用户名: 密码: 验证码:
内质网应激在四氯化碳诱导小鼠急慢性肝损伤中的作用及部分机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是体内最大的生物代谢器官,也是外源性物质及其代谢产物攻击的主要靶器官。机体短期接触较大剂量外源性物质可引起急性肝损伤,在外来因素长期作用下,如果不能完全修复,可发展成慢性肝损伤。肝纤维化是各种慢性肝损伤的共有病理变化,其持续发展为肝硬化可引起肝功能衰竭甚至肝细胞癌,已成为一个危害人类生命健康的世界性问题。但目前急慢性肝损伤作用的发病机制尚未完全阐明,仍未发现十分确定、特效的药物,因此,深入研究急慢性肝损伤的发病机制,为临床寻找理想的抗肝损伤药物,尤其是抗纤维化的药物,具有重要的理论和临床意义。
     最近研究发现内质网应激(endoplasmic reticulum stress, ER Stress)在许多肝脏疾病中发挥了重要作用。内质网是广泛存在于真核细胞中的一种重要的细胞器,负责蛋白质合成、折叠、组装和运输等。在外来因素刺激作用下,细胞处于应激状态,引起未折叠蛋白反应,它本是机体的一种自我保护机制,但当应激持续发生时,则会激活脂肪生成、炎症和凋亡等途径,引发一系列的病理性反应。最近的一些研究也显示内质网应激在急慢性肝损伤形成过程中发挥了一定在作用,与肝纤维化的形成密切相关。然而,内质网应激参与急慢性肝损伤,尤其是肝纤维化的确切机制尚未完全阐明。
     四氯化碳(carbon tetrachloride, CCl_4)诱导的急慢性肝损伤模型是研究肝损伤机制的经典模型之一。本研究首先观察了内质网应激相关蛋白在CCl_4诱导小鼠急性肝损伤中的变化,在此基础上进一步研究了内质网应激在肝纤维化中的作用及部分机制,主要内容概括如下:
     1ER stress在CCl_4诱导小鼠急性肝损伤中的作用
     1.1CCl_4诱导小鼠急性肝损伤
     为探讨ER stress在小鼠急性肝损伤中的作用,本研究在经腹腔单次注射CCl_4(0.3ml/kg BW)后不同时点(0,2,6,12,24和72h)分别剖杀小鼠,称量体重和肝脏质量,留取血液和肝脏组织。结果发现:与正常对照组相比,CCl_4在处理后12h小鼠肝重与肝指数明显增加,以72h最显著;CCl_4处理后2h即引起ALT明显升高,24h达最高峰,升高约千倍,72h接近对照组正常值。病理组织学检查显示CCl_4处理6h后,引起明显的气球样变和点状坏死;12h进展为块状坏死;至24h坏死最显著,肝细胞呈大片坏死;72h坏死区域有大量的炎性细胞浸润。
     1.2CCl_4诱导急性肝损伤小鼠肝脏ER Stress效应
     为观察急性肝损伤小鼠肝脏ER Stress效应,采用免疫组化技术检测急性肝损伤小鼠肝脏GRP78分布的动态变化。结果发现:与正常对照组相比,在CCl_4处理后2h,在少量肝细胞中出现GRP78棕黄色特异性染色,6h肝细胞特异性染色呈明显的带状分布,12h肝细胞出现区域性特异性染色,24h肝细胞特异性染色分布最广且最深,72h肝细胞GRP78特异性染色明显减弱。
     采用Western blotting技术检测GRP78蛋白表达以及下游IRE1α、eIF2α蛋白磷酸化水平和ATF6核蛋白水平的动态变化。结果发现:与正常对照组相比,在CCl_4处理后6h肝脏组织GRP78显著升高,在12h达到高峰,并持续至24h,在72h恢复至正常对照水平;在CCl_4处理后2h,肝脏组织IRE1α蛋白磷酸化水平显著升高,至12h肝脏组织IRE1α蛋白磷酸化水平仍明显升高;在CCl_4处理后12h,肝脏组织eIF2α蛋白磷酸化水平明显升高,并持续至72h,以24h磷酸化水平最显著;在CCl_4处理后6h肝脏组织ATF6核蛋白水平显著升高,在24h升高最为显著,在72h恢复至正常对照水平。上述结果提示CCl_4诱导的小鼠急性肝损伤模型中发生ER Stress效应。
     1.3急性肝损伤小鼠肝细胞凋亡的动态变化
     为观察急性肝损伤小鼠肝细胞凋亡的动态变化,采用TUNEL技术进行检测。结果发现:与正常对照组相比,在CCl_4处理后2至12h,仅有少量肝脏细胞发生凋亡,在24h有大量区域性肝细胞发生凋亡,72h与正常对照组无明显差异。上述结果提示CCl_4诱导急性肝损伤模型小鼠在CCl_4处理后24h发生大量区域性肝细胞凋亡。
     1.4内质网应激抑制剂PBA对急性肝损伤小鼠肝细胞凋亡的影响
     为进一步验证CCl_4诱导急性肝损伤模型小鼠发生肝细胞凋亡是否由内质网应激介导,观察内质网抑制剂PBA对急性肝损伤小鼠肝细胞凋亡的影响,在经腹腔注射给予CCl_4(0.30ml/kg BW)前24h、12h和在CCl_4处理后12h分别经腹腔注射给予150mg/kg PBA进行干预,在CCl_4处理后24h剖杀小鼠,采用TUNEL技术检测肝细胞凋亡。结果发现:与模型组相比,PBA可明显抑制CCl_4诱导的肝细胞凋亡。以上结果提示内质网应激在CCl_4诱导急性肝损伤中发挥了重要作用,可能与其介导的肝细胞凋亡有关。2CCl_4诱导小鼠肝纤维化与ER stress效应
     2.1CCl_4诱导小鼠肝纤维化模型的建立
     为建立CCl_4诱导的小鼠肝纤维化模型,每周2次经腹腔注射给予CCl_40.15ml/kg(按10%溶于橄榄油中),共持续8周。结果发现:与正常对照组比较,CCl_4诱导的小鼠血清丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)、碱性磷酸酶(alkaline phosphatase,ALP)水平和总胆红素(Total bilirubin,TBIL)、直接胆红素(Direct Bilirubin,DBIL)和总胆汁酸(total biliary acid,TBA)含量以及反应肝纤维化程度的组织羟脯氨酸(Hydroxyproline,Hyp)含量均显著增高;病理组织学结果HE染色提示模型组小鼠肝脏中重度坏死,在坏死组织周围有大量的炎症细胞浸润,胶原染色提示肝组织有大量胶原沉积,并分割肝组织形成假小叶趋势。以上结果提示CCl_4诱导的小鼠肝纤维化模型建立成功。
     2.2CCl_4诱导肝纤维化小鼠肝脏ER Stress效应
     为观察CCl_4诱导小鼠肝纤维化模型中,是否存在ER Stress效应,采用Westernblotting技术检测ER stress效应标志性蛋白GRP78蛋白表达以及下游IRE1α、eIF2α磷酸化水平和ATF6核蛋白水平。结果发现:与正常对照组相比,CCl_4诱导肝纤维化模型小鼠肝脏GRP78蛋白表达显著上调, IRE1α、eIF2α磷酸化水平以及ATF6核蛋白水平显著增加。以上结果提示CCl_4诱导的小鼠肝纤维化模型发生ER stress效应。
     3内质网应激抑制剂PBA对CCl_4诱导的小鼠肝纤维化的影响
