用户名: 密码: 验证码:
纳米脂质体槲皮素对肝损伤大鼠保肝作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的肝脏易发生各种代谢性、感染性疾病以及原发性和继发性肿瘤。我国是肝病高发区,有十分之一多的人口感染肝炎,而乙型肝炎表面抗原阳性患者比阴性者显著增高。肝炎导致的原发性肝癌是在我国肿瘤死因中占第二位的常见病。因此研究肝靶向性治疗药物具有重要意义。
     使用特殊的载体是目前实现肝靶向药物运输的主要方式,而纳米载体可以改变药物的体内分布,显示出体内分布的靶向性。载药纳米颗粒进入人体内迅速被网状内皮系统(RES)摄取,而RES主要分布于肝,因而可借此种被动靶向作用达到肝靶向给药的目的。脂质体(liposome)是磷脂依靠疏水缔合作用在水中自发形成的一种分子有序组合体,为多层囊泡结构,每层均为类脂双分子膜,层间和脂质体内核为水相,双分子膜为油相。载药脂质体纳米粒具有与细胞结构相似,有生物膜的特性和功能,进入体内被生物降解,免疫原性小、毒性极低;已广泛用于运载水溶性和脂溶性药物。
     槲皮素(Quercetin)及其衍生物是自然界分布最广的一种黄酮类化合物,其具有抗癌、抗炎症、抗纤维化、抗氧化和清除自由基、抗病毒、逆转某些肿瘤的耐药性、扩张血管、降低血压的药理活性,并对机体免疫有增强作用;它可对肝癌细胞显出较强的细胞毒作用,能有效抑制肝癌细胞的生长;对肝损伤具有良好的保护作用及一定的抗肝纤维化的作用,在治疗肝脏疾病中有着广阔的应用前景。但由于其普通制剂不溶于水,肝靶向性差,直接应用可影响凝血功能,限制了其在肝病治疗中的应用。根据上述思想,以纳米脂质体为药物载体包裹中药成分槲皮素制成纳米脂质体槲皮素,改善给药系统水溶性,实现肝靶向给药,使纳米药物在肝脏中更加聚集。
     本课题目的是首先制备出水溶性较好的纳米脂质体槲皮素,验证其肝脏靶向性及体内代谢的药效成分,然后应用于肝损伤模型动物考察其对肝脏的保护作用。
     方法采用高压均质-喷雾干燥法制备纳米脂质体槲皮素,使用透射电镜、粒度仪观察其形态及测量其粒径,HPLC法测量药物包封率。使用CCL4加猪血清配合乙醇饮食建立复合大鼠肝损伤模型,同时建立测定模型大鼠血浆及各组织中槲皮素的HPLC法,肝损伤大鼠分组后分别给予槲皮素和纳米脂质体槲皮素,观察各组模型大鼠体内槲皮素的时间空间分布,并验证其靶向性。给予正常大鼠纳米脂质体槲皮素,使用高效液相色谱-质谱法(LCMS)分析大鼠血浆中的药物代谢产物是否存在药效成分,为药效学研究提供依据。将肝损伤模型大鼠按体重随机分为正常对照组、损伤模型对照组、纳米脂质体槲皮素组、槲皮素药物组,空白纳米脂质体组后按不同剂量给药,比较各组大鼠血清ALT、AST、TBiLi、TBA、TP;各组大鼠肝脏系数;各组大鼠肝脏的病理改变;各组大鼠肝脏MDA、GSH-Px、SOD、LN、HA、PCⅢ、Ⅳ-C。同时通过各组大鼠肝脏Bcl-2和Bax蛋白表达的比较,探讨纳米脂质体槲皮素保护肝脏的机制。
     结果采用本实验方法制得的纳米脂质体槲皮素粒径为123±31nm,纳米粒子呈类圆形,表面有厚度均匀的包衣包裹,且粒度分布均匀。为测定槲皮素纳米药物所建立的HPLC法色谱分离良好,精密度、重现性、方法回收率良好。纳米脂质体槲皮素的包封率为91.18±0.78%,载药量为0.61±0.08mg/mg。本实验所建立的复合肝损伤模型大鼠达到实验要求。用于测定血浆及各组织中槲皮素的HPLC法色谱分离及专属性良好,精密度、重现性、方法回收率良好。槲皮素在肝损伤大鼠体内的药物半衰期为10min,而纳米脂质体槲皮素在大鼠体内的药物半衰期达到2h,脂质体延长了槲皮素在大鼠体内的循环时间,纳米脂质体槲皮素具有一定的缓释性。模型大鼠体内槲皮素由注射纳米药物后5min起即可较浓集于肝,以10min后更为明显,且明显高于对照组(P<0.05),槲皮素被制成纳米药物后提高了其对肝脏、脾脏的趋向性,降低了其对心脏、肾脏的趋向性;纳米脂质体槲皮素较槲皮素有很好的肝靶向性。当纳米脂质体槲皮素药物剂量增加到100mg/kg时,大鼠出现死亡。大鼠血浆中槲皮素代谢产物测定的色谱及质谱条件可满足实验需要,使用液相色谱-质谱联用法可确认大鼠血浆代谢产物中含有槲皮素、柽柳素、异鼠李素等药效成分。纳米脂质体槲皮素组及槲皮素组大鼠的一般状况明显优于损伤模型对照组和空白纳米脂质体组,但较正常对照组稍差,同剂量纳米脂质体槲皮素组在血清AST、ALT、TBiLi、TBA、TP、ALB及肝脏MDA、GSH-Px、SOD、LN、HA、PCⅢ、Ⅳ-C等指标总体较损伤对照组、槲皮素组及空白脂质体纳米药物组有明显的提高。纳米脂质体槲皮素、槲皮素及空白脂质体纳米药物对肝损伤大鼠肝功能保护在AST、ALT、TBiLi、TBA上呈现出由高到低的剂量-效应依赖关系。各组大鼠肝组织光镜观察可见相同剂量的槲皮素纳米脂质体药物组的肝组织病变情况好于槲皮素组和空白脂质体纳米粒组及损伤模型组,特别是高剂量的纳米脂质体槲皮素组大鼠的肝组织病理情况接近正常对照组;同时,空白脂质体纳米粒对肝损伤大鼠的肝脏病理情况亦有所改善。损伤模型对照组、纳米脂质体槲皮素高剂量组、槲皮素药物高剂量组,空白纳米脂质体高剂量组及正常对照组的大鼠肝脏Bcl-2蛋白的表达依次升高,而Bax蛋白表达则是依次降低。
     结论所制备的纳米脂质体槲皮素粒度分布均匀,载药量、包封率高。本实验制备的纳米脂质体槲皮素与肝损伤模型大鼠肝脏有较强的亲和力,具有良好的肝靶向性,是十分理想的靶向性给药系统。本实验制备的纳米脂质体槲皮素同时具有较好的脾靶向性,有一定的药物缓释性,可较长时间维持血药浓度。纳米脂质体槲皮素在正常大鼠体内的血浆代谢产物中存在药效成分槲皮素、柽柳素及异鼠李素。纳米脂质体槲皮素对模型大鼠的肝脏保护优于未纳米化的槲皮素及空白脂质体纳米药物,且呈正相量效关系,100mg/kg以上的纳米脂质体槲皮素会产生致命的毒性反应。纳米脂质体槲皮素保护肝脏的机制是降低肝脏MDA水平,增强肝脏SOD和GSH-Px的活性及增强Bcl-2蛋白的表达和减弱Bax蛋白的表达。空白脂质体纳米药物亦有保护肝脏的功效,亦呈现正相量效关系。
Objective Currently metabolic diseases and infectious diseases,as well as primary and secondary tumors, are easily found in liver. China is hepatopathy high risk area and more than one-tenth of the population has HBV infection, with a significantly higher occurrence of positive hepatitis B than negative HBsAg. Primary liver cancer ranking the second leading cause among all tumor deaths in China, it is of great significance to study therapeutic drug of hepatic targeting property.
