用户名: 密码: 验证码:
人造目标极化雷达三维成像理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造目标极化雷达三维成像理论和方法研究是极化雷达成像领域的前沿和热点问题,具有重要的理论意义和实用价值。论文立足于高分辨极化干涉SAR和极化层析SAR等典型的多维成像雷达体制,以军事侦察为主要应用背景,以提升极化成像雷达在军事侦察中的应用水平为目的,深入研究了SAR极化校准和人造目标的极化雷达三维成像的理论和方法。
     第一章阐述课题的应用背景和意义,归纳了极化成像雷达系统研究现状,总结了SAR极化校准与三维成像理论与方法的研究现状,最后介绍了本文的主要工作。
     第二章研究了SAR极化校准的新方法。在总结基于点目标和基于分布式目标的SAR经典极化校准方法的基础上,从理论推导和仿真实验两个层面对其性能进行了评估。首次发现并证明了经典Ainsworth校准方法估计的测量误差参数之间存在确定而不合理的关系。针对分布式目标散射不满足方位对称特性的情形,修正了经典SAR极化校准方法的假设条件,建立了一种能够保护目标取向信息的极化校准模型(TOP模型),并提出了求解TOP校准模型的快速迭代算法。此外,研究了TOP模型中取向角估计与测量误差参数估计之间的耦合特性,推导了取向角估计误差对测量误差参数估计的影响。最后利用机载极化SAR数据对基于TOP模型的SAR极化校准新方法进行了验证。
     第三章深入研究了人造目标极化干涉SAR三维成像方法。立足军事侦察应用背景,提出了针对两类典型人造目标的极化干涉SAR三维成像处理框架。在此基础上,围绕“多极化联合三维成像”以及“干涉成像的角闪烁抑制”两个关键问题,从极化超分辨成像和合成型散射中心检测两个方面展开了深入研究:首先建立了人造目标极化干涉SAR图像域和空间频率域信号模型,在此基础上提出了一种极化干涉SAR多通道联合超分辨特征提取方法M-ESPRIT,并通过实验研究了M-ESPRIT的性能;深入研究了多散射点层叠对干涉处理的影响,分四种情形推导了合成型散射点的干涉相位分布,在此基础上提出了一种基于多极化干涉相位差异的合成型散射中心检测方法,研究了检测性能与信噪比的关系;针对极化干涉处理中的相位跳跃问题,提出了基于特显点干涉相位对齐的解决方法;最后利用机载极化干涉SAR数据开展了两类人造目标的三维重建实验,对本文方法进行了验证。
     第四章深入研究了多基线极化层析SAR三维成像理论与方法。针对极化层析SAR非均匀基线型式,分别提出了基于虚拟阵列变换和Tikhonov正则化理论的极化SAR层析成像方法。从信号估计的角度证明了Tikhonov正则化方法在特定条件下是对目标散射“高度像”的最大后验概率估计,以奇异值分解为手段,建立了傅立叶分析、TSVD以及Tikhonov正则化方法的一致框架。针对非均匀基线条件下的人造目标超分辨三维成像问题,首次将分布式压缩感知理论引入极化层析SAR三维成像领域,提出了MMV-CS多极化联合超分辨层析成像方法,并针对压缩感知成像中的信号泄露问题,提出了一种基于滑动窗口的迭代抑制算法。利用仿真实验对不同极化层析成像算法的性能进行了检验。设计并开展了三维高分辨全极化层析成像实验,研究了平台抖动引起的相位误差对层析成像性能的影响,提出了一种基于特显点的相位校正方法,国际上首次获得角反射器和车辆目标的三维高分辨全极化层析成像结果,证实了本文提出的MMV-CS方法在超分辨和抗模糊方面的性能优势。
     第五章总结了论文的研究工作和主要创新点,对需要进一步研究的问题进行了展望。
3-D reconstruction of man-made objects is an advanced issue in the area of polarimetricradar imaging, and is of great value both in theory and in applications. Aimed topromote the applications of polarimetric3-D imaging radar in military reconnaissance,this thesis studies the techniques including polarimetric SAR calibration and3-Dreconstruction of man-made objects in the background of polarimetric interferometricSAR (InSAR) and polarimetric tomographic SAR (TomoSAR).
     Chapter1illustrates the background and necessity of the research, briefly recallsthe development of polarimetric imaging radar systems, summarizes the previous worksin the related fields,and then gives a brief introduction of the major works in thisresearch.
     Chapter2studies the SAR polarimetric calibration techniques. After reviewingsome classical polarimetric calibration techniques based on point targets or distributedtargets, an in-depth performance study is presented through theoretical analysis andsimulation verifications. For the first time, it is found that there exist some definite butunreasonable relations between the estimates for the distortion parameters form theclassical Ainsworth calibration technique. For the case that the azimuth symmetryassumption widely adopted in the previous works does not hold, a calibration modelcalled TOP, which is capable of preserving the target orientation information, isproposed by considering the orientation angle shift effect on the measurement of targetscattering matrix. Then a fast iterative algorithm is proposed to solve the TOPcalibration model. In addition, the couple between the estimates for the orientation angleand the distortion parameters is studied, and the impacts of the error of orientation-angleestimate on the estimate for the distortion parameters are analyzed. Real collectedairborne SAR data are utilized to verify the effectiveness of the proposed model andalgorithm.
     Chapter3studies the3-D reconstruction of man-made objects using polarimetricInSAR. A processing scheme for the reconstruction of man-made objects of two kindsis presented firstly. Then, in-depth researches about two key topics, which are themulti-polarimetric joint3D imaging and the suppression of multiple scattererinterference, are presented. A super resolution technique (M-ESPRIT) for the jointextraction of scattering centers in polarimetric InSAR images is proposed, and theperformance of M-ESPRIT algorithm is checked by processing simulation data and theanechoic data. We derived the phase statistics for the interferometric phase of scatterers produced by the overlay of multiple elementary ones. A detection algorithm is proposedfor testing whether a scatterer is an elementary scatterer, and its performance versusSNR is presented. For the phase ambiguity problem, a phase alignment operation isrecommended. We demonstrate the effectiveness of the proposed techniques byperforming the3-D reconstruction of some targets using polarimetric InSAR data.