     为进一步探讨ER stress在CCl_4诱导肝纤维化形成过程中的作用,采用内质网应激抑制剂PBA进行干预,观察ER stress效应被抑制后,对CCl_4诱导小鼠肝纤维化的影响,PBA+CCl_4干预组,在每周2次经腹腔注射给予0.15ml/kg CCl_4的同时,每天两次经腹腔注射给予150mg/kg PBA,共持续8周。结果发现:与肝纤维化模型组相比,PBA干预显著降低小鼠肝重和肝指数,并明显降低血清DBIL、TBA水平和肝组织Hyp含量;病理学组织结果,PBA干预明显减轻肝脏组织炎症细胞数量与肝脏坏死程度,改善肝组织结构,减少胶原沉积。
     α-SMA是肝星状细胞激活的标志,采用免疫组化技术和Western blotting技术分析α-SMA蛋白表达。结果发现:与模型组比较,PBA干预显著降低小鼠肝脏α-SMA的蛋白表达。采用实时定量RT-PCR技术检测肝纤维化关键性细胞因子TGF-β1mRNA水平,结果发现:与模型组相比较,PBA干预显著降低TGF-β1mRNA水平。
     采用实时定量RT-PCR技术检测肝脏胶原标志物Col1a1和Col1a2mRNA水平以及胶原降解相关蛋白基质金属蛋白酶(matrix metalloproteinases,MMPs)中Mmp2和Mmp9mRNA、金属蛋白酶组织抑制因子(tissue inhibitor ofmetallopeptidases,TIMPs)中Timp1和Timp2mRNA水平。结果发现,与正常对照组相比,肝纤维化模型组小鼠Col1a1、Col1a2、Mmp2、Mmp9、Timp1、Timp2mRNA水平显著增加;与模型组相比,PBA干预显著抑制Colla1、Colla2、Mmp2和Timp1mRNA水平。以上结果提示:内质网应激可能与增加小鼠肝脏胶原纤维表达有关。
     为进一步验证ER stress在CCl_4诱导肝纤维化中的作用,采用内质网应激抑制剂PBA进行干预,观察对肝纤维化小鼠的ER stress效应的影响,采用Western blotting技术检测GRP78蛋白表达、IRE1α、eIF2α磷酸化水平和ATF6核蛋白水平。结果发现:与模型组相比,PBA干预明显抑制CCl_4诱导的肝纤维化小鼠肝脏GRP78蛋白表达的上调作用,降低IRE1α、eIF2α磷酸化水及核蛋白ATF6水平。以上结果进一步提示PBA可以抑制CCl_4诱导的肝脏内质网应激和未折叠蛋白反应,进一步证明内质网应激在肝纤维化的形成过程中发挥了重要的作用。
     4ER stress在CCl_4诱导的小鼠肝纤维化中的作用机制
     4.1ER stress介导的NF-κB信号通路在CCl_4诱导小鼠肝纤维化中的作用
     为进一步研究ER stress在CCl_4诱导的小鼠肝纤维化中的作用机制,采用Western blotting和实时定量RT-PCR技术检测CCl_4诱导的肝纤维化模型组以及内质网应激抑制剂干预组对NF-κB信号通路的影响。结果发现:与正常对照组相比,CCl_4诱导的肝纤维化模型小鼠肝脏细胞核转录因子NF-κB p65核蛋白水平显著增加;与模型组相比,PBA干预显著降低细胞核内NF-κB p65核蛋白水平。采用实时定量RT-PCR技术检测NF-κB信号通路下游靶基因TNF-α mRNA水平,结果显示:肝纤维化模型组小鼠肝脏TNF-α mRNA水平明显增高;与模型组相比,PBA干预显著降低TNF-α mRNA水平。以上结果提示ER stress在CCl_4诱导肝纤维化小鼠中的作用机制,可能与其介导的NF-κB信号通路及炎症反应有关。
     4.2ER stress介导的MAPKs信号通路在CCl_4诱导小鼠肝纤维化中的作用
     为进一步研究内质网应激在CCl_4诱导的小鼠肝纤维化作用中的机制,采用Western blotting技术检测CCl_4诱导的肝纤维化模型组以及内质网应激抑制剂干预组对MAPKs信号通路的影响。结果发现:与正常对照组相比,CCl_4诱导的肝纤维化模型组小鼠ERK和JNK磷酸化水平显著增加,而p38的磷酸化水平明显降低;与模型组相比,PBA干预显著降低肝脏ERK和JNK的磷酸化水平,对肝脏磷酸化的p38的表达无明显影响。以上结果提示ER stress在CCl_4诱导的小鼠肝纤维化形成过程中的作用机制,可能与其介导的ERK和JNK信号通路有关。
     以上实验结果综合表明,ER stress在CCl_4诱导的急性肝损伤发挥了重要的作用,可能与其介导的肝细胞凋亡有关;ER stress在CCl_4诱导的慢性肝损伤——肝纤维化过程中也起了十分重要的作用,其作用机制可能与其介导的NF-κB信号通路和JNK、ERK信号通路有关。更为重要的是,ER stress效应被抑制后,对肝纤维化具有一定保护作用,提示内质网应激可为开发防治肝纤维化疾病的药物提供新的作用靶点和思路。
The liver is not only an important organ in the metabolism for human, but also atarget organ which is most vulnerable to the damage of numerous extraneous factors. Ashort-term expose of high dose xenobiotics induce acute liver injury, and long-termexpose of xenobiotics induced chronic liver injury. Liver fibrosis is a repair response tochronic liver injury. Liver fibrosis is a slow pathological process and a commonpathological change in chronic liver disease,which has become a worldwide healthproblem. The change of texture in the liver is abnormal hyperplasia and deposition ofliver extracellular matrix (ECM), which may cause severe liver fibrosis or cirrhosis andeven lead to liver failure if not treated in time. Nevertheless, the molecular mechanismsof acute and chronic liver injury remain poorly understood. Many anti-liver injury drugshave been developed in recent years, but the effects have not been affirmed yet. It is ofsignificance to find an ideal anti-fibrosis drug and understand the pathogenesis of liverfibrosis.