     The major mechanism of achieving its drug delivery is to use special carriers, of which nano-carrier is able to change the distribution of drugs inside,thus showing the targeting property of drug distribution.
     Drug-carried nano-particles will be instantly absorbed by RES. With RES mainly spreading in liver, it is possible to achieve hepatic targeted drug delivery based on the effect of passive targeting. Liposome, with multilamellar vesicle, every layer being membrane, interlayer&liposome kernel in water phase, double molecule membrane being oil phase, is a kind of molecular organized assembly formed spontaneously in water,depending on the hydrophobic association of phospholipid.
     Drug-carried nano-particles, which can be degraded with low immunogenicity and low toxicity when taken in, are of the qualities and functions of biofilm structure like cell structure,. Therefore, they have been extensively applied in water-soluble and lipophilic drugs.
     Quercetin and its derivatives are the most diverse and widespread flavonoids in nature, with the pharmacological activity of anti cancer, anti inflammation, free radical scavenging, antivirus, drug resistance against some tumors, vessels dilation, decreasing blood pressure, and intensifying immunity. Quercetin shows significant cytotoxicity on hepatoma cells, being able to inhibit effectively the growth of hepatoma cells, with good protective effect of liver injury and certain anti-hepatic fibrosis effects.
     Since its common preparation with poor quality of targeting is undissolved, the direct application of it has an effect on blood coagulative system,which limits the application of liver disease therapy. On the above basis, nano-granulated quercetin liposome made of Quercetin encapsulated in nano-Liposome as Carrier is able to improve the water solubility of drug delivery system,achieving hepatic targeted drug delivery and aggregating nano-drug in liver.
     This paper is first to prepare nano-granulated quercetin liposome, to verify its targeting property and its efficiency in vivo metabolism,and then to apply it to the evaluation of model animal with liver injuries and the protective effect.
     Methods High pressure homogeneous and pressure evaporation technology was adopted in preparing nano-granulated quercetin liposome; transmission electron microscope and particle size analyzer were used to observe its morphological feature and measure its particle size; the drug content and entrapment efficiency were measured by HPLC. The hepatectomined mouse modal was made by CCL4plus swain serum and alcoholic diet; HPLC method was established to measure plasma of the modal mouse and quercetin in various tissues. Given quercetin and quercetin nanoliposomes, the grouped hepatectomined mice were observed to detect the time and space distribution of quercetin in their bodies and to testify its targeting index. In order to provide evidence to pharmacodynamics, some normal rats were given nano-granulated quercetin liposome and their metabolites in serum were analyzed to see if there were pharmaceutical components by liquid chromatography masss pectrometry (LCMS). The hepatectomined rats were grouped by weight as normal group, hepatectomined modal group, nano-granulated quercetin liposome group, quercetin group and empty nanoliposomes group, and given different doses of drug. After that, ALT, AST, TBiLi, TBA, TP in the serum, liver coefficient, pathological change in liver and MDA, GSAH-px, SOD, LN, HA, PCⅢ, IV-C of the five groups were compared. At the same time, by comparing Bcl-2of liver and Bax protein expression of the five groups, the liver-protecting mechanism of quercetin nanoliposomes was explored.