     Chapter4presents a thorough research on the3D tomographic imaging techniques.For the tomographic imaging in the case of irregular baseline distribution, twoalgorithms based on array transform technique and Tikhonov regularization technique,respectively, are proposed. We show from the statistical point that the Tikhonovregularization method is actually a MAP estimate for the height profile in someparticular cases. A united framework incorporating the FFT, TSVD and the Tikhonovregularization method is presented. For the first time, the distributed compressivesensing technique is introduced into the polarimetric SAR tomography application,producing the MMV-CS super resolution tomographic imaging technique. A fastimaging algorithm is proposed for the MMV-CS model, and the signal leakage problemis tackled with a window-based iterative algorithm. Simulations are performed to checkthe effectiveness of the proposed algorithms. The3-D full polarimetric tomographicimaging experiment is carried out. We demonstrate that the impact of the phase errorinduced by an array element error on the tomographic imaging, and propose acalibration technique employing prominent scatterers to adapt the3D imaging methodto practice. For the first time, the3D reconstruction results of a vehicle and cornerreflectors are obtained, and the results verify the advantages of the proposed MMV-CSmethod in terms of super resolution power and ambiguity level. Chapter5summarizesthe research work and main innovations, and discusses the future work.
引文
[1]张澄波.综合孔径雷达—原理、系统分析与应用[M].北京:科学出版社,1989.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3] I.G. Cumming and F. K. Wong. Digital Processing of Synthetic Aperture RadarData: algorithm and implementation [M]. Artech House,2005.
    [4] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms [M]. Jone Wiley&Sons, INC,1999.
    [5] C.V. Jakowatz, D. E. Wahl, P. H. Eichel, et al. Spotlight-mode Synthetic ApertureRadar: A Aignal Processing Approach [M]. Boston: Kluwer Academic Publishers,1996.
    [6] J. S. Lee and E. Pottier. Polarimetric Radar Imaging from Basics to Applications[M]. Boca Raton, FL: CRC Press,2009.
    [7]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社,1999.
    [8]肖顺平.宽带极化雷达目标识别的理论与应用[D].长沙:国防科学技术大学,1995.
    [9]王超,张红,陈曦,等.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008.
    [10]王雪松.宽带极化信息处理的研究[D].长沙:国防科学技术大学,1999.
    [11]常宇亮.瞬态极化雷达测量、检测与抗干扰技术研究[D].长沙:国防科学技术大学,2010.
    [12]何密.同时极化测量体制雷达的校准方法研究[D].长沙:国防科学技术大学,2012.
    [13]代大海.极化雷达成像及目标特征提取研究[D].长沙:国防科学技术大学,2008.
    [14]邢世其,代大海,王雪松,王涛.二维全极化ESPRIT超分辨特征提取及性能分析[J].电子学报,37(12):2681-2687,2009.
    [15] S. R. Cloude and K. P. Papathanassiou. Polarimetric SAR Interferometry [J].IEEE Trans. on GRS, vol.36, pp.1551–1565,1998.
    [16] R. N. Treuhaft and P. R. Siqueira. The vertical structure of vegetated landsurfaces from interferometric and polarimetric radar [J]. Radio Science, vol.35,pp.141–177,2000.
    [17] K. P. Papathanassiou and S. R. Cloude. Single-baseline polarimetric SARinterferometry [J]. IEEE Trans.on GRS, vol.39, pp.2352–2363,2001.
    [18] S. R. Cloude and K. P. Papathanassiou. Three stage inversion process forpolarimetric SAR interferometry [J]. IEEE Proceeding on Radar Sonar Navig.,vol.150, pp.125–134,2003.
    [19] H. Yamada, H., Y. Yamaguchi and Y. Kim. Polarimetric SAR Interferometry forForest Analysis Based on the ESPRIT Algorithm [J]. IEICE Trans. Electron.,E84-C (No.12), pp.1917-1923,2001.
    [20] S. Guillaso, L. Ferro-Famil, A. Reigber, and E. Pottier. Building CharacterizationUsing L-Band Polarimetric Interferometric SAR Data [J]. IEEE GRS Letters, vol.2,, pp.347-351,2005.
    [21] S. R. Cloude. Polarization Coherence Tomography [J]. Radio Science, vol.41,RS4017,2006.
    [22] R. Horn. The DLR Airborne SAR Project E-SAR[C]. International Geoscienceand Remote Sensing Symposium, Nebraska, USA, pp.1624-1628,1996.
    [23] A. Chu, Y. Kim, J.J. Van Zyl, et al. The NASA/JPL AIRSAR IntegratedProcessor[C], International Geoscience and Remote Sensing Symposium,Washington, USA, pp.1908-1910,1998
    [24] J. J. Van Zyl, R. Carande, Y. L. Lou, et al. The NASA/JPL Three-FrequencyPolarimetric AIRSAR system[C]. International Geoscience and Remote SensingSymposium, Texas, USA, pp.649-651,1992.
    [25] J C. Henry. The Lincoln Laboratory35GHz Airborne SAR Imaging Radarsystem [C]. Proceeding of Telesystems Conference, Atlanta, USA, pp.353-358,1991.
    [26] P. Daniel, C. Alan, J. Frank. Studies of Advanced Detection Technology Sensor(ADTS) Data [J]. SPIE, No.2230, pp.370-378,1994.
    [27] S. Uratsuka, M. Satake, T. Kobayashi, et al. High-Resolution Dual-bandsInterferometric and Polarimetric airborne SAR (Pi-SAR) and Its Applications [C].International Geoscience and Remote Sensing Symposium, Toronto, Canada, pp.1720-1722,2002.
    [28] S. Uratsuka, T. Moriyama, T. Umehara, et al. Disastrous Environment afterEarthquake Observed by Airborne SAR (Pi-SAR)[C]. International Geoscienceand Remote Sensing Symposium, Seoul, Korea, pp.4081-4083,2005.
