Bian Y, Last D. Eigen-decomposition techniques for Loran-C skywave estimation. IEEE Trans. Aerosp. Electron Syst., 1997, 33:117-124.
    [93] Kirsteirs I P. High-resolution time delay estimation. IEEE ICASSP, 1987:451-454.
    [94] Kirsteins I P, Kot A C. Performance analysis of a high resolution time delay estimation algorithm. IEEE ICASSP, 1990:2767-2770.
    [95] He Z Y, Li L H. High-resolution multipath time delay estimation using a neural network. IEEE ICASSP, Toronto, Ontario, 1991:1469-1472.
    [96] 胡来招.无源定位.国防工业出版社,2004.
    [97] Gonzalez J G, Lau D L, Arce G R. Towards a general theory of robust nonlinear filter: selection filters. IEEE ICASSP, 1997, 5:3837-3840.
    [98] 潘映辐.临床诱发电位学.人民卫生出版社,2000.
    [99] 王玫.多径时延估计的算法研究:(硕士学位论文).南京:南京理工大学,2001.
    [100] 易岷.时延及相关参数估计技术研究:(博士学位论文).电子科技大学,2004.
    [101] Ge F X, Shen D X, Peng Y N, et al. Super-resolution time delay estimation in multipath environments. IEEE Wireless Communications and Networking Conference, 2004, 2:1121-1126.
    [102] Ge F X, Shen D X, Peng Y N, et al. Super-resolution time delay estimation in multipath environments. IEEE Wireless Communications and Networking Conference, Atlanta, Georgia, 2004:1121-1126.
    [103] Vanderveen A J, Vanderveen M C, Paulraj A. Joint angle and delay estimation using shift-invariance techniques. IEEE Trans. on Signal Processing, 1998, 46(2):405-418.
    [104] Paulraj A, Roy R, Kailath T. A subspace rotation approach to signal parameter estimation. Proceedings of the IEEE, 1986, 74(7):1044-1046.
    [105] Roy R, Kailath T. ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Trans. ASSP, 1989, 37(7):984-995.
    [106] Roy R, Paulraj A, Kailath T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. ASSP, 1986, 34(5):1340-1342.
    [107] 张贤达.现代信号处理.北京:清华大学出版社,2002.
    [108] 张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [109] Moon T K. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 1996, 13(6):47-60.
    [110] Molnar K J, Modestino J W. Application of the EM algorithm for the multitarget/ multisensor tracking problem. IEEE Trans. on Signal Processing, 1998, 46(1):115-129.
    [111] Yi M, Wei P, Xiao X C et al. Efficient initialization method for time delay estimation. IEE Electronics Letters, 2003, 39(12):935-936.
    [112] 刘钦圣,最小二乘问题计算方法.北京:北京工业大学出版社,1989.
    [113] wu R B, Li J. Time-Delay Estimation via Optimizing Highly Oscillatory Cost Functions. IEEE Journal of Oceanic Engineering, 1998, 23(3):235-244.
    [114] Wu R B, Li J, Liu Z S. Super resolution time delay estimation via Mode-WRELAX. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(1):294-307.
    [115] Su Z G, Wu R B. Delay and Doppler scale estimation of multiple moving targets via DS-WRELAX. IEE Electronics Letters, 2000, 36(9):827-828.
    [116] Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. on ASSP, 1985, 33(2):387-392.
    [117] Li J, Stoica P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans. on Signal Processing, 1996, 44(2):281-295.
    [118] Chen J D, Yi X B, Schirmer B et al. Impaired propagation of gastric slow waves in gastroparesis and the postoperative period (abstr). Gastroenterology, 1994 106:A477.
    [119] Hinder R A, Kelly K A. Human gastric pacemaker potential: Site of origin, spread and response to gastric transaction and proximal vagotomy. Am. J. Surgery, 1978 133:29-33.
    [120] 刘理.胃电图信号采集和数据处理的研究:(硕士学位论文).天津:天津大学,2003.
    [121] 王静.胃电起博与胃轻瘫.胃肠病学,2004,9(6):370-373.
    [122] 郭耸峰,周新民,郑崇勋等.胃动力障碍患者的胃电活动.第四军医大学学报,2000,21(1):100-103.
    [123] 裘国华.体表胃电图的检测研究:(硕士学位论文).重庆:重庆大学,2003.
    [124] 柯美云,蓝宇.胃电图基础研究及其临床应用.基础医学与临床应用,1999,19(2):102-105.
    [125] Lin Z Y, Forster J, Sarosiek Iet al. Treatment of gastroparesis with electrical stimulation. Digestive Diseases and Sciences, 2003, 48(5):837-848.
    [126] Lin Z Y, Forster J, Sarosiek I et al. Effect of high frequency gastric electrical stimulation on gastric myoelectric activity in gastroparetic patients. Neurogastroenterol Motil., 2004, 16:205-212.
    [127] Miedema B, Sarr M, Kelly K. Pacing the human stomach. Surgery, 1992, 111:143-150.
    [128] Wang Z S, Cheung J Y, Xia Y S, et al. Neural implementation of unconstrained minimum L1-norm optimization—least absolute deviation model and its application to time delay estimation. IEEE Trans. Circuit and Systems-Ⅱ: Analog and Digital Signal Processing, 2000, 47(11):1214-1226.
    [129] Huang Y, Benesty J, Elko G W. Adaptive eigenvalue decomposition algorithm for real time acoustic source localization system. IEEE ICASSP, Phoenix, 1999:937-940.
    [130] Liang J, Chen J D. What can be measured from surface electrogastrography. Digestive Diseases and Sciences, 1997, 42(7):1331-1343.
    [131] Lin Z Y, McCallum R, Schirmer B et al. Effects of pacing parameters on entrainment of gastric slow wave in patients with gastroparesis. Am. J. Physiology, 1998, 274:G186-G191.
    [132] McCallum R, Chen J D, Lin Z Y et al. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology, 1998, 114:456-461.
    [133] Famioni B, Kingma Y, Bowes K. Study of transcutaneous and intraluminal measurement of gastric electrical activity in humans. Med. & Biol. Eng. & Comput., 1987, 25(4):397-402.
    [134] Forster J, Damjanov I, Lin Z Yet al. Absence of interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. Journal of Gastrointestinal Surgery, 2005, 9(1):102-108.
    [135] Chen J D, Yandewalle J, Sansen W et al. Observation of the propagation direction of human electrogastric activity from curaneous recordings. Med. & Biol. Eng. & Comput., 1989, 27(5):538-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700