     Results The size of nano-granulated quercetin liposome obtained from the experiment is123±31nm, the Nanoparticles are kind of circular which covered by coating of uniform thickness and with a uniform size distribution. The HPLC system built for testing nano-granulated quercetin liposome separated well, has a good precision, reproducibility and method recovery as well.The entrapment rate was91.18±0.78%drugloading was0.61±0.08mg/mg.The hepatectomined rats in this experiment can meet the requirement of test. The HPLC system built for testing quercetin in plasma and organs separated well, has a good precision, reproducibility and method recovery as well.The drug half-life of Quercetin within the body of the liver injury model rat is10min, but the drug half-life of the nano-granulated quercetin liposome drug within the body of the model rats reaches to2h. This is because the Liposome prolongs the circulation time of Quercetin in the body of the model rat and the nano-granulated quercetin liposome drug has some slow release effects. The Quercetin within the body of the model rats can accumulate in the liver after being injected nano drug for5minutes, and it will become more apparent if exceeding10minutes, which is also obviously high than the control group(p<0.05). The nano drug made of Quercetin improved its topotaxis towards liver and spleen as well as decreases the topotaxis towards heart and lung; meanwhile, the nano granulated quercetin liposome has very good hepatic targeting, when the doses of the nano-granulated quercetin liposome increases to100mg/kg, the model rat dies. The chromatography and mass spectrometry conditions measured in the Quercetin metabolites within the plasma of the model rat can meet the experiment requirements, and using liquid chromatography-mass spectrometry can confirm that the plasma metabolites of the model rat contains Quercetin, Tamarixetin, Isorhamnetin and some other medical components. The normal situation of rats in the nano-granulated quercetin liposome group and quercetin group are significantly better than the hepatectomined model control group and blank nano-liposomes group but is a bit worse than the normal control group. Compared with the injury control group, the Quercetin group and blank nano-liposome group, the nano granulated quercetin liposome in serum such as AST,ALT, TBiLi, TBA, TP, ALB and liver indexes such as MDA, GSH-Px, SOD, LN, HA, PCⅢ, Ⅳ-C increases to some extent.The protection of liver function for liver injury model rats from nano-granulated quercetin liposome, Quercetin and blank liposome nano drug in the field of AST, ALT, TBiLi and TBA presents a high to low dose-effect dependable relationship. According to the light microscopic observation of livers from each model rat, it can be recognized that if it using the same dose, the liver lesion situation of the nano granulated quercetin liposome group is much better than the Quercetin group and blank nano-liposomes group. Namely, the liver lesion situation of high dose of the nano-granulated quercetin liposome group is much close to the normal control group. At the same time, the blank nano-liposomes also improves the liver lesion situation for the hepatectomined rats. The expression of protein Bcl-2of the liver within the model rat in the injury model control group, the high dose of nano-granulated quercetin liposome group, the high dose of Quercetin drug group, the high dose of the blank nano-liposomes and the normal control group increases successively, while the expression of protein Bax decreases in turn.
     Conclusions The granularity of the prepared nano-granulated quercetin liposome is distributed evenly with high drug load and encapsulated efficiency. The Nanometer-Granulated Quercetin Liposome prepared in this experiment has very strong affinity with the experimented rat of liver injury model and very good hepatic targeting, so it is a very ideal targeting administration system. The nano-granulated quercetin liposome prepared in this experiment also has very good spleen targeting with a certain slow release effects, which can maintain a long period of plasma concentration. The nano-granulated quercetin liposome exists some medical ingredients including Quercetin, Tamarixetin and Lsorhamnetin in the plasma metabolites within the body of normal rats. The protection of the nano-granulated quercetin liposome towards the model rat is superior to the Quercetin and blank liposome. What's more, it represents a positive phasor effect relationship. At and over100mg/kg of the nano-granulated quercetin liposome may produce lethal toxicity. The mechanism of the protection towards liver by the nano-granulated quercetin liposome aims to decrease the MDA level of the liver, strengthen the activity of SOD and GSH-px towards the liver, increase the expression of protein Bcl-2and lessen the expression of protein Bax. The blank liposome drug also has efficacy of protecting liver and represents a positive phasor effect relationship as well.
引文
[1]2010版乙肝防治指南[M]中华医学会肝病学分会;中华医学会感染病学分会
    [2]孙恩杰纳米生物学[M].科学出版社,2009:107
    [3]Rose P G. Pegylated liposomal doxorubicin:optimizing the dosing schedule in ovarian cancer[J]. The Oncologist,2005.10.205-214
    [4]YANG Li Application of Liposome in Tumor Targeting Therapy[J] WEST CHINA MEDICAL JOURNAL 2005; 120 (12) 387-388
    [5]ZHU Wei, ZHAI Guang-yu etal Progress in the Study on Ester Derivatives of Quercetin [J] CHEMISTRY AND ADHESION 201133(6) 67-71
    [6]ZHOU Yi,YANG Xia-min etal Effects of sodium quercetin monosulfate salt and sodium naringenin monosulfate salt on bleeding and clotting time in mice [J] journal of GDMC 201129 (5) 477-478
    [7]刘文英《药物分析》第六版[M]人民卫生出版社2003,72-73
    [8]《中华人民共和国药典》2010年版
    [9]CAIXiao-hui, CHENBao-an. Progression of anti-tumor drug carrier by nanometer technology [J]Chinese Clinical Oncology Jan 201015 (1) 90-93
    [10]Gregoriadis G. Swain CP etal Drug carrier potential of liposomes in cancer chemotherapy [J] Lancet 1974 1 (7870):1313
    [11]Gill PS, Espina BM, Muggia F, et al. Phase Ⅰ/Ⅱ clinical and pharma-cokinetic evaluation of liposomal doxorubicin. [J] Clin Oncol 1995,13:996
    [12]Forssen EA,Male Brune R,Adler Moore J P, et al. Fluorescence imaging studies for the disposition of daunorubicin liposomes (Dauno- Xome) with tumor tissue [J] Cancer Res.1996,56:2066
    [13]YANG Li Application of Liposome in Tumor Targeting Therapy[J] WEST CHINA MEDICAL JOURNAL 2005; 120 (12) 387-388
    [14]FomricaVJRegelsonW.Review of the biology of quercetin related bioafvonoids. Food ChemToxieoll995;33:1061-1080.
    [15]Muhter R S Bennett. Injects of dimethylsulofxide on neralufnetion in man JAMA1980;244:2081-2083.
    [16]宋丽等槲皮素三种化学结构修饰方法的研究[J]成都医学院学报2007(2)45-47
    [17]李发美医药高效液相色谱技术[M]北京人民卫生出版社1999:96-101
    [18]陈绍红等脂质体包封率测定方法研究进展[J]解放军药学学报201127(1)79-82
    [19]Zhang LJ, Yu JP, Li D, et al. Effects of cytokines on carbontetrachloride-induced hepatic fibrogenesis in rats [J]. World JGastroenterolog,2004,10 (1):77-8
    [20]刘秀英,胡怡秀,胡余明,等.四氯化碳和猪血清肝纤维化模型组织病理比较[J].世界华人消化杂志,2004,12(8):1875-1879.