     The endoplasmic reticulum (ER) stress plays an important role in numerous liverdiseases. ER is the organelle responsible for protein folding and maturation andmaintaining Ca2+homeostasis. Accumulation of unfolded/misfolded proteins andalteration of Ca2+homeostasis in the ER lumen triggers ER stress. ER stress is aself-defence mechanism,but strong and long lasting ER stress leads to irreversible cellinjury. Many liver diseases such as viral hepatitis, alcohol liver disease, drug induced hepatitis, nonalcoholic fatty liver diseases are related to ER stress. A recent reportshowed that bile acids caused hepatic ER stress and Unfolded Protein Reaction (UPR)signaling activation in a model of cholestasis-induced hepatic fibrosis. Nevertheless,whether ER stress is involved in the pathogenesis of acute and chronic liver injury,especially for hepatic fibrogenesis, remain poorly understood.
     Carbon tetrachloride (CCl_4)-induced mouse models of acute and chronic liverinjury were for study of its molecular mechanism. The aim of this study was to observea single dose and long-term of CCl_4-induced hepatic ER stress and UPR signalingactivation, moreover, investigate the effects of Sodium4-phenylbutyrate (PBA) onCCl_4-induced hepatic fibrogenesis and elucidate its molecular mechanism in mice.
     1. The roles of ER Stress on a single dose of CCl_4-induced liver injury in mice
     1.1The effects of a single dose of CCl_4-induced liver injury in mice
     To investigate the effects of a single dose of CCl_4-induced liver injury in mice,mice were sacrificed at0,2,6,12,24and72hours after a single intraperitonealinjection of CCl_4(0.30ml/kg BW). Results showed the absolute and relative liverweights were significantly increased from12h to72h after a single intraperitonealinjection of CCl_4. The lever of serum ALT was slightly increased, beginning as early as2h and remained significantly elevated up to24h after a single dose of CCl_4administration. CCl_4-induced hepatic histopathological damage are analyzed withhematoxylin and eosin (HE) staining. Numerous hepatocytes with necrosis wereobserved at6h after a single injection of CCl_4. Liver zonal necrosis was observed at12h and was significant at24h. Numberous inflammatory cells around the necrotic tissuewere observed in liver sections at72h. These results demonstrated a single dose ofCCl_4-induced liver injury in mice.
     1.2The effects of a single dose of CCl_4-induced ER Stress in mice
     To investigate the effects of a single dose of CCl_4-induced ER Stress in mice,western blotting and immunohistochemistry were for the determination of ER Stress.Asingle dose of CCl_4administration significantly increased the level of hepatic GRP78,an ER chaperone, used by western blotting and positive hepatocytes of GRP78determined by immunohistochemistry. In addition, a single dose of CCl_4administrationsignificantly increased the level of hepatic peIF2α and pIRE1α were significantlyincreased in CCl_4-treated mice.1.3The effects of a single dose of CCl_4-induced hepatic apoptosis in mice
     To investigate the effects of a single dose of CCl_4-induced hepatic apoptosis inmice, TUNEL was for the determination of hepatic apoptosis. TUNEL+cells weresignificantly increased in liver of mice at24h after a single intraperitoneal injection ofCCl_4.
     1.4ER stress inhibitor alleviates CCl_4-induced hepatic apoptosis in mice
     To investigate the effects of ER stress inhibitor, PBA, on a single dose ofCCl_4-induced hepatic apoptosis in mice, mice received three doses of PBA, two (150mg/kg) intraperitoneally injected12h and24h before CCl_4(0.30ml/kg BW), the thirdinjected12h after CCl_4. All mice were sacrificed at24h after CCl_4. TUNEL was for thedetermination of hepatic apoptosis. PBA significantly alleviated CCl_4-induced hepaticapoptosis in mice at24h after a single intraperitoneal injection of CCl_4.
     2. The roles of ER stress on CCl_4-induced liver fibrosis and its molecularmechanism
     2.1CCl_4administration induces liver fibrosis model in mice
     Mice were intraperitoneally injected with CCl_4(0.15ml/kg BW, twice per week) incombination with PBA (150mg/kg, twice per day) for8weeks. Liver weight wassignificantly increased in mice administered with CCl_4. Results showed long-term CCl_4 administration significantly increased the levels of serum ALT, AST, ALP, TBIL andTBA. Hepatic hydroxyproline content was also significantly increased in miceadministered with CCl_4. Further analysis showed that the levels of serum weresignificantly increased in mice administered with CCl_4. CCl_4-induced hepatichistopathological damage are including numerous inflammatory cells around thenecrotic tissue were observed in liver sections from CCl_4-treated mice using H&Estaining. CCl_4-induced hepatic fibrosis was determined using Sirius red staining. Asexpected, an obvious bridging fibrosis was observed in liver of mice administered withCCl_4. These results demonstrated long-term CCl_4administration induce liver fibrosis inmice.
