用户名: 密码: 验证码:
钎焊—热压多层有序排列金刚石钻头的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自十一五期间,国务院总理温家宝对《国务院关于加强地质工作的决定》作出重要批示后,地质勘探经过一个时期的低谷后又出现了明显的回升势头,岩心钻探作为主要的探矿方式之一,又出现了一个迅速发展时期。目前,我国地质勘探逐步向深部发展,深部钻探所面临的岩层更为复杂,对金刚石钻头性能要求也更高。传统制造金刚石钻头的方法有热压法和电镀法,热压法制造的金刚石钻头性能较难控制,难以适应深部复杂多变地层的钻进;电镀法制造的金刚石钻头往往内外保径效果较差,钻头的使用寿命较低,也难以适应深部复杂地层,特别是非完整地层和强研磨性地层。此外,传统金刚石钻头工作层内部结构较为单一,也即胎体内部的金刚石与胎体成分都是性能一致的均匀分布在工作层中,导致钻头对岩层的适应性不理想,大大降低了钻头的使用性能。运用钎焊法制造金刚石工具是近些年国内外学者研究较多的一种新方法,钎焊技术可以使得钎料中的某些活性元素与金刚石表层碳原子发生化学冶金反应,在金刚石表面形成一层金属碳化物层,通过这层碳化物层,金刚石、钎料与基体三者形成牢固的化学冶金结合。金刚石与钎料形成化学冶金结合,有利于提高单颗金刚石的出刃高度和工作时间,进而提高工具的切削效率和使用寿命。但是,用钎焊法制作金刚石工具难以制成孕镶金刚石工具,目前研制成功的钎焊金刚石工具一般为单层钎焊金刚石工具。对金刚石工具里的金刚石进行有序化也是近些年热门的研究话题,有序排布金刚石工具可以使得工具内每颗金刚石得到充分利用,进而降低工具的金刚石用量,降低成本。但是,由于难以制作具有高密度孔洞的有序排布模板,有序排布技术较适合应用于低浓度的金刚石工具制作中。因此,有序排布技术往往应用于金刚石锯片、金刚石磨轮等低浓度金刚石工具中。本文的目的是借鉴钎焊技术在单层金刚石工具中的成功应用,以及有序排布技术在低浓度金刚石工具中的成功应用,将钎焊技术和有序排布技术引入到地质金刚石钻头的制作中,利用钎焊技术所特有的对金刚石把持力高的优点,降低金刚石浓度,同时利用有序排布技术使得钻头内每颗金刚石充分发挥其功效,最终研制出高时效、长寿命、低成本的新型金刚石钻头,以满足我国深部硬岩绳索取芯钻探的要求,为我国新一轮探矿工作做出积极的贡献。
     论文在分析钎焊有序排列孕镶金刚石钻头对钎料、金刚石、以及胎体性能要求的基础上,结合生产经验,运用材料显微分析测试技术、材料机械性能测试技术、仿真模拟技术等手段,研究了钎料对金刚石的包镶机理、钎料成分对胎体性能的影响、钎焊切削单元层与层之间的胎体材料成分、二次烧结工艺、金刚石有序排列模板的设计、以及金刚石宏观排列模式对钻头碎岩的效率影响等研究,初选出制作钎焊多层有序排列金刚石钻头配方和工艺,制作了三种不同排列模式的金刚石钻头进行室内钻进试验,最后优选出合理的钻头配方、工艺以及金刚石排列模式制作钻头,进行野外生产性试验。
     由于钎焊法制作金刚石钻头是一种新方法,根据该方法对钎焊金刚石钻头用金刚石、钎料以及烧结工艺的要求,本文首先对钎焊金刚石钻头做了众多基础性研究。钻头中的金刚石是直接参与破碎岩石的刃具,金刚石性能是否优良对钻头的使用性能有着较大的影响。对钎焊后的金刚石进行冲击强度测试,高温钎焊后金刚石的抗热冲击强度TTI值(61.75%)比原料金刚石的TI值(91.6%)下降了近33%。因此,用于制造钎焊金刚石钻头的金刚石要求具备良好的抗冲击性能和抗热冲击性能,提出选用制作钎焊金刚石钻头的金刚石原料TI值应不低于80%,TTI值不低于75%。为探明钎料与金刚石是否发生了化学冶金反应,对钎焊后的金刚石表面进行了表面形貌测试,用能谱测试技术对生成的物质进行了元素测试,测试结果表明,金刚石表面生成了一种银白色的柱状物质,该物质富含Cr元素和C元素。