    [21]毕殿洲.药剂学.第4版[M].北京:人民卫生出版社,1999.450
    [22]Nishikawa, Makiya; Takakura, Yoshinobu; Hashida, Mitsuru Pharmacokinetic evaluation of polymeric carriers [J] Advanced drug delivery reviews 1996 21(2)135-155
    [23]孙振球医学统计学第一版[M]北京:人民卫生出版社2002:24-67
    [24]吕鹏.四氯化碳腹腔注射制备肝纤维化模型的实验研究[J].胃肠病学和肝病学杂,2003,8(12):339-340
    [25]韩凤梅,程明,夏启松,等.乙醇肝损伤小鼠肝脏的基因表达谱研究[J].中国药学杂志,2005,40(17):1349-1352
    [26]程明亮,杨长青.肝纤维化的基础研究及临床[M].北京:人民卫生出版社,2002:366-367
    [27]刘秀英,胡怡秀,胡余明,等.四氯化碳和猪血清肝纤维化模型组织病理比较[J].世界华人消化杂志,2004,12(8):1875-1879
    [28]Guo Y, Wang H, Zhang C. Establishment of rat precision-cut fibrotic liver slice technique and its application in verapamil metabolism [J]. Clin Exp Pharmacol Physiol,2007,34 (5):346-352
    [29]潘竞锵,仇洁高效液相色谱在中药药理学上的应用[J]广东药学200414(2)37-42
    [30]Raggl M A,Bugameli F,Mandrioli R, etal.Development and validation of an HPLC method for the simultaneous determination of clozapine and desmethylelozapine in plasma of schizophrenic patients[J]Chromatographia 1999 49 (12):75
    [31]李发美医药高效液相色谱技术[M]北京人民卫生出版社1999:96-101
    [32]Delaney, B.; Phillips, K.; Vasquez, C etal Genetic toxicity of a standardized mixture of citrus polymethoxylated flavones[J]Food and Chemical Toxicity 2002 40(5):617-624
    [33]Formica JV, Regelson W Review of the biology of quercetin and related biofavonoids. Food Chem Toxicol 1995;33:1061-80.
    [34]Anna Fudaro,Roberta Cavalli,Alessandro Bargoni etal Non-stealth and stealth solid lipid nanoparticles(SLN) carrying doxorubicin:Pharmacokinetics and tissue distribution after i.v. administration to rat [J] Pharmacological Research 2004 42 (2) 337-343
    [35]Kim, Dong-Hwan,Martin, David C etal Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery[J] Biomaterial 2006 27(15) 3031-3037
    [36]Thote, Amol J, Gupta, Ram B etal Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release [J] Nanomedicine:Nanotechnology,Biology, and Medicine 2005 1(1) 85-90
    [37]Ader, Peter, Wessmann, Andrea, Wolffram, Siegfried etal Bioavailability and metabolism of the flavonol quercetin in the pig[J] Free radical biology and medicine 2000 28(7) 1056-1067
    [38]Delmas-Beauvieux, M.C.; Leducq, N.; Thiaudiere, E Liposomes as fatty acids carriers in isolated rat liver:effect on energy metabolism and on isolated mitochondria activity Magnetic resonance materials in biology, physics and medicine 2000 10(1)43-51
    [39]Yang M, et al. Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with massspectrometry.[J] Chromatogra,2009, 1216 (11):2045
    [40]Jiang Y,David B,Tu P,et al.Recent analytical approaches in quality control of traditional Chinese medicines--a review. [J]Anal Chim Acta,2010,657(1):9
    [41]Myung S,et al.High-Capacity Ion Trap Coupled to a Time-of-Flight Mass Spectrometer for Comprehensive Linked Scans with no Scanning Losses.Int [J]Mass Spectrom,2011,301 (1-3):211
    [42]Le Bizec B etal,Antignac JP.Options for veterinary drug analysis using mass spectrometry. [J] Chromatogr A,2009,1216(46):8016
    [43]CHEN Feng,,etal.Determination of quercetinmetabolites in ratplasmaby liquid chromatography-mass spectrometry [J] Chin Pharm2008,43(3):69
    [44]Murakami A. Mutitargeted cancer prevention by isorhamnetin. [J] Cancer Lett,2008,3:46-56
    [45]Ader P,Wessmann A,Wolffram S,et al. Bioavailability and metabolism of the flavonol quercetin in the pig.Free Radic BiolMed,2000,28(7):1056
    [46]Liu XY, Hu YX etal Pathological comparison of hepatic-fibrosis models induced by porcine serum and carbon tetrachloride in rats [J] World Chin J Digestol 2004 12 (8):1875-1879
    [47]Egert S, Wolffram S, Bosy-Westphal A, et al. Daily Quercetin Supplementation Dose- Dependently Increases Plasma Quercetin Concentrations in Healthy Humans[J].J Nutr,2008,138(9):1615-1621
    [48]Ferraresi R, Troiano L, Roat E, et al. Essential requirement of reduced glutathione (GSH) for the anti- oxidant effect of the flavonoid quercetin [J]. Free Radic Res,2005,39(11):1249-1258
    [49]Xu JW, Gong J, ChangXM,et al. Estrogen reduces CCL4-induced liver fibrosis in rats[J]. World J Gastroenterol 2002;8(5):883-887.
    [50]Levitxki A, Gazit A. Tyrosine Kinase inhibition:An approach to drug development[J]. Science 1995;267(2):1782-1787.
    [51]郭晓峰等大黄蛰虫丸、当归补血汤对D-半乳糖致衰小鼠肝组织中的SOD活性和MDA含量的影响[J]中国实验方剂学杂志2011,3:75-78
    [52]Molina MF, Sanchez-Reus I, Iglesias I, et al. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol induced oxidative stress in mouse liver. Biol Pharm Bull,2003,26 (10):1398-13402
    [53]Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis [J]. Gastroenterology,2008,34(6):1670-1681
    [54]Hannl Yeshua, Ran Oren. Noninvasive assessment of Liver Fibrosis [J]. Ann Tranplant,2008,13(2):5-1
    [55]李玉林病理学[M]第7版,人民卫生出版社,2008
    [56]Kanauchi H, Wada N, Clark OH, et al. Apoptosis regulating genes, bcl-2 and bax, and human telomerase reverse transcriptase messenger RNA expression in adrenal tumors:possible diagnostic and prognostic importance. Surgery,2002,132(6): 1021-1027.
    [57]池莉平等大豆卵磷脂对酒精性肝损伤保护作用效果观察[J]海南预防医学杂志2007,13(03)51-52.
    [1]Kim WR, Brown RS, Terrault NA, El-Serag H. Burden of liver disease in the United States:summary of a workshop. Hepatology,2007;36:227-42.
    [2]De Smet PAGM. Herbal remedies. N Engl J Med 2002;347:2046-56.