     2.2ER stress in CCl_4-induced liver fibrosis model in mice
     To investigate long-term CCl_4-induced hepatic ER stress, the effects of CCl_4onhepatic ER stress were analyzed using western blotting. Results showed long-term CCl_4administration significantly increased the level of hepatic GRP78, an ER chaperone. Inaddition, long-term CCl_4administration significantly increased the level of ATF6protein in hepatic nuclear extracts. The levels of hepatic peIF2α and pIRE1α were alsosignificantly increased in CCl_4-treated mice. These results suggested long-term CCl_4induced ER stress.
     3PBA alleviates CCl_4-induced liver fibrosis
     To investigate the effects of PBA, which could act as a chemical chaperone thatinhibits ER stress and the UPR signaling activation, on long-term CCl_4-induced liverfibrosis, mice were intraperitoneally injected with CCl_4(0.15ml/kg BW, twice per week)in combination with PBA (150mg/kg, twice per day) for8weeks. Interestingly, PBAsignificantly alleviated CCl_4-induced elevation of liver weight. The analysis of serumbiological parameters showed that PBA significantly alleviated CCl_4-induced elevationof serum DBIL and TBA levels. The effect of PBA on CCl_4-induced hepatic histopathological damage was determined by HE staining.The results showed that thenumber of inflammatory cells was significantly decreased in liver of mice administeredwith PBA plus CCl_4as compared with CCl_4alone. In addition, the grades of necrosiswere slightly lower in liver of mice administered with PBA plus CCl_4as compared withCCl_4alone. CCl_4-induced hepatic fibrosis was determined using Sirius red staining. Asexpected, PBA significantly alleviated CCl_4-induced hepatic fibrosis. Further analysisshowed that the area of hepatic fibrosis was significantly reduced in mice administeredwith PBA plus CCl_4as compared with CCl_4alone. The effects of PBA on hepatichydroxyproline, an indicator of hepatic fibrosis, were then analyzed. Result showedPBA significantly attenuated CCl_4-induced elevation of hepatic hydroxyproline content.These results showed PBA protects mice from CCl_4-induced liver fibrosis.
     The effects of PBA on CCl_4-induced hepatic α-SMA, a marker associated withHSC activation, were analyzed by immunohistochemistry and western blotting.Immunohistochemistry showed that the percentage of α-SMA-positive area, α-SMAwas mainly distributed in area of liver with bridging fibrosis, was significantlydecreased in liver of mice administered with PBA plus CCl_4as compared with CCl_4alone. Correspondingly, PBA significantly reduced CCl_4-induced expression of hepaticα-SMA protein. The effects of PBA on CCl_4-induced expression of TGF-β1wereanalyzed by real-time RT-PCR. As expected, long-term CCl_4administrationsignificantly increased the levels of hepatic TGF-β1mRNAs. Interestingly, PBAsignificantly attenuated CCl_4-induced upregulation of hepatic TGF-β1mRNAs. Theseresults suggested the protection of PBA on CCl_4-induced liver fibrosis was associatedwith the inhibition of PBA on CCl_4-induced the activation of HSCs.
     The effects of PBA on CCl_4-induced expression of hepatic Mmp2and Mmp9wereanalyzed by real-time RT-PCR. Long-term CCl_4administration significantlyupregulated the expression of hepatic Mmp2and Mmp9. PBA significantly attenuated CCl_4-induced upregulation of hepatic Mmp2mRNA. The levels of hepatic Timp1andTimp2mRNA were significantly increased in mice administered with CCl_4. PBAsignificantly attenuated CCl_4-induced upregulation of hepatic Timp1mRNA. ActivatedHSCs produce type I collagen molecules. Thus, the effects of PBA on CCl_4-inducedhepatic mRNA accumulation of collagen1α1(Col1a1) and Col1a2were then analyzed.As expected, the levels of hepatic Col1a1and Col1a2mRNAs were obviouslyincreased in mice administered with CCl_4. PBA significantly attenuated CCl_4-inducedelevation of hepatic Col1a1and Col1a2mRNAs.
     To investigate the effects of PBA on long-term CCl_4-induced hepatic ER stress, thelevel of hepatic GRP78, eIF2α and IRE1α phosphorylation and nuclear ATF6proteinwere analyzed by western blotting. Interestingly, PBA significantly attenuatedCCl_4-induced elevation of hepatic GRP78and nuclear ATF6protein. In addition, PBAsignificantly inhibited CCl_4-induced hepatic eIF2α and IRE1α phosphorylation. Theseresults suggested PBA alleviated ER stress and UPR signaling activation.
     4The molecular mechanism of ER stress on CCl_4-induced liver fibrosis in mice
     4.1PBA alleviates CCl_4-induced activation of hepatic NF-κB signaling pathway
     The effects of PBA on CCl_4-induced hepatic NF-κB activation are analyzed bywestern blotting. Interestingly, PBA significantly inhibited CCl_4-induced nucleartranslocation of NF-κB p65. The effects of PBA on CCl_4-induced expression ofinflammatory cytokines were analyzed by real-time RT-PCR. As expected, long-termCCl_4administration significantly increased the levels of hepatic TNF-α mRNAs.Interestingly, PBA significantly attenuated CCl_4-induced upregulation of hepatic TNF-αmRNAs. These results suggested the protection of PBA on CCl_4-induced liver fibrosiswas mediated by the inhibition of PBA on CCl_4-induced hepatic NF-κB activation andinflammation.
     4.2PBA alleviates CCl_4-induced activation of hepatic MAPK signaling pathway
     The effects of PBA on CCl_4-induced hepatic MAPK signaling were then analyzedby western blotting. The levels of hepatic pERK and pJNK were significantly increasedin mice administered with CCl_4. PBA significantly attenuated CCl_4-induced hepaticERK and JNK phosphorylation. Unexpectedly, the level of hepatic pp38wassignificantly decreased in mice administered with CCl_4. PBA had no effect on the levelof hepatic pp38. These results suggested the protection of PBA on CCl_4-induced liverfibrosis was associated with the inhibition of PBA on CCl_4-induced hepatic ERK andJNK phosphorylation.