    [29] E. L. Christensen, N. Skou, and J. Dall, et al. EMISAR: An Absolutely CalibratedPolarimetric L-and C-band SAR [J]. IEEE Trans. on GRS, vol.36, pp.1852-1865,1998.
    [30] J. Dall, E. L. Christensen. EMISAR: A Dual-Frequency, Polarimetric AirborneSAR [C]. International Geoscience and Remote Sensing Symposium, Toronto,Canada, pp.1711-1713,2002.
    [31] Kozma A, Nichols a D, Rawson R F, et al. Multifrequency polarimetric SAR forremote sensing[C]. International Geoscience and Remote Sensing Symposium,Zurich, Switzerland, September1986:715-720.
    [32] Sullivan R, Nichols A, Rawson R, et al. Polarimetric X/L/C-band SAR [C].IEEEInternational Radar Conference, Michigan, USA, April1988:9-14.
    [33] Dubois-Fernandez P, Du Plessis O R, Le Coz D, et al. The ONERA RAMSESSAR system [C]. International Geoscience and Remote Sensing Symposium,Toronto, Canada, June2002:1723-1725.
    [34] Dreuillet P, Paillou P, Cantalloube H, et al. P band data collection andinvestigations utilizing the RAMSES SAR facility [C]. International Geoscienceand Remote Sensing Symposium, Toulouse, France, July2003:4262-4264.
    [35] R L. Jordan, B. L. Huneycutt and M. Werner. The SIR-C/X-SAR SyntheticAperture Radar system [C]. Proc. IEEE, vol.79, pp.827-838,1991.
    [36] R. K. Hawkins, R. Touzi and J. Wolfe, et al. ASAR AP Mode Performance andApplications Potential [C]. Proc. International Geoscience and Remote SensingSymposium, Toulouse, France, pp.1115-1117,2003.
    [37] A. Thompson, A. Luscombe, et al. New Modes and Techniques of theRADARSAT-2SAR [C]. International Geoscience and Remote SensingSymposium,2001:485-487.
    [38] H. Kimura and N. Ito. ALOS PALSAR: The Japanese Second-GenerationSpaceborne SAR and Its applications [C]. Proc. SPIE Conference on MicrowaveRemote Sensing of the Atmosphere and Environment II, vol.4152, pp.110-119,2002.
    [39] J. Schulz-Stellenfleth, S. Lehner, J. Horstmann. Use of TerraSAR-X forOceanography [C]. Proc. International Geoscience and Remote SensingSymposium, Seoul, Korea, pp.4886-4889,2005.
    [40] W. Pitz and D. Miller. The TerraSAR-X Satellite [J]. IEEE Trans. GRS, vol.48,pp.615-622,2010.
    [41] L. Candela, F. Caltagirone. COSMO-Skymed: Mission Definition and MainApplication and Products [C]. POLinSAR2003Workshop, ESAESRIN, Frascati,Italy, Jan,2003, http://earth.esa.int/workshops/polinsar2003/participants/rum74/skymed.pdf.
    [42] H.A. Zebker, P. A. Rosen, R. M. Goldstein. On The Derivation of CoseismicDisplacement Fields Using Differential Radar Interferometry [J]. J. Geophys.Res., vol.99, pp.617~634,1994.
    [43] G. Krieger, I. Hajnsek, K. P. Papathanassiou, M. Younis, et al. InterferometricSynthetic Aperture Radar (SAR) Missions Employing Formation Flying [J].Proceeding of IEEE, vol.98, pp.816-843,2010.
    [44] G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M.Zink. TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry[J]. IEEE Trans. on GRS, vol.45, pp.3317–3341,2007.
    [45] G. Séguin. Toward the development of a Constellation of RADARSAT Satellites
    [C]. ISTS2004, Miyazaki, Japan.
    [46] D.Massonnet. Capabilities and Limitations of the Interferometric Cartwheel [J].IEEE Trans.on GRS, vol.39, pp.506-520,2001.
    [47] A. Das and R. Cobb. TechSat21-Space Missions Using CollaboratingConstellations of Satellites [C]. Proceeding of the12th Annual AIAA/USUConference on Small Satellites, Logan Utah,31August-3September1998.
    [48] K.M. Luu, M. Martin. University Nanosatellite Distributed satellite Capabilitiesto Support TechSat21[C]. AIAA/USU Small Satellite Conference Logan UT,1999.
    [49] Y. Wang, T.L. Ainsworth, and J.S. Lee. Assessment of System PolarizationQuality for Polarimetric SAR Imagery and Target Decomposition [J]. IEEE Trans.on GRS, to be published.
    [50] A. Freeman SAR Calibration: An Overview [J]. IEEE Trans. on GRS, vol.30, pp.1107-1121,1992.
    [51] R.M. Barnes. Polarimetric Calibration Using In-Scene Reflectors [R]. Lexington,MA: MIT, Lincoln Lab,1986.
    [52] M. A. Woods. A Calibration Procedure for A Coherent Scattering Matrix Radar[J]. Royal Signals and Radar Establishment, Memorandum,3889,1986.
    [53] A. Freeman, Y. Shen, C.L. Werner. Polarimetric SAR Calibration ExperimentUsing Active Radar Calibrators [J]. IEEE Trans. on GRS [J], vol.28, pp.224~240,1990.
    [54] M.W. Whitt, F. T. Ulaby, and P. Polatin et al. A General Polarimetric RadarCalibration Technique [J]. IEEE Trans. on GRS, vol.39, pp.62~67,1991
    [55] S. H. Yueh, J. A. Kong, R.M. Barnes, and R. T. Shin. Calibration of PolarimetricRadars Using In-Scene Reflectors [J]. Journal of Electromagnetic Waves&Application, vol.4, pp.27-48,1990.
    [56] K. Sarabandi, L.E., Pierce, F. T. Ulaby. Calibration of A Polarimetric ImagingSAR [J]. IEEE Trans. on GRS, vol.30, pp.540-549.1992.