    [3]Kessler RC, Davis RB, Foster DF, Van Rompay MI, Walters EE, Wilkey SA, et al. Long-term trends in the use of complementary and alternative medical therapies in the United States. Ann Intern Med 2006;135:262-8.
    [4]Strader DB, Bacon BR, Lindsay KL, La Breque DR, Morgan T, Wright EC, et al. Use of complementary and alternative medicine in patients with liver disease. Am J Gastroenterol 2007;97:2391-7.
    [5]Flora KD, Rosen HR, Brenner KG. The use of neuropathic remedies for chronic liver disease. Am J Gastroenterol 1996;91:2654-5.
    [6]Breevort P. The U.S. botanical market-an overview. Herbalogramm 2006;36:49-57.
    [7]Wagner H, Seligmann O, Seitz M, Abraham D, Sonnenbichler J. Silydianin und Silychristin, zwei isomere Silymarine aus Silybum marianum (Marien-distel). Z Naturforsch 1976;31:876-84.
    [8]Floersheim GL, Eberhard M, Tschumi P, Duckert F. Effects of penicillin and silymarin on liver enzymes and blood clotting factors in dogs given a boiled preparation of Amanita phalloides. Toxicol Appl Pharamcol 1978;46:455-62.
    [9]Kroncke KD, Fricker G, Meier PJ, Gerok W, Wieland T, Kurz G. Alpha-amanitin uptake into hepatocytes. J Biol Chem1986;261:12562-7.
    [10]Vogel G, Tuchweber B, Trost W, Mengs U. Protection by silybinin against amanita phalloides intoxication in beagles. Toxicol Appl Pharmacol 1984; 73:355-62.
    [11]Floersheim GL. Treatment of human amatoxin poisoning:myths and advances in therapy. Med Toxicol Advers Drug Exp 1987;2:1-9.
    [12]Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 2008;23:749-54.
    [13]Fuchs EC, Wehenmeyer R, Weiner OH. Effects of silibinin and of a synthetic analogue on a isolated rat hepatic stellate cells and myofibroblasts. Arzneimittelforschung 2004;12:1383-7.
    [14]Mourelle M, Muriel P, Favari L, Franco T. Prevention of CC14 induced liver cirrhosis by silymarin. Fundam Clin Pharmacol 1989;3:183-91.
    [15]Boigk G, Stroedter L, Herbst H, Waldschmitdt J, Ricken EO, Schuppan D. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology 2008; 26:643-9.
    [16]Boigk G, Herbst H, Jia JD, Riecken EO, Schuppan D. Effect of antifibrotic agent silymarin on liver cell regeneration in a rat model of secondary bilary fibrosis:a morphometric analysis. J Phytother Res 2002; 12; 42-4.
    [17]Jia JD, Boigk G, Bauer M, Ruehl M, Strefeld T, Riecken EO, et al. Silymarin downregulates TIMP-1 and collagen I mRNA in rats with secondary biliary cirrhosis. Hepatology 2005;28(suppl.):546A.
    [18]Ferenci P, Dragosic B, Dittrich H, Frank H, Benda L, Lochs H, et al. Randomized controlled clinical trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989;9:105-13.
    [19]Ferenci P, Dragosic B, Dittrich H, Frank H, Benda L, Lochs H, et al. Randomized controlled clinical trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989;9:105-13.
    [20]Jacobs B, Dennehy C, Ramirez G, Sapp J, Lawrence VA. Milk thistle for the treatment of liver diseases:a systematic review and metaanalysis. Am J Med 2002;113:506-15.
    [21]Angulo P, Patel T, Jorgensen RA, Therneau TM, Lindor KD. Silymarin in the treatment of patients with primary biliary cirrhosis with a suboptimal response to ursodeoxycholic acid. Hepatology 2000;32:897-900.
    [22]Schuppan EG, Hahn EG. Clinical studies with silymarin:fibrosis progression is the end point. Hepatology 2001;33:483-4.
    [23]Yamamura Y, Kotaki H, Tanaka N, Aikawa T, Sawada Y, Iga T. The pharmacokinetics of glycyrrhizin and its restaurative effect on hepatic function in patients with chronic hepatitis and in chronical lycarbon-tetrachloride-intoxicated rats. Biopharm Drug Dispos 2007;18:717-25.
    [24]Takahara T, Watanabe A, Shiraki K. Effects of glycyrrhizin on hepatitis B surface antigen:a biochemical and morphological study. J Hepatol 1994; 21:601-9.
    [25]Van Rossum TG, Vulto AG, De Man RA, Brouwer JT, Schalm SW. Review article:glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 2005; 12:199-205.
    [26]Wang JY, Guo JS, Li H, Liu SL, Zern MA. Inhibitory effect of glycyrrhizin on NF-kappa B binding activity in CCL4-plus ethanolinduced liver cirrhosis in rats. Liver 2001; 18:180-5.
    [27]Hayashi J, KajiyamaW, Noguchi A, Nahashima K, Hirata M, Hayashi S, et al. Glycyrrhizin withdrawal followed by human lymphoblasoid interferon in the treatment of chronic hepatitis B. Gastroenterol Jpn 1991;26:742-6.
    [28]Abe Y, Ueda T, Kato T, Kohli Y. Effectiveness of interferon, glycyrrhizin combination therapy in patients with chronic hepatitis C. Nippon Rinsho 1994:52:1817-22.
    [29]Arase Y, Ikeda K, Murashima N, Chayama K, Tsubota A, Koida I, et al. The long-term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer 2005;79:1494-500.
    [30]Thompson Coon J, Ernst E. Complementary and alternative therapies in the treatment of chronic hepatitis C:a systematic review. J Hepatol 2009; 40:491-500.
    [31]Acharya SK, Dasarathy S, Tandon A, Yoshi YK, Tandon BN. A preliminary open trial on interferon stimulator (SNMC) derived from glycyrrhiza glabra in the treatment of subacute hepatic failure. Ind J Med Res 1993;98:69-74.
    [32]Calixto JB, Santos ARS, Filbo VC, Yunes RA. A review of the plants of the genus Phyllanthus:their chemistry, pharmacology, and therapeutic potential. Med Res Rev 1998;18:225-58.