     In summary, the present study demonstrates that a single dose of CCl_4administration induce liver injury, hepatic ER stress and UPR signaling activation withhepatic apoptosis. Long-term CCl_4administration also induced hepatic ER stress andUPR signaling activation, which may play an important role on CCl_4-induced HSCactivation and subsequent hepatic fibrosis. PBA, an ER chemical chaperone, inhibitsCCl_4-induced hepatic ER stress and UPR signaling activation. In addition, PBAalleviates CCl_4-induced inflammation through inhibiting activation of NF-κB and JNK,ERK signaling. Importantly, PBA effectively protects against CCl_4-induced HSCactivation and hepatic fibrosis. Therefore, ER stress is involved in CCl_4-induced acuteand chronic liver injury, and liver fibrosis partly mediated through activation of NF-κBand MAPK signaling.
引文
1. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the UnfoldedProtein Response. Cell Death Differ.2006;13(3):374-84.
    2. Rutkowski DT, Kaufman RJ. Kaufman, A trip to the ER: coping with stress.Trends Cell Biol.2004;14(1):20-8.
    3. Watanabe Y, Suzuki O, Haruyama T, Akaike T. Interferon-gamma inducesreactive oxygen species and endoplasmic reticulum stress at the hepaticapoptosis. J Cell Biochem.2003;89(2):244-53.
    4. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC.Hyperhomocysteinemia and its role in the development of atherosclerosis. ClinBiochem.2003;36(6):431-41.
    5. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to celldeath. Mol Immunol.2002;38(10):713-21.
    6. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. NatCell Biol.2001;3(11): E255-63.
    7. van der Kallen CJ, van Greevenbroek MM, Stehouwer CD, Schalkwijk CG.Endoplasmic reticulum stress-induced apoptosis in the development of diabetes:is there a role for adipose tissue and liver? Apoptosis.2009;14(12):1424-34.
    8. Robertson LA, Kim AJ, Werstuck GH. Mechanisms linking diabetes mellitus tothe development of atherosclerosis: a role for endoplasmic reticulum stress andglycogen synthase kinase-3. Can J Physiol Pharmacol.2006;84(1):39-48.
    9. Mouw G, Zechel JL, Gamboa J, Lust WD, Selman WR, Ratcheson RA.Activation of caspase-12, an endoplasmic reticulum resident caspase, afterpermanent focal ischemia in rat. Neuroreport.2003;14(2):183-6.
    10. Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress toliver diseases. Hepatology.2011;53(5):1752-63.
    11. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol.2011;54(4):795-809.
    12. Lee WM. Drug-induced hepatotoxicity. N Engl J Med.2003;349(5):474-85.
    13. Juurlink DN. Drug-induced hepatotoxicity. N Engl J Med.2003;349(20):1974-6; author reply1974-6.
    14. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ.Mechanisms of hepatotoxicity. Toxicol Sci.2002;65(2):166-76.
    15. Xu W, Hellerbrand C, K hler UA, Bugnon P, Kan YW, Werner S, Beyer TA. TheNrf2transcription factor protects from toxin-induced liver injury and fibrosis.Lab Invest.2008;88(10):1068-78.
    16. Reddy GK, Enwemeka CS. A simplified method for the analysis ofhydroxyproline in biological tissues. Clin Biochem,1996;29(3):225-9.
    17. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhancesfibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis.Gastroenterology.2002;123(4):1323-30.
    18. Yoshida H. ER stress and diseases. FEBS J.2007;274(3):630-58.
    19.林丽,唐朝枢,袁文俊.内质网应激.生理科学进展.2003;34(4):333-335.
    20.钟卫卫,林世德.内质网应激与肝损伤研究进展.世界华人消化杂志.2010;18(10):1021-1025.
    21.温韬,张海燕,卢静,李胜利,王晶,朴正福.内质网应激在四氯化碳致大鼠急性肝损伤中的作用探讨.胃肠病学和肝病学杂志.2008;17(10):786-789.
    22. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life anddeath decisions. J Clin Invest.2005;115(10):2656-64.
    23. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS.Endoplasmic reticulum chaperone protein GRP78protects cells from apoptosisinduced by topoisomerase inhibitors: role of ATP binding site in suppression ofcaspase-7activation. J Biol Chem.2003;278(23):20915-24.
    24. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAsduring the unfolded protein response. Science.2006;313(5783):104-7.
    25. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D.Coupling of stress in the ER to activation of JNK protein kinases bytransmembrane protein kinase IRE1. Science.2000;287(5453):664-6.
    26. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential fortranslational regulation and cell survival during the unfolded protein response.Mol Cell.2000;5(5):897-904.
    27. DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M. Phosphorylationof eukaryotic translation initiation factor2alpha coordinates rRNA transcriptionand translation inhibition during endoplasmic reticulum stress. Mol Cell Biol.2009;29(15):4295-307.
    28. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ERstress-inducible gene, is induced via ATF4-CHOP pathway and is involved incell death. Embo J.2005;24(6):1243-55.
    29. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K,Harding HP, Ron D. CHOP induces death by promoting protein synthesis andoxidation in the stressed endoplasmic reticulum. Genes Dev.2004;18(24):3066-77.
    30. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity byamyloid-beta. Nature.2000;403(6765):98-103.
    31.吴涛,季光,郑培永,柳涛.内质网应激与肝细胞凋亡.世界华人消化杂志.2007;15(23):2507-2515.
    32.孙丽娜,周俊英.内质网应激在酒精性肝病细胞凋亡中的作用.世界华人消化杂志.2010;18(1):70-74.
    33. Burlina AB, Ogier H, Korall H, Trefz FK. Long-term treatment with sodiumphenylbutyrate in ornithine transcarbamylase-deficient patients. Mol GenetMetab.2001;72(4):351-5.
    34. Odièvre MH, Brun M, Krishnamoorthy R, Lapouméroulie C, Elion J. Sodiumphenyl butyrate downregulates endothelin-1expression in cultured humanendothelial cells: relevance to sickle-cell disease. Am J Hematol.2007;82(5):357-62.
    35. Maestri NE, Brusilow SW, Clissold DB, Bassett SS. Long-term treatment ofgirls with ornithine transcarbamylase deficiency. N Engl J Med.1996;335(12):855-9.
    36. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, G rgünCZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucosehomeostasis in a mouse model of type2diabetes. Science.2006;313(5790):1137-40.