    [57] K. Sarabandi and F. T. Ulaby. A Convenient Technique for PolarimetricCalibration of Single-Antenna Radar Systems [J]. IEEE Trans. on GRS, vol.28,pp.1022-1033,1990.
    [58]席育孝,杨汝良. Whitt点目标极化定标算法的实验研究[J].遥感技术与应用,17(4):220~223,2002.
    [59] A. Freeman. Calibration of Linearly Polarized Polarimetric SAR Data Subject toFaraday Rotation [J]. IEEE Trans. on GRS,42(8), pp.1617-1624,2004.
    [60] J. Chen, S. Quegan, et al. Calibration of Spaceborne Linearly Polarized LowFrequency SAR Using Polarimetric Selective Radar Calibrators [J]. Progress inElectromagnetics Research, vol.114, pp.89-111,2011.
    [61] A. Takeshiro, T. Furuya, H. Fukuchi. Verification of Polarimetric CalibrationMethod Including Faraday Rotation Compensation Using PALSAR Data [J].IEEE Trans. on GRS, vol.47, pp.3960~3968.,2009.
    [62] R. Touzi, C.E. Livingstone, J.R.C. Lafontaine, and T.I. Lukowski. Considerationof Antenna Gain and Phase Pattern for Calibration of Polarimetric SAR Data [J].IEEE Trans. on GRS, vol.37, pp.1132-1145,1993.
    [63] A. Freeman. A New System Model for Radar Polarimeters [J]. IEEE Trans. on AP,vol.29, pp.761-767,1991.
    [64] M. Fujita. Polarimetric Calibration of the SIR-C C-Band Channel Using ActiveRadar Calibrators and Polarization Selective Dihedrals [J]. IEEE Trans. on GRS,vol.36, pp.1872~1878,1998.
    [65] M. Shimada, H. Oaku, and M. Nakai. SAR Calibration Using Frequency-TunableActive Radar Calibrators [J]. IEEE Trans. on GRS, vol.37, pp.564-573,1999.
    [66] K. Sarabandi, F.T. Ulaby, and M.A. Tassoudji. Calibration of Polarimetric RadarSystems with Good Polarization Isolation [J]. IEEE Trans. on GRS, vol.28, pp.70~75,1990.
    [67] J. J. van Zyl. Calibration of Polarimetric Radar Images Using Only ImageParameters and Trihedral Corner Reflector Responses [J]. IEEE Trans. on GRS,vol.28, pp.337-348,1990.
    [68] A. Freeman, J.J. van Zyl, J.D. Klein, and H.A. Zebker et al. Calibration of Stokesand Scattering Matrix Format Polarimetric SAR Data [J]. IEEE Trans. on GRS,vol.30, pp.531~539,1992.
    [69] J. D. Klein. Calibration of Complex Polarimetric SAR Imagery UsingBackscatter Correlations [J]. IEEE Trans. on AES, vol.28, pp.575-582,1992.
    [70] K. Sarabandi, L.E. Pierce, M.C. Dobson, F.T. Ulaby, et al. PolarimetricCalibration of SIR-C Using Point and Distributed Targets [J]. IEEE Trans. onGRS, vol.33, pp.858-866,1995.
    [71] S. Quegan. A Unified Algorithm for Phase and Cross-Talk Calibration ofPolarimetric Data-Theory and Observations [J]. IEEE Trans. on GRS, vol.29, pp.89-99,1994.
    [72] K. Sarabandi. Calibration of A Polarimetric Synthetic Aperture Radar Using aKnown Distributed Target [J]. IEEE Trans. on GRS, vol.32, pp.183-194,1994.
    [73] T.L. Ainsworth, L. Ferro-Famil, and J.S. Lee. Orientation Angle Preserving APosteriori Polarimetric SAR Calibration [J]. IEEE Trans. on GRS, vol.44, pp.994~1003,2006.
    [74] R. Touzi. Polarimetric PALSAR Calibration [J]. IEEE Trans. on GRS, vol.47, pp.3951-3959,2009.
    [75] S. Xing, D. Dai, J. Liu, X. Wang. Comment on Orientation Angle Preserving APosteriori Polarimetric SAR Calibration [J]. IEEE Trans. on GRS, vol.50,pp.2417-2419,2012.
    [76]谭洪,洪峻,明峰.一种基于分布目标的极化SAR串扰定标方法[J].电子测量技术,31(7):44-48,2008
    [77] H. Kimura. Calibration of Polarimetric PALSAR Imagery Affected by FaradayRotation Using Polarization Orientation [J]. IEEE Trans. on GRS, vol.47, pp.3943-3950,2009.
    [78] R. Touzi. Calibrated Polarimetric SAR Data for Ship Detection[C]. Proceedingsof IGARSS, Ottawa, Canada,2000,1:144-146.
    [79] M. Borgeaud, R.T. Shin, and J.A.Kong. Theoretical Models for polarimetricRadar Clutter [J]. Journal of Electromagnetic Waves&Applications, vol.1, pp.73-89,1987.
    [80] G.R. Valenzuela. Theories for the Interaction of Electromagnetic and OceanicWaves-A Review [J]. Boundary Layer Meteorology, vol.13, pp.61-85,1978.
    [81] J.S. Lee, D.L. Schuler, and T.L. Ainsworth. Polarimetric SAR DataCompensation for Terrain Azimuth Slope Variation [J]. IEEE Trans. on GRS, vol.38, pp.2153-2163,2000.
    [82] J.S. Lee, D.L. Schuler, T.L. Ainsworth, E. Krogager, et al. On the Estimation ofRadar Polarization Orientation Shifts Induced by Terrain Slopes [J]. IEEE Trans.on GRS, vol.40, pp.30-41,2002.
    [83] H. Kimura. Radar Polarization Orientation Shifts in Built-Up Areas [J]. IEEEGRS Letters, vol.5, pp.217-221,2008.
    [84] R. A. Cordey. On the Accuracy of Crosstalk Calibration of Polarimetric SARUsing Natural Statistics [J]. IEEE Trans. on GRS, vol.30, pp.447-454,1993.