    [33]Ott M, Thyagarajan SP, Gupta S. Phyllanthus amarus suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. Eur J Clin Invest 2007;27:908-15
    [34]Liu J, Lin H, McIntosh H. Genus Phyllanthus for chronic hepatitis B virus infection:a systematic review. J Viral Hep 2001;8:368-466..
    [35]Kayano K, Sakaida I, Uchida K, Okita K. Inhibitory effects of the herbal medicine Sho-saiko-to (TJ-9) on cell proliferation and procollagen expres-sions in cultured rat hepatic cells. J Hepatol1998;29:642-9.
    [36]Inoue T, Jackson EK. Strong antiproliferative effects of baicalein in cultured rat hepatic stellate cells. Eur J Pharmacol 1999;378:129-35.
    [37]Sakaida I, Matsumura Y, Akiyama S, Hayashi K, Ishige A, Okita K. Herbal medicine Sho-saiko-to (TJ-9) prevents liver fibrosis andenzyme-altered lesions in rat liver cirrhosis induced by a cholinedeficientL-amino acid-defined diet. J Hepatol 1998;28:298-306.
    [38]Shimizu I,MaYR, MizobuchiY, Liu F, Miura T, NakaiY, et al. Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology 1999;29:149-60.
    [39]Oka H, Yamamoto S, Kuroki T, Harihara S, Marumo T, Kim SR, etal. Prospective study of chemoprevention of hepatocellular carcinoma with Sho-saiko-to (TJ-9). Cancer 1995;76:743-9.
    [40]Shiota G, Maeta Y, Mukoyama T, Yanagidani A, Udagawa A, Oyama K, et al. Effects of Sho saiko-to in hepatocarcinogenesis and 8-hydroxy- 2_-deoxyguanosine formation. Hepatology 2002;35:1125-33.
    [41]Li T, Tamada K, Abe K, Tada H, Onoe Y, Tatsugami K, etal. The restoration of the antitumor T cell response from stressinducedsuppression using a traditional Chinese herbal medicineHochu-ekki-to (TJ-41:Bu-Zhong-Yi-Qi-Tang). Immunopharmacology 1999;43:11-21.
    [42]Cyong JC, Ki SM, Iijima K, Kobayashi T, Furuyi M. Clinical and pharmacological studies on liver diseases treated with Kampo herbal medicine. Am J Chin Med 2000;28:351-60
    [43]Chen TSN, Chen PS. Liver in traditional Chinese medicine. J Gastroenterol Hepatol 1998; 13:431-42.
    [44]Chang IM. Liver-protective activities of aucubin derived from traditional oriental medicine. Res Commun Mol Pathol Pharmacol 1998; 102:189-204.
    [45]Jia JD, Wang BE, Dong Z, Cui L, Zhu JX, Che JT. The effect of herbal compound 861 on mRNA levels for type Ⅰ, Ⅲ, and Ⅳ collagens and TGF in immune complex rat liver fibrosis. Chin J Hepatol 1996;4:214-6.
    [46]Jia JD, Wang BE, Ma XM. The effect of herbal cpd 861 on type Ⅳ collagen mRNA levels in cultured rat lipocytes. Chin J Hepatol 1996;4:142-4.
    [47]Wang TL, Wang BE, Zhang HH, Liu X, Duan ZP, Zhang J, et al. Pathological study of the therapeutic effect on HBV-related liver fibrosis with herbal compound 861. Chin J Gastroenterol Hepatol 1998;7:148-53.
    [48]Baoen W. Experimental and clinical study in inhibition and reversal of liver fibrosis with integrated Chinese and Western medicine. Complementary and alternative Medicine in Chronic Liver Disease, submitted abstract, p63,1999.
    [49]Batey RG, Bensousson A, Fan YY, Bollipo S, Hossain M. Preliminary report of a randomized, double-blind placebo-controlled trial of a Chinese herbal medicine preparation CH100 in the treatment of chronic hepatitis C. J Gastroenterol Hepatzol 1998; 13:244-7.
    [50]Pandey S, Gujrati VR, Shanker K, Singh N, Dhawan KN. Hepatoprotective effect of LIV.52 against CC14-induced lipid peroxidation in liver of rats. Int J Exp Biol 1994;32:694-7
    [51]de Silva HA, Saparamadu PAM, Thabrew MI, Pathmeswaran A, Fonseka MMD, de Silva HJ. Liv 52 in alcoholic liver disease:aprospective, controlled trial. J Ethnopharmacol 2003;84:47-50..
    [52]Fleig WW, Morgan MY, Holzer MA. and a European multicenter study group. The ayurvedic drug LIV.52 in patients with alcoholic cirrhosis. Results of a prospective, randomized, double-blind, palcebo-controlled clinical trial J Hepatol 1997;26(1):127.
    [53]Godichaud S, Krisa S, Couronne B, Dubuisson L, Merillon JM, Desmouiliere A, et al. Deactivation of cultured human liver myofibroblasts by trans-reseveratrol, a grapevine-derived polyphenol. Hepatology 2000;31:922-31.
    [54]Stickel F, Patsenker E, Schuppan D. Herbal hepatotoxicity. J Hepatol 2005;43:901-10.
    [55]Picciotto A, Campo N, Brizzolara R, Giusto R, Guido G, Sinelli N, et al. Chronic hepatitis induced by Jin Bu Huan. J Hepatol 1998:28:165-7
    [56]Nadir A, Agrawal S, King PD, Marshall JB. Acute hepatitis associated with the use of a Chinese herbal product, Ma-Huang. Am J Gastroenterol 1996:91:1436-8.
    [57]Skoulidis F, Alexander GJM, Davies SE. Ma huang associated acuteliver failure requiring liver transplantation. Eur J Gastroenterol Hepato 12005; 17:581-4.
    [58]Bajaj J, Knox JF, Komorowski R, Saeian K. The irony of herbal hepatitis: Ma-Huang-induced hepatotoxicity associated with compound heterozygosity for hereditary hemochromatosis. Dig Dis Sci 2003;48:1925-8.
    [59]Yoshida EM, McLean CA, Cheng ES, Blanc PD, Somberg KA, Ferrell LD, et al. Chinese herbal medicine, fulminant hepatitis and liver transplantation. Am J Gastroenterol 1996; 12:2647-8.