    37. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U.Endoplasmic reticulum stress plays a central role in development of leptinresistance. Cell Metab.2009;9(1):35-51.
    38. Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with knowncapacity to reduce endoplasmic reticulum stress, partially alleviateslipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes.60(3):918-24.
    39. Rahman SM, Qadri I, Janssen RC, Friedman JE. Fenofibrate and PBA preventfatty acid-induced loss of adiponectin receptor and pAMPK in human hepatomacells and in hepatitis C virus-induced steatosis. J Lipid Res.2009;50(11):2193-202.
    40. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, PattersonBW, Horton JD, Mittendorfer B, Hotamisligil GS, Klein S.Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissueinsulin sensitivity in obese men and women. Diabetes.2010;59(8):1899-905.
    41. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium4-phenylbutyrateprotects against cerebral ischemic injury. Mol Pharmacol.2004;66(4):899-908.
    42. Gutiérrez-Ruiz MC, Gómez-Quiroz LE. Liver fibrosis: searching for cell modelanswers. Liver Int.2007;27(4):434-9.
    43. Wells, RG. Liver fibrosis: challenges of the new era. Gastroenterology.2009;136(2):387-8.
    44. O'Connell MA, Rushworth SA. Curcumin: potential for hepatic fibrosis therapy?Br J Pharmacol.2008;153(3):403-5.
    45. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: diseaserelevance and therapeutic opportunities. Nat Rev Drug Discov.2008;7(12):1013-30.
    46. Hayashi H, Sakai T. Animal models for the study of liver fibrosis: new insightsfrom knockout mouse models. Am J Physiol Gastrointest Liver Physiol.300(5):G729-38.
    47. Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, Krishnaveni MS,Dubourd M, Demaio L, Willis BC, Kim KJ, duBois RM, Crandall ED, Beers MF,Borok Z. Role of endoplasmic reticulum stress in epithelial-mesenchymaltransition of alveolar epithelial cells: effects of misfolded surfactant protein. AmJ Respir Cell Mol Biol.2011;45(3):498-509.
    48. Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R, Lawson WE,Blackwell TS. Alveolar epithelial cells undergo epithelial-to-mesenchymaltransition in response to endoplasmic reticulum stress. J Biol Chem.2011;286(35):30972-80.
    49. Baek HA, Kim do S, Park HS, Jang KY, Kang MJ, Lee DG, Moon WS, Chae HJ,Chung MJ. Involvement of endoplasmic reticulum stress in myofibroblasticdifferentiation of lung fibroblasts. Am J Respir Cell Mol Biol.2012;46(6):731-9.
    50. Son G, Iimuro Y, Seki E, Hirano T, Kaneda Y, Fujimoto J. Selective inactivationof NF-kappaB in the liver using NF-kappaB decoy suppresses CCl4-inducedliver injury and fibrosis. Am J Physiol Gastrointest Liver Physiol.2007;293(3):G631-9.
    51. Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J, Sutterwala FS,Mahmood S, Jhandier MN, Shi Y, Flavell RA, Mehal WZ.Inflammasome-mediated regulation of hepatic stellate cells. Am J PhysiolGastrointest Liver Physiol.2009;296(6): G1248-57.
    52.严君,胡卓伟内质网应激偶联炎症反应与慢性病发病机制.生理科学进展.2010;41(4):261-266.
    53. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, WekRC. Phosphorylation of the alpha subunit of eukaryotic initiation factor2isrequired for activation of NF-kappaB in response to diverse cellular stresses.Mol Cell Biol.2003;23(16):5651-63.
    54. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosisfactor alpha links endoplasmic reticulum stress to the membrane death receptorpathway through IRE1alpha-mediated NF-kappaB activation anddown-regulation of TRAF2expression. Mol Cell Biol.2006;26(8):3071-84.
    55. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa Bin response to endoplasmic reticulum stress is transduced via IRE1and tumornecrosis factor receptor-associated factor2. Biol Pharm Bull.2003;26(7):931-5.
    56. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. Ultraviolet lightactivates NFkappaB through translational inhibition of IkappaBalpha synthesis.J Biol Chem.2004;279(33):34898-902.
    57. Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling.Cell Mol Life Sci.2007;64(21):2771-89.
    58. Kluwe J, Pradere JP, Gwak GY, Mencin A, De Minicis S, Osterreicher CH,Colmenero J, Bataller R, Schwabe RF. Modulation of hepatic fibrosis byc-Jun-N-terminal kinase inhibition. Gastroenterology.2010;138(1):347-59.
    59. Zhong Y, Li J, Chen Y, Wang JJ, Ratan R, Zhang SX. Activation of endoplasmicreticulum stress by hyperglycemia is essential for Muller cell-derivedinflammatory cytokine production in diabetes. Diabetes.2012;61(2):492-504.
    60. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S,Kakizuka A, Ichijo H. ASK1is essential for endoplasmic reticulumstress-induced neuronal cell death triggered by expanded polyglutamine repeats.Genes Dev.2002;16(11):1345-55.
    1. Bataller R and Brenner DA. Liver fibrosis. J Clin Invest.2005;115(2):209-18.
    2. Ramachandran, P and Iredale JP. Reversibility of liver fibrosis. Ann Hepatol.2009;8(4): p.283-91.
    3. Pan Q, Zhang ZB, Zhang X, Shi J, Chen Y X, Han Z G., Xie WF, Pan, Q, Geneexpression profile analysis of the spontaneous reversal of rat hepatic fibrosis bycDNA microarray. Dig Dis Sci.2007;52(10):2591-600.
    4. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med.2007;131(11):1728-34.
    5. Ron D and Walter P. Signal integration in the endoplasmic reticulum unfoldedprotein response. Nat Rev Mol Cell Biol,2007.8(7):519-29.
    6. Schroder M and Kaufman RJ. The mammalian unfolded protein response. AnnuRev Biochem.2005;74:739-89.
    7. Kozutsumi Y, Segal M, Normington K, Gething MJ, and Sambrook J. Thepresence of malfolded proteins in the endoplasmic reticulum signals theinduction of glucose-regulated proteins. Nature.1988;332(6163):462-4.