    [85] R. Hanssen. Radar Interferometry: Data Interpretation and Error Analysis [M].Dordrecht, the Netherlands: Kluwer Academic,2001.
    [86]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [87]王青松.星载干涉合成孔径雷达高效高精度处理技术研究[D].长沙:国防科学技术大学,2011.
    [88] F. Lopez-Dekker, M. Eineder, E. Pottier and A. Reigber. SAR Imaging,Polarimetry, Interferometry and Tomography [C]. IEEE International Geoscienceand Remote Sensing Symposium22-27July2012Munich, Germany,2012.
    [89] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, et al. The Shuttle Radar TopographyMission [J]. Rev. Geophys., vol.45, p. RG2004. DOI:10.1029/2005RG000183,2007.
    [90] C. D. Austin and R. L. Moses. IFSAR Processing for3D Target Reconstruction,Algorithms for Synthetic Aperture Radar Imagery XII [C]. SPIE Defense andSecurity Symposium, Orlando, FL,28March-1April2005.
    [91] C. D. Austin and R. L. Moses. Interferometric Synthetic Aperture RadarDetection and Estimation Based3D Image Reconstruction Algorithms forSynthetic Aperture Radar Imagery XIII [C], SPIE Defense and SecuritySymposium, Orlando, FL,17April-21April2006.
    [92] E. Rodriguez and J.M. Martin. Theory and Design of Interferometric SyntheticAperture Radars [J]. IEE Proceedings-F, vol.139, pp.147-159,1992.
    [93] J.S. Lee, K.W. Hoppel, S.A. Mango, and A.R. Miller. Intensity and PhaseStatistics of Multilook Polarimetric and Interferometric SAR Imagery [J]. IEEETrans. GRS, vol.32, pp.1017–1028,1994.
    [94] F. Li, R. Goldstein. Studies of Multibaseline Spaceborne InterferometricSynthetic Aperture Radars [J]. IEEE Trans. on GRS, vol.28, pp.88-97,1990.
    [95] D. Just, R. Bamler. Phase statistics of interferograms with applications tosynthetic aperture radar [J]. Applied Optics,1994, vol.33, pp.4361-4368,1994.
    [96] F. Gatelli, A. M. Guamieri, F. Parizzi, P. Pasquali, C. Prati, and F. Rocca. TheWavenumber Shift in SAR Interferometry [J]. IEEE Trans. On GRS, vol.32, pp.855–865,1994.
    [97] A. K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theory andExperimental Results From SIR-B [J]. Int. J. Remote Sensing, vol.9, pp.857-872,1988.
    [98] R. M. Goldstein, L. Charles and Werner. Radar interferogram filtering forgeophysical applications [J]. Geophys. Res. Lett., vol.25, pp.4035-4038,1998.
    [99] R. M. Goldstein, H. A. Zebker and C. L. Werner. Satellite Radar Interferometry:Two-dimensional Phase Unwrapping [J]. Radio Science, vol.23, pp.713-720,1988.
    [100] M. Costantini. A Novel Phase Unwrapping Method Based on NetworkProgramming [J]. IEEE Trans. on GRS, vol.36, pp.813-831,1998.
    [101] D. G. Ghiglia. Robust Two-dimensional Weighted and Unweighted PhaseUnwrapping that Uses Fast Transforms and Iterative Methods [J]. J. Opt. Soc. Am,vol.11, pp.107-117,1994.
    [102] T. J. Flynn. Consistent2-D Phase Unwrapping Guided by A Quality Map [C].IGARSS’96, pp.2057-2059,1996.
    [103] W. Xu, I. Cumming. A Region-Growing Algorithm for InSAR Phase Unwrapping[J]. IEEE Trans. on GRS, vol.37, pp.124-134,1999.
    [104] D. Felguera-Martín, J.T. González-Partida, P. Almorox-González, M.Burgos-García, etal. Interferometric inverse synthetic aperture radar experimentusing an interferometric linear frequency modulated continuous wavemillimeter-wave radar [J]. IET Radar Sonar Navig., vol.5, pp.39–47,2011.
    [105] X. Xu and R. M. Narayanan. Three-Dimensional Interferometric ISAR Imagingfor Target Scattering Diagnosis and Modeling [J]. IEEE Trans. on ImageProcessing, vol.10, pp.1094-1102,2001.
    [106] M. Soumekh. Automatic Aircraft Landing Using Interferometric InverseSynthetic Aperture Radar Imaging [J]. IEEE Trans. on Image Processing, vol.5,pp.1335-1345,1996.
    [107] C. Ma, T.S. Yeo, Q. Zhang, et al. Three-Dimensional ISAR Imaging Based onAntenna Array [J]. IEEE Trans. on GRS, vol.46, pp.504-515,2008.
    [108] C. Ma, T.S. Yeo, H. Tan, et al. Three-Dimensional ISAR Imaging Using aTwo-Dimensional Sparse Antenna Array [J]. IEEE GRS Letters, vol.5, pp.378-382,2008.
    [109] C. Ma, T.S. Yeo, H. Tan, et al. Interferometric ISAR Imaging on Squint Model [J].Progress in Electromagnetics Research Letters, vol.2, pp.125-133,2008.
    [110]刘承兰.干涉逆合成孔径雷达(InISAR)三维成像技术研究[D].长沙:国防科技大学研究生院,2012.
    [111]黎海林.干涉ISAR三维成像试验研究[J].现代雷达,32(05):22-25,2010.
    [112]沈楠. InISAR三维成像的基线构型研究[D].合肥:中国科学技术大学,2010.
    [113] J. T. Mayhan, M. L. Burrows, K. M. Cuomo, et al. High Resolution3D"Snapshot" ISAR Imaging and Feature Extraction [J]. IEEE Trans. on AES, vol.37, pp.630-641,2001.
    [114]张涛,马长征,张群等.步进跟踪模式下的单脉冲雷达三维成像技术研究[J].电子与信息学报,23(9):912-918,2001.
    [115]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究[J].电子与信息学报,23(9):890-898,2001.
    [116]张群,金亚秋.强背景杂波下的地面运动目标干涉式三维成像[J].电子与信息学报,29(1):1-5,2007.
    [117]李强.单脉冲雷达目标三维成像与识别研究[D].西安:西安电子科技大学,2007.
    [118]李军,全英汇,邢孟道等.基于和差波束的三维ISAR成像技术[J].电波科学学报,25(2):281-286,2010.
    [119]李悦丽,梁甸农,黄晓涛.一种单脉冲多通道解卷积前视成像方法[J].信号处理,23(5):699-703,2007.
    [120] Witte F, Forward looking radar (coherent), Deutsches Patent No.4007613,1990,US Patent No.5182562,1993.
    [121] S. Hee-Sub and L. Jong-Tae. Omega-k Algorithm for Airborne Forward-LookingBistatic Spotlight SAR Imaging [J]. IEEE GRS Letters, vol.6, pp.312-316,2009.
    [122] G. Krieger, J. Mittermayer, M. Wendler, et al. SIREV-Sector Imaging Radar forEnhanced Vision [J]. Aerospace Science and Technology, ELSEVIER, vol.7,pp.147-158,2003.
    [123] J. Mittermayer, M. Wendler, G. Krieger. Data processing of an innovative forwardlooking SAR system for enhanced vision[C]. Proceeding of EUSAR, Munich, pp.733-736,2000.
    [124] T. Sutor, S. Buckreuss, G. Krieger. Sector Imaging Radar for Enhanced Vision(SIREV): Theory and applications[C]. Proceedings of SPIE, pp.292-297,2000.
    [125] T. Sutor, F. Witte. A new sector imaging radar for enhanced vision-SIREV [J],Airborne Radar, vol.2, pp.7-14,2002
    [126] X. Ren, L. Tan, and R. Yang. Research of three-dimensional imaging processingfor airborne forward-looking SAR [C]. Proceedings of IET Radar, Guilin, China,pp.1-4,2009.
    [127] X. Ren, J. Sun, and R. Yang. A New Three-Dimensional Imaging Algorithm forAirborne Forward-Looking SAR [J]. IEEE. GRS Letters, vol.8, pp.153-157,2011.
    [128] A. Reigber. Airborne polarimetric SAR Tomography [D]. Stuttgart: StuttgartUniversity,2001.
    [129] Y. Venot, M. Younis. Compact forward looking mode SAR using digitalbeamforming on Receive only [C]. EUSAR2000, Munich, Germany,2000:795-798.
    [130]陈琦,杨汝良.机载前视合成孔径雷达Chirp Scaling成像算法研究[J].电子与信息学报,30(1):228-232,2008
    [131]徐刚,陈倩倩,侯育星,等.前视扫描SAR超分辨成像[J].西安电子科技大学学报(自然科学版),39(5):101-108,2012.
    [132] K. Knaell. Three-dimensional SAR from Curvilinear Apertures [C]. Proceedingsof the1996IEEE National Rader Conference, pp.220-225,1996.
    [133] K. Knaell. Radar Tomography for the Generation of Three-dimensional Images[J]. IEE Proceedings on RSN, vol.142, pp.54-60,1995.
    [134] K. Knaell. Advances in Three-Dimensional SAR from Curvilinear Apertures [C].Proceedings of SPIE, Rader Processing, Technology, and Applications II, pp.178-184,1997.
    [135] M. Soumekh. Reconnaissance with Slant Plane Circular SAR Imaging [J]. IEEETrans. on Image Processing, vol.5, pp.1252-1265,1996.
    [136] W. Hong, Y. Wang and W. Tan. Tomographic SAR and Circular SARExperiments in Anechoic Chamber [C]. EUSAR2008, Friedrichshafen, Germany,pp.261-264,2008.
    [137]刘浩,吴季.基于曲线合成孔径雷达的三维目标特征提取[J].遥感技术与应用,19(6):493-497,2004.
    [138]唐智,李景文,周荫清.曲线合成孔径雷达信号模型与孔径形状研究[J].系统工程与电子技术,28(8):1115-1119,2006
    [139]唐智,李景文,王宝发.曲线合成孔径雷达迭代算法[J].北京航空航天大学学报,33(8):882-885,2007.
    [140] E. Ertin and R.L. Moses. Through-the-Wall SAR Attributed Scattering CenterFeature Estimation [J]. IEEE Trans. on GRS, vol.47, pp.1338-1348,2009.
    [141] E. Colin H. Cantalloube. Assessment of Physical Limitations of High Resolutionon Targets at X-band from Circular SAR Experiments [C]. Proceeding of EuSAR2008, Friedrichshafen, Germany, June2–5,2008.
    [142] P. Pasquali, C. Prati, F. Rocca, and M. Seymour. A3D SAR Experiment withEMSL Data[C]. Proceeding of IGARSS, Firenze, Italy,1995, pp.784–786.
    [143] A. Reigber and A. Moreira. First Demonstration of Airborne SAR TomographyUsing Multibaseline L-band Data [J]. IEEE Trans. on GRS, vol.38, pp.2142–2152,2000.
    [144] J. Homer, I. D. Longstaff, Z. She, et al. High Resolution3-D imaging viaMulti-Pass SAR [J]. IEE Proceeding on RSN, vol.149, pp.45-50,2002
    [145] G. Fornaro, D. Reale, and F. Serafino. Four-dimensional SAR imaging for HeightEstimation and Monitoring of Single and Double Scatterers [J]. IEEE Trans. onGRS, vol.47, pp.224–237,2009.
    [146] G. Fornaro, F. Serafino, and F. Lombardini. Three-dimensional multi-pass SARfocusing: Experiments with long-term spaceborne data [J]. IEEE Trans. on GRS,vol.43, pp.702–714,2005.
    [147] G. Fornaro and F. Serafino. Imaging of Single and Double Scatterers in UrbanAreas via SAR Tomography [J]. IEEE Trans. on GRS, vol.44, pp.3497–3505,2006.
    [148] X. Zhu and R. Bamler. Very High Resolution Spaceborne SAR Tomography inUrban Environment [J]. IEEE Trans. on GRS, vol.48, pp.4296-4307,2010.
    [149] X. Zhu and R. Bamler. Tomographic SAR Inversion by L1-NormRegularization—the Compressive Sensing Approach [J]. IEEE Trans. on GRS,vol.48, pp.3839-3846,2010.
    [150] X. Zhu and R. Bamler. Super-Resolution Power and Robustness of CompressiveSensing for Spectral Estimation with Application to Spaceborne TomographicSAR [J]. IEEE Trans. on GRS,50(1), pp.247-258,2012.
    [151] A. Budillon, A. Evangelista, and G. Schirinzi. Three-Dimensional SAR FocusingFrom Multipass Signal Using Compressive Sampling [J]. IEEE IEEE Trans. onGRS, vol.49, pp.488-499,2011.
    [152] S. Sauer, L. Ferro-Famil, A. Reigber, and E. Pottier. Three-Dimensional Imagingand Scattering Mechanism Estimation over Urban Scenes Using Dual-BaselinePolarimetric InSAR Observations at L-band [J]. IEEE Trans. on GRS, vol.49, pp.4616-4629,2011.
    [153] C. D. Austin, E. Ertin, and R. L. Moses. Sparse Signal Methods for3-D RadarImaging [J]. IEEE J. Sel. Topics in Signal Process., vol.5, pp.408-423,2011
    [154] M. Nannini, R. Scheiber, R. Horn, and A. Moreira. First3-D Reconstructions ofTargets Hidden Beneath Foliage by Means of Polarimetric SAR Tomography [J].IEEE GRS Letters, vol.9, pp.60-64,2012.
    [155] M. Nannini, R. Scheiber, and R. Horn. Imaging of Targets beneath Foliage withSAR Tomography [C]. Proceeding of EUSAR, Jun.2008, pp.1–4,2008.
    [156] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, et al. Ice Sheet Bed MappingWith Airborne SAR Tomography [J]. IEEE Trans. on GRS, vol.49, pp.3791–3801,2011.
    [157] O. Frey and E. Meier. Analyzing Tomographic SAR Data of a Forest WithRespect to Frequency, Polarization, and Focusing Technique [J]. IEEE Trans. onGRS, vol.49, pp.3648-3659,2011.
    [158] O. Frey and E. Meier.3-D Time-Domain SAR Imaging of a Forest UsingAirborne Multi-baseline Data at L-and P-Bands [J]. IEEE Trans. on GRS, vol.49,pp.3660-3664,2011.
    [159] Y. Huang, L. Ferro-Famil, A. Reigber. Under-Foliage Object Imaging Using SARTomography and Polarimetric Spectral Estimators [J]. IEEE Trans. on GRS, vol.50, pp.2213-2225,2012.
    [160] M. Nannini, R. Scheiber, and A. Moreira. Estimation of the Minimum Number ofTracks for SAR Tomography [J]. IEEE Trans. on GRS, vol.47, pp.531-543,2009.
    [161] S. Tebaldini. Algebraic Synthesis of Forest Scenarios from MultibaselinePolInSAR Data [J]. IEEE Trans. on GRS, vol.47, pp.4132–4142,2009.
    [162] E. Aguilera, M. Nannini, A. Reigber. Multi-Signal Compressed Sensing forPolarimetric SAR Tomography [J]. IEEE GRS Letters, to be published.
    [163] E. Aguilera, M. Nannini, A. Reigber. Multisignal Compressed Sensing forPolarimetric SAR Tomography [J]. Proceeding of IGARSS, pp.1369-1372,2011.
    [164] F. Lombardini and M. Pardini.3-D SAR Tomography: The Multibaseline SectorInterpolation Approach [J]. IEEE GRS Letters, vol.5, pp.630-634,2008
    [165] Y. Huang, L. Ferro-Famil and A. Reigber. Under-Foliage Object Imaging UsingSAR Tomography and Polarimetric Spectral Estimators [J]. IEEE Trans. on GRS,vol.50, pp.2213-2215,2012.
    [166] F. Gini and F. Lombardini. Multibaseline Cross-track SAR Interferometry: Asignal processing perspective [J]. IEEE Aerosp. Electron. Syst. Mag., vol.20, pp.71–93,2005.
    [167] F. Gini, F. Lombardini, and M.Montanari. Layover Solution in MultibaselineSAR Interferometry [J]. IEEE Trans. Aerosp. Electron. Syst., vol.38, pp.1344–1356,2002.
    [168] F. Gini and F. Bordoni. On the Behavior of Information Theoretic Criteria forModel order Selection of InSAR Signals Corrupted by Multiplicative Noise [J].Signal Processing, vol.83, no.5, pp.1047–1063, May2003.
    [169] S. Tebaldini and A. M. Guarnieri. On the Role of Phase Stability in SARMultibaseline Applications [J]. IEEE Trans. on GRS, vol.48, pp.2953-2966,2010.
    [170] D. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory, vol.52,pp.1289–1306,2006.
    [171] E. Candès and M. B. Wakin. An Introduction to Compressive Sampling [J]. IEEESignal Processing Magazine, vol.25, pp.21–30,2008.
    [172] M. etin and W.C. Karl. Feature-enhanced Synthetic Aperture Radar ImageFormation Based on Non-Quadratic Regularization [J]. IEEE Trans. on ImageProcessing, vol.10, pp.623–631,2001.
    [173] E. Candès. Compressive Sampling [C]. Proc. Int. Congr. Math., Madrid, Spain,2006, vol.3, pp.1433–1452.
    [174] S. Chen, D. Donoho, and M. Saunders. Atomic Decomposition by Basis Pursuit[J]. SIAM J. Sci. Comput., vol.20, pp.33–61,1998.
    [175] S.F. Cotter, D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse Solutions to LinearInverse Problems with Multiple Measurement Vectors [J]. IEEE Trans. on SP, vol.53, pp.2477-2488,2005.