    [60]Wilmot FC, Robertson GW. Senecio disease or cirrhosis of the liver due to senecio poisoning. Lancet 1920;Ⅱ:828-9.
    [61]Bras G, Jeliffe DB, Stuart KL. Veno-occlusive disease of the liver with non-portal type of cirrhosis occurring in Jamaica. Arch Pathol 1954;57:285.
    [62]Tandon BN,Tandon RK,TandonHD,NarndranathanM,JoshiYK.An epidemic of veno-occlusive disease of liver in Central India. Lancet 1976;2:271-2.
    [63]Datta DV, Khuroo MS, Mattocks AR, Aikat BK, Chhuttani PN. Herbal medicine and veno-occlusive disease in India. Postgrad Med J 1978;54:511-5.
    [64]Stillman AE, Huxtable RJ, Consroe P, Kohnen P, Smith S. Hepatic veno-occlusive disease due to pyrrolizidine (Senecio) poisoning in Arizona. Gastroentrology 1977;73:349-52.
    [65]Fox DW, Hart MC, Bergeson PS, Jarrett PB, Stillman AE, Huxtable RJ. Pyrrolizidine (Senecio) intoxication mimicking Reye's syndrome. J Pediatr 1978;93:980-2.
    [66]Weston CFM, Cooper BT, Davies JD, Levine DF. Veno-occlusive disease of the liver secondary to ingestion of comfrey. Br Med J 1987;295:183.
    [67]Roulet M, Laurini R, Rivier L, Calame A. Hepatic veno-occlusive disease in a newborn infant of a woman drinking herbal tea. J Pediatr 1988; 112:433-6.
    [68]DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002;22:27-42
    [69]Diaz D, Ferroudji S, Heran B. H'epatite aigue'a la Germandr'ee petitchene. Gastroenterol Clin Biol 1993; 16:1006-7.
    [70]Mostefa-Kara N, Pauwels A, Pines E, Biour C, Levy VG. Fatal hepatitis after herbal tea. Lancet 1992;340:674.
    [71]Larrey D, Pageaux GP. Hepatotoxicity of herbal remedies and mushrooms. Semin Liver Dis 1995;15:183-8.
    [72]Fau D, Lekehal M, Farrell G, Moreau A, Moulis C, Feldmann G, et al. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Gastroenterology 1997;113:1334-46.
    [73]Stickel F, Seitz HK, Hahn EG, Schuppan D. Acute hepatitis induced by greater celandine. Scand J Gastroenterol 2003;38:565-8
    [74]Pittler MH, Ernst E. Efficacy of kava extract for treating anxiety:systematic review and meta-analysis. J Clin Psychopharmacol 2000;20:84-9.
    [75]Stickel F, Baum'uller HM, Seitz KH, Vasilakis D, Seitz G, Seitz HK, et al. Hepatitis induced by Kava-Kava (Piper methysiicum rhizoma). J Hepatol 2003;39:62-7
    [76]Russmann S, Lauterburg BH, Helbling A. Kava hepatotoxicity. AnnIntern Med 2001; 135:68-9
    [77]Kassler WJ, Blanc P, Greenblatt R. The use of medicinal herbs by human immunodeficiency virus-infected patients. Arch Intern Med 1991:2281-8
    [78]Sheikh NM, Philen RM, Love LA. Chaparral-associated Hepatotoxicity. Arch Intern Med 1997; 157:913-9
    [79]Stewart MJ, Steenkamp V. The biochemistry and toxicity of atractyloside:a review. Ther Drug Monit 2000;22:641-9.
    [80]Thomassen D, Slattery JT, Nelson SD. Menthofuran-dependent andinde-pendent aspects of pulegone hepatotoxicity:roles of glutathione. J Pharmacol Exp Ther 1990;253:567-72.
    [81]Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD, et al. Pennyroyal toxicity:measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 1996; 124:726-34.
    [82]Hamid S, Rojter S, Vierling J. Protracted cholestatic hepatitis after the use of prostata. Ann Intern Med 1997;127:169.
    [83]Millonig G, Stadlmann S, Vogel W. Herbal hepatotoxicity:acute hepatitis caused by a Noni preparation (Morinda citrifolia). Eur J Gastroenterol Hepatol 2005; 17:445-7.
    [84]Lynch CR, Folkers ME, Hutson WR. Fulminant hepatic failure associated with the use of Black Cohosh:a case report. Liver Transpl 2006; 12:989-92.
    [85]何金洋,郭兴伯纳米中药的功能与应用研究浅释[J]中国药学刊200220(1)37-38
    [86]孙恩杰纳米生物学[M].科学出版社,2009:79
    [87]L u F E, Ruan J L, Yu D J, et al Statements of micrometer Chinese herbs [J] World Sci Tech-Mod Tradit Chin Medi,2001,1:12-15
    [88]Sheng, Liang-Hong; Li, Song-Lin; Kong, Liang etal Separation of compounds interacting with liposome membrane in combined prescription of traditional Chinese medicines with immobilized liposome chromatography[J] Journal of Pharmaceutical and Biomedical Analysis 2005 38(2):216-22
    [89]Knauss, Wolfgang G; Chasiotis, Ioannis; Huang, Ying; Mechanical measurements at the micron and nanometer scales[J]Mechanics Of Materials 2003 35(3-6):217-231
    [90]胡维新医用分子生物学[M]长沙中南大学出版社200620-35
    [91]陈玉祥纳米药物评价技术与方法[M].北京:化学工业出版社,2012.4.77
    [92]Koo, Otilia M; Rubinstein, Israel; Onyuksel, Hayat Role of nanotechnology in targeted drug delivery and imaging:a concise review[J] Nanomedicine: Nanotechnology, Biology, and Medicine 2005 1(3) 193-212
    [93]邢宝玲,张东生.纳米As203磁性脂质体的制备及表征.南京医科大学学报(自然科学版),2005,25(1):9.
    [94]YANG Kai, WEN Yuming, WANG Changmei, et al The Study of Cucurbitacin BE Polylactic Acid Nanoparticles Delivering Cucurbitacin BE to Metastasized Cervical Lymph Nodes in Mice with Oral Cancer[J] WCJS 200321 (6):477-480
    [95]施斌,方超,游美羡,等.聚乙二醇修饰对羟喜树碱隐形纳米囊泡的肿瘤靶向和抑瘤作用的影响[J].中国临床药学杂志,2006,15(1):46-49.