    8. Wu J and Kaufman RJ. From acute ER stress to physiological roles of theUnfolded Protein Response. Cell Death Differ,2006;13(3):374-84.
    9. Malhi H and Kaufman RJ. Endoplasmic reticulum stress in liver disease. JHepatol.2011;54(4):795-809.
    10. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential fortranslational regulation and cell survival during the unfolded protein response.Mol Cell.2000;5(5):897-904.
    11. DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M. Phosphorylationof eukaryotic translation initiation factor2alpha coordinates rRNA transcriptionand translation inhibition during endoplasmic reticulum stress. Mol Cell Biol.2009;29(15):4295-307.
    12. Hollien J and eissman JS. Decay of endoplasmic reticulum-localized mRNAsduring the unfolded protein response. Science.2006;313(5783):104-7.
    13. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D.Couplingof stress in the ER to activation of JNK protein kinases by transmembraneprotein kinase IRE1. Science.2000;287(5453):664-6.
    14. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ERstress-inducible gene, is induced via ATF4-CHOP pathway and is involved incell death. Embo J.2005;24(6):1243-55.
    15. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K,Harding HP, Ron D. CHOP induces death by promoting protein synthesis andoxidation in the stressed endoplasmic reticulum. Genes Dev.2004;18(24):3066-77.
    16. Rao RV, Ellerby HM and Bredesen DE. Coupling endoplasmic reticulum stressto the cell death program. Cell Death Differ.2004;11(4):372-80.
    17. Oyadomari S and Mori M. Roles of CHOP/GADD153in endoplasmic reticulumstress. Cell Death Differ,2004.11(4):381-9.
    18. Fels DR and Koumenis C. The PERK/eIF2alpha/ATF4module of the UPR inhypoxia resistance and tumor growth. Cancer Biol Ther.2006;5(7):723-8.
    19. Ron D and Habener JF. CHOP, a novel developmentally regulated nuclearprotein that dimerizes with transcription factors C/EBP and LAP and functionsas a dominant-negative inhibitor of gene transcription. Genes Dev.1992;6(3):439-53.
    20. Yamaguchi H and HG Wang. CHOP is involved in endoplasmic reticulumstress-induced apoptosis by enhancing DR5expression in human carcinomacells. J Biol Chem.2004;279(44):45495-502.
    21. Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, HughesPD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S,Bouillet P, Strasser A. ER stress triggers apoptosis by activating BH3-onlyprotein Bim. Cell.2007;129(7):1337-49.
    22.夏元平,王立花,樊燕蓉.细胞凋亡与内质网应激机制.药学与临床研究.2010;3:291-294.
    23. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS,Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ. Proapoptotic BAX andBAK modulate the unfolded protein response by a direct interaction withIRE1alpha. Science.2006;312(5773):572-6.
    24. Kaplowitz N, Than TA, Shinohara M, Ji C. Endoplasmic reticulum stress andliver injury. Semin Liver Dis.2007;27(4):367-77.
    25. Sanges D and Marigo V. Cross-talk between two apoptotic pathways activatedby endoplasmic reticulum stress: differential contribution of caspase-12and AIF.Apoptosis.2006;11(9):1629-41.
    26. Takahashi M, Osono E, Nakagawa Y, Wang J, Berzofsky JA, Margulies DH,Takahashi H. Rapid induction of apoptosis in CD8+HIV-1envelope-specificmurine CTLs by short exposure to antigenic peptide. J Immunol.2002;169(11):6588-93.
    27. Nakagawa T and Yuan J. Cross-talk between two cysteine protease families.Activation of caspase-12by calpain in apoptosis. J Cell Biol.2000;150(4):887-94.
    28. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM,Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program.Mechanism of caspase activation. J Biol Chem.2001;276(36):33869-74.
    29. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC,Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stressto the cell death program: role of the ER chaperone GRP78. FEBS Lett,2002;514(2-3):122-8.
    30. Dara L, Ji C and Kaplowitz N. The contribution of endoplasmic reticulum stressto liver diseases. Hepatology.2011;53(5):1752-63.
    31. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J,Maeda N, Krisans SK, Malinow MR, Austin RC. Homocysteine-inducedendoplasmic reticulum stress causes dysregulation of the cholesterol andtriglyceride biosynthetic pathways. J Clin Invest.2001;107(10):1263-73.
    32. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM,Abcouwer SF. Homocysteine increases the expression of vascular endothelialgrowth factor by a mechanism involving endoplasmic reticulum stress andtranscription factor ATF4. J Biol Chem.2004;279(15):14844-52.
    33. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S.Homocysteine induces programmed cell death in human vascular endothelialcells through activation of the unfolded protein response. J Biol Chem.2001;276(38):35867-74.
    34. Ji C and Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmicreticulum stress, and liver injury in alcohol-fed mice. Gastroenterology.2003;124(5):1488-99.
    35. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, MiaoH, Hassler JR, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, WangJ, Yau GD, Kaufman RJ. UPR pathways combine to prevent hepatic steatosiscaused by ER stress-mediated suppression of transcriptional master regulators.Dev Cell,2008.15(6):829-40.
    36. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, MillarJS, Ikewaki K, Siegelman ES, Gregg RE, Rader DJ. Inhibition of microsomaltriglyceride transfer protein in familial hypercholesterolemia. N Engl J Med.2007;356(2):148-56.
    37.严君,胡卓伟.内质网应激偶联炎症反应与慢性病发病机制.生理科学进展.2010;41(4):261-266.
    38.周映彤员,肖洪彬员,毕明.活性氧与内质网应激.中国药理学通报.2011;27(5):597-600.
    39. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C,Brenner C. Endoplasmic reticulum stress induces calcium-dependentpermeability transition, mitochondrial outer membrane permeabilization andapoptosis. Oncogene.2008;27(3):285-99.
    40. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P. Structural andfunctional link between the mitochondrial network and the endoplasmicreticulum. Int J Biochem Cell Biol.2009;41(10):1817-27.
    41. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ.Antioxidants reduce endoplasmic reticulum. stress and improve protein secretion.Proc Natl Acad Sci U S A.2008;105(47):18525-30.
    42. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell.2000;103(2):239-52.