    [176] J. A. Tropp and S. J. Wright. Computational Methods for Sparse Solution ofLinear Inverse Problem [J]. Proceeding of IEEE, vol.98, pp.948-958,2010.
    [177] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for Simultaneous SparseApproximation. Part I: Greedy Pursuit. Signal Processing (Special Issue onSparse Approximations in Signal and Image Processing)[J], vol.86, pp.572-588,2006.
    [178] J. Chen and X. Huo. Theoretical Results on Sparse Representations ofMultiple-Measurement Vectors [J]. IEEE Trans. on Signal Processing, vol.54, pp.4634-4643,2006.
    [179] J. A. Tropp. Algorithms for Simultaneous Sparse Approximation. Part II: Convexrelaxation [J]. Signal Process.(Special Issue on Sparse Approximations in Signaland Image Processing), vol.86, pp.589–602,2006.
    [180] S. N. Negahban and M. J. Wainwright. Simultaneous Support Recovery in HighDimensions: Benefits and Perils of Block [J]. IEEE Trans. on Information Theory,vol.57, pp.3841–3863,2011.
    [181] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank. Sensitivity to BasisMismatch in Compressed Sensing [J]. IEEE Trans. on SP, vol.59, pp.2182-2195,2011.
    [182] M. A. Herman and T. Strohmer. General deviants: An analysis of perturbations incompressed sensing [J]. IEEE J. Sel. Topics in Signal Process.: Special Issue onCompressive Sens., vol.4, pp.342–349,2010.
    [183] M. A. Herman and D. Needell. Mixed operators in compressed sensing [C].Proceeding of44th Ann. Conf. Inf. Sci. Syst.(CISS), Princeton, NJ, Mar.2010.
    [184] R. Baraniuk and P. Steeghs. Compressive Radar Image [J]. Proceeding of IEEERadar Conference2007, Boston, MA, pp.128-133,2007.
    [185] L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao. Achieving Higher ResolutionISAR Imaging with Limited Pulses via Compressed Sampling [J]. IEEE GRSLetters, vol.6, pp.567-571,2009.
    [186] L.C. Potter, E. Ertin, J. T. Parker, and M. Cetin. Sparsity and Compressed Sensingin Radar Imaging [J]. Proceeding of IEEE, vol.98, pp.1006-1020,2010.
    [187] L.Zhang, M. Xing, C. Qiu, J. Li, et al. Resolution Enhancement for InversedSynthetic Aperture Radar Imaging Under Low SNR via Improved CompressiveSensing [J]. IEEE Trans. on GRS, vol.48, pp.3824-3838,2010.
    [188] M. Herman and T. Strohmer. High-Resolution Radar via Compressed Sensing [J].IEEE Trans. on SP, vol.57, pp.2275-2284,2009.
    [189] S.Samadi, M. Cetin and M.A. Masnadi-Shirazi. Sparse representation-basedsynthetic aperture radar imaging [J]. IET Radar Sonar Navigation, vol.5, pp.182-193,2011.
    [190]刘吉英.压缩感知理论及在成像中的应用[D].长沙:国防科技大学研究生院,2010.
    [191]张文吉.电磁逆散射成像方法及压缩感知理论在成像中的应用[D].中国科学院电子学研究所博士学位论文,2010.
    [192]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,32(1):12-16,2010.
    [193]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,32(5):1234-1238,2010.
    [194]刘记红,徐少坤,高勋章,黎湘等.压缩感知雷达成像综述[J].信号处理,27(2):251-360,2011.
    [195] J.S. Lee, E. Krogager, T.L.Ainsworth, et al. Polarimetric analysis of radarsignature of a manmade structure [J]. IEEE GRS Letters, vol.3, pp.555-559,2006.
    [196] R. Zandoná Schneider, K. P. Papathanassiou, I. Hajnsek, and A. Moreira.Polarimetric and Interferometric Characterization of Coherent Scatterers in Urbanareas [J]. IEEE Trans. on GRS, vol.44, pp.971–984,2006.
    [197] J. B. Keller. Geometrical Theory of Diffraction [J]. J. Opt. Soc. Amer., vol.5, pp.116–130,1962.
    [198] L. C. Potter, Chiang Da-ming, Rob Carriere, Michael J.Gerry. A GTD-basedParametric Model for Scattering [J]. IEEE Trans. on AP, vol.43, pp.1058-1067.,1995.
    [199] R. O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation [J].IEEE Trans. on AP, vol.34, pp.276-280,1986.
    [200] Richard Roy and Thomas Kailath. ESPRIT-Estimation of Signal Parameters ViaRotational Invariance Techniques [J]. IEEE Trans. on ASSP, vol.37, pp.984-995,1989.
    [201] M. L. Burrows. Two-Dimensional ESPRIT with Tracking for Radar Imaging andFeature Extraction [J]. IEEE Trans. on AP, vol.52, pp.524-532,2004.
    [202] J.W.Odendaal, E.Barnard, and C.W.I.Pistorius. Two-Dimensional Superresolutionradar Imaging Using the MUSIC Algorithm [J]. IEEE Trans. on AP, vol.42, pp.1386-1391,1994.
    [203] K.T. Kim, S.W. Kim, H.T. Kim. Two-Dimensional ISAR Imaging Using FullPolarimetric and Super-resolution Processing Techniques [J]. IEE Proceeding onR.S.N., vol.145, pp.240-246,1998.
    [204]王永良,陈辉,彭应宁.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [205]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2006.
    [206]周剑雄.光学区雷达目标三维散射中心重构理论和技术[D].湖南长沙:国防科学技术大学,2006.
    [207]计科峰. SAR图像目标特征提取与分类方法研究[D].长沙:国防科技大学研究生院,2003.
    [208]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [209]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,1994
    [210] S. Boyd and L. Vandenberghe. Convex Optimization [M]. Cambridge UniversityPress,2004, available at http://www.stanford.edu/~boyd/cvxbook.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700