    [96]李雅,杨永华,蔡光先.超微粉碎技术对黄芪药材主要化学成分提取率的影响[J].中成药,2008,30(2):229-231.
    [97]马培艳,傅正义,苏艳丽.纳米黄芪粉的显微结构和有效成分溶出的研究[J].中草药,2005,36(8):1162-1164.
    [98]马光大周全管斐纳米技术与中药制剂现代化[J]药学实践杂志2003,21(4)209-210
    [99]Huang, Gang; Gao, Jun; Hu, Zhibing etal Controlled drug release from hydrogel nanoparticle networks[J] Journal Of Release 2004 94(2-3):303-311
    [100]Zheludkevich, Mikhail L.; Serra, Ricardo etal Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors[J] Electro-chemistry Communications 2005 7(8):836-840
    [101]LIU JP,DU YZ,ZHU L.Studies on drug release in vitro and rat intestinal absorption of tashinone ⅡA solid lipid nanoparti-cles[J].Chinese Pharma-cological Bulletin,2005,21(2):186-190. Chinese
    [102]Mathiowitz E, Jacob J S, Jong Y S et al.Biologically erodable microspheres as potential oral drug delivery system[J] Nature 1997 386(6623):410
    [103]陈丹,柴丽萍,王骥燕,等.羟基喜树碱纳米微球抑制舌鳞癌Tca8113细胞的实验研究[J].中华U腔医学研究杂志,2009,3(3):262-269.
    [104]黄惠风,施瑞华,凌亭生,等.磁性纳米紫杉醇微球对人胃癌细胞SGC-7901增殖和凋亡的影响[J].中国消化内镜,2007,1(3):39-42.
    [105]肖小河周韵华新型给药系统及其在中药现代化中的应用[J]怀柔医专学报20054(1):1-5
    [106]全从娟,傅正义,马培燕,纳米技术在中药开发中的应用[J]材料科学与工程学报200321(4)582-585
    [107]SUN M,ZHU ZY,YU ML,et al.Experimental research on the anti-tumor efect of nanoparticle control-releasing preparation of norcantharidin[J].. Chinese Journal of Oncology,2001,7(6):321-325
    [108]王静,卢卫红,张庆华.纳米技术在中药研究中的发展与应用[J].中医药信息,2006,23(3):3-5.
    [109]ZHANG Jing-Song,GAO Xue-Yun,Zhang Li-De The protective effect of nano red elemental selenium on acute liver injury in mice induced by CC14 [J] Chinese Pharmacological Bulletin 2001 17(1):117-118
    [110]Xu HB,Yang XL,Huang KX The study on the effection to the size of carcinoma S180 surpressed by realgar[J] Wuhan Univ-Nat Sci Ed Special Issue 2000 1288-289
    [111]QU H,WANG BJ,LI Y,et al.Introduction of nano Chinese medicine[J].China Phcermaceuticals,2005,14(4):78-79.Chi-nese
    [112]Yang S C etal body distribution of camptochecin, solid nanaoparticles of after oral administration[J]pharm res,2005 16 (5) 751-757
    [113]PI ZB,TIAN XK,YANG C,et al.Preparation of nanosized calamine[J]. Journal of Wuhan University (Natural Science Edi-tion),2002,48(6):649-651.Chine
    [114]韩静巴德纯唐星纳米技术在中药制剂中的作用与意义[J]中医药学刊200422(3)575-576
    [115]ZHAO Peng etal. Preparation of daidzein solid lipid nanoparticles by spray drying method[J]CHINESE JOURNAL OF NEW DRUGS 2007,16(12) 38-43
    [116]崔京浩,钱颖,缪文俊,等.含葛根素-羟丙基-β-环糊精包合物胃滞留制剂的制备与体外评价.中国中药杂志,2008,33(16):
    [117]孙永慧,王桂姬,王建明.大蒜油p-环糊精包合物缓释片制剂工艺研究.中国中医药信息杂志,2007,14(11):24-55.
    [118]朱海云,刘振堂,李兴华.土贝母皂甙微囊的特性及其用于肾动脉栓塞的实验研究.中华放射学杂志,2001,35(2):107-109.
    [119]Li Y C, Dong L, Jia A, et al. Preparation of solid lipid nanoparticles loaded with traditional Chinese medicine by high-pressure homogenization [J]. J South Med Univ,2006,25(5):541-544.
    [120]梅之南,杨亚江,徐碧辉,等.固体脂质纳米粒降低雷公藤内酷醇肝毒性的实验研究[J].中草药,2003,34(9):817-819.
    [121]陈大兵,杨天智,吕万良,等.紫杉醇长循环固态脂质纳米粒的制备和体内外研究山.药学学报,2002,37(Ⅰ):54-58.
    [122]琚辉,郝存江,尹飞,等.姜黄素固体脂质纳米粒制备及表征[J].药物评价研究,2010,33(6):420-423.
    [123]Yang SC, Zhu JB, Liang BW et al Study on camptothecin solid lipid nanoparticles[J] Acta Pharmaceutica Sinica 1999,34(2):146-150
    [124]孙红武,欧阳五庆.盐酸小粟碱纳米乳的制备及其理化险质研究[J1.中草药,2007,38(10):1476-1480.
    [125]刘鹏,桂双英,鲁传华,等.青藤碱微乳的体外释放度考察.安徽中医学院学报,2010,29(3):63-65.
    [126]宋金春,王玉广.马钱子碱微乳的制备及其体外透皮吸收的研究.中国药学杂志,2006,41(12):928-931.
    [127]陈峰,罗厚蔚.应用固体分散技术制备丹参酮胶体制剂[J].电子显微学报,2007,26(2):148-152.
    [128]Hu R F,Zhu J B,Ma F Y.et al.Preparation ofsustained-release silybin microspheres by spherical crystallization technique[J].J Chin Pharm Sci,2006, 15(2):83-91
    [129]Gref R, Luck M, Quellec P, etal."Stealth" corona -core nanoparticles surface modified by polyethylene glycol(PEG):influence of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption[J]Colloid Surface B,2000,18(3-4):301
    [130]Muller, Rainer H.; Keck, Cornelia M Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles[J] Journal Of Biotechnology 2004 113(1-3):151-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700