    43. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosisfactor alpha links endoplasmic reticulum stress to the membrane death receptorpathway through IRE1alpha-mediated NF-kappaB activation anddown-regulation of TRAF2expression. Mol Cell Biol.2006;26(8):3071-84.
    44. Kaneko M, Niinuma Y and Nomura Y. Activation signal of nuclear factor-kappaB in response to endoplasmic reticulum stress is transduced via IRE1and tumornecrosis factor receptor-associated factor2. Biol Pharm Bull.2003;26(7):931-5.
    45. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP,Ron D. Translational repression mediates activation of nuclear factor kappa Bby phosphorylated translation initiation factor2. Mol Cell Biol.2004;24(23):10161-8.
    46. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. Ultraviolet lightactivates NFkappaB through translational inhibition of IkappaBalpha synthesis.J Biol Chem,2004;279(33):34898-902.
    47. Mollica MP, Lionetti L, Putti R, Cavaliere G, Gaita M, Barletta A. Fromchronic overfeeding to hepatic injury: role of endoplasmic reticulum stress andinflammation. Nutr Metab Cardiovasc Dis.2011;21(3):222-30.
    48. Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B.Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-inducedcaspase-12activation. Hepatology.2002;36(3):592-601.
    49.吕鹏,罗和生,余保平.大鼠肝纤维化模型中肝细胞凋亡及其调控基因的表达.世界华人消化杂志.2001;9(2):165-169.
    50. Tazi KA, Quioc JJ, Saada V, Bezeaud A, Lebrec D, Moreau R.Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyteapoptosis and liver fibrotic responses. Gastroenterology.2004;127(4):1189-97.
    51. Canbay, A., et al., The caspase inhibitor IDN-6556attenuates hepatic injury andfibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther.2004;308(3):1191-6.
    52. Song, E., et al., RNA interference targeting Fas protects mice from fulminanthepatitis. Nat Med.2003;;9(3):347-51.
    53. Dranoff, J.A., et al., Expression of P2Y nucleotide receptors andectonucleotidases in quiescent and activated rat hepatic stellate cells. Am JPhysiol Gastrointest Liver Physiol.2004;287(2): G417-24.
    54. Tazi, K.A., et al., In vivo altered unfolded protein response and apoptosis inlivers from lipopolysaccharide-challenged cirrhotic rats. J Hepatol.2007;46(6):1075-88.
    55. Yoshida, H., et al., XBP1mRNA is induced by ATF6and spliced by IRE1inresponse to ER stress to produce a highly active transcription factor. Cell.2001;107(7):881-91.
    56. Calfon, M., et al., IRE1couples endoplasmic reticulum load to secretorycapacity by processing the XBP-1mRNA. Nature.2002;415(6867):92-6.
    57. Lee, A.H., N.N. Iwakoshi, and L.H. Glimcher, XBP-1regulates a subset ofendoplasmic reticulum resident chaperone genes in the unfolded proteinresponse. Mol Cell Biol.2003;23(21):7448-59.
    58. Zhang, K., et al., Endoplasmic reticulum stress activates cleavage of CREBH toinduce a systemic inflammatory response. Cell.2006;124(3):587-99.
    59. Xue, X., et al., Tumor necrosis factor alpha (TNFalpha) induces the unfoldedprotein response (UPR) in a reactive oxygen species (ROS)-dependent fashion,and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem.2005;280(40):33917-25.
    60. Wong, F., et al., Sepsis in cirrhosis: report on the7th meeting of theInternational Ascites Club. Gu.2005;54(5):718-25.
    61. Heller, J., et al., Effects of lipopolysaccharide on TNF-alpha production, hepaticNOS2activity, and hepatic toxicity in rats with cirrhosis. J Hepatol.2000;33(3):376-81.
    62. Tazi, K.A., et al., Upregulation of TNF-alpha production signaling pathways inmonocytes from patients with advanced cirrhosis: possible role of Akt andIRAK-M. J Hepatol.2006;45(2):280-9.
    63.王晓红,张卫光,林胜利,田珑,李载权,张书永.四氯化碳诱导性肝硬化大鼠肝组织葡萄糖调节蛋白78表达的研究.解剖学报.2006;37(3):290-293.
    64.慕永平,河田则文,小川智弘,席秀红,陈晓蓉.内质网应激参与蛋氨酸一胆碱缺乏饮食诱导大鼠脂肪性肝纤维化的发生与恢复.中华肝脏病杂志.2010;18(2):124-130.
    65. Mu YP, Ogawa T and Kawada N. Reversibility of fibrosis, inflammation, andendoplasmic reticulum stress in the liver of rats fed amethionine-choline-deficient diet. Lab Invest.2010;90(2):245-56.
    66. Mencin A, Seki E, Osawa Y, Kodama Y, De Minicis S, Knowles M, Brenner DA.Alpha-1antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine modelof cholestasis. Hepatology.2007;46(5):1443-52.
    67. Ji C, Kaplowitz N, Lau MY, Kao E, Petrovic LM, Lee AS. Liver-specific loss ofglucose-regulated protein78perturbs the unfolded protein response andexacerbates a spectrum of liver diseases in mice. Hepatology.2011;54(1):229-39.
    68. Cullinan SB and Diehl JA. Coordination of ER and oxidative stress signaling:the PERK/Nrf2signaling pathway. Int J Biochem Cell Biol.2006;38(3):317-32.
    69. Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. SelenoproteinS/SEPS1modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsindeficiency. J Biol Chem.2009;284(25):16891-7.
    70. Erman F, Balkan J, Cevikba U, Ko ak-Toker N, Uysal M. Betaine or taurineadministration prevents fibrosis and lipid peroxidation induced by rat liver byethanol plus carbon tetrachloride intoxication. Amino Acids.2004;27(2):199-205.
    71. Tamaki N, Hatano E, Taura K, Tada M, Kodama Y, Nitta T, Iwaisako K, Seo S,Nakajima A, Ikai I, Uemoto S. CHOP deficiency attenuates cholestasis inducedliver fibrosis by reduction of hepatocyte injury. Am J Physiol Gastrointest LiverPhysiol.2008;294(2): G498-505.
    72.刘春蕾,何昆仑,王莉莉.基于内质网应激途径的细胞保护策略的研究进展.中国药理学通报.2011;27(4):455-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700