分析认为,钎料中的活性元素Cr元素与金刚石表层C原子发生了化学冶金反应,金刚石表面形成的金属碳化物是钎焊法提高包镶金刚石能力的根本原因。粉末的流动性直接影响着制作钎焊金刚石切削单元的质量和速度,对试验用钎焊粉末进行流动性测试,结果表明,粉末的流动性在14-26s之间,能满足机器自动铺粉的要求,但是添加了30%WC的粉末较流动性差,影响手工法制作钎焊金刚石切削单元的速度,同时钎焊层性能也不均一。钎料的成分对胎体的物理力学性能有着较大的影响,本文对添加了WC粉和Fe粉的钎焊胎体进行了硬度、抗弯强度和耐磨性测试,结果表明,添加适量的WC粉可以提高胎体的硬度和耐磨性,但会降低胎体的塑性,添加量在20%时胎体综合性能最佳;添加合适的Fe粉可以提高胎体的塑性,但会降低胎体的硬度和耐磨性,添加量在30%时胎体性能最佳。为探明添加金属对钎焊胎体产生物理力学变化的内在机理,论文对钎焊胎体进行了金相显微分析和能谱测试,金相分析结果表明,添加WC粉的胎体中第二相球状组织和针状组织对胎体起到了强化作用,使得胎体硬度和耐磨性提高,但是WC与基体的弹性模量相差较大,WC在胎体中起到割裂作用,导致胎体抗弯强度下降;添加Fe粉的胎体中没有了球状组织和针状组织,第二相脆性组织的消失,使得胎体抗弯强度提高,而屈服强度降低,胎体的硬度和耐磨性下降。显微能谱测试表明,灰黑色区域为金相组织中的第二相球状组织和针状组织,该区富集了Cr、O、B元素,可能形成的化合物为CrB和Cr,(O)y。
     鉴于钎焊多层有序排列金刚石钻头的工作条件和钻头工作层的功能,钻头用钎料与基体的润湿性、钎焊烧结工艺、钻头内金刚石的宏观排列模式、切削单元中金刚石颗粒间的间距、连接切削单元层与层之间的胎体材料和二次烧结工艺对钻头的使用性能都有重要影响。
     本文通过在钎料中添加Cu、Mn等低熔点金属大大改善了钎料与钻头基体的润湿性,用添加了Cu、Mn元素的NiCrBSi钎料制作单层薄壁钎焊金刚石钻头,以10~15℃/min的速率升温至钎焊温度1010℃,保温10min,以10℃/min的速率降温至室温的烧结工艺。室内钻进试验表明,钻进花岗岩的时效比电镀金刚石钻头和热压金刚石钻头分别提高了46.7%和85.7%,钻头寿命分别提高了33.3%和11.1%。为提高钻头寿命,本文用常规混料法制作了钎焊孕镶金刚石钻头,该钻头难以对金刚石实现有序排列,同时胎体耐磨性较高,在钻进过程中金刚石出刃难,换层现象明显,钻进速度低。最后选用分层——复合法制作钎焊多层有序排列金刚石钻头,选用厚度为0.2mm厚的不锈钢板作为钎焊基体,按照单层钎焊薄壁金刚石钻头的配方和工艺制作钎焊金刚石切削单元,并对每一单层钎焊金刚石切削单元内的金刚石进行有序排列,将复数层钎焊金刚石切削单元按规律叠加起来,通过二次烧结的工艺形成钎焊多层有序排列金刚石钻头。
     对钻头内金刚石进行有序排列,有利于降低钻头中金刚石浓度,同时可根据钻头不同工作环境而设计不同浓度与粒度的金刚石。金刚石颗粒之间的横向距离决定破碎岩石的范围,纵向距离决定金刚石层与层之间的及时出刃,结合孕镶金刚石钻头的碎岩机理对有序排列模板进行参数设计,横向间距为(2.8-3.1)d,纵向间距为(1.67~1.9)d,搭接高度为(1/7~1/3)d,其中d为金刚石粒径。
     分层法制作多层钎焊金刚石钻头有三种方案:同心圆竖直叠加弧形排列、放射状径向竖直叠加排列和扇形块平面叠加排列。有限元显式动力分析模拟和室内钻进试验表明,同心圆竖直叠加弧形排列金刚石钻头钻进时效高于放射状径向竖直叠加排列和扇形块平面叠加排列金刚石钻头。分析认为,钻头中金刚石宏观排列成弧形状,有利于充分利用钻头回转所形成的环状破碎,进而利用钻头振动形成大体积破碎,提高钻头碎岩效率。
     根据有限元显式动力分析模拟结果和钻头室内钻进试验结果得出,野外生产性试验钻头内金刚石宏观排列成弧形状。针对中等~强研磨性的硬~坚硬地层的钻头用钎料配方为NiCrBSi+w (WC)20%粘结层与层之间的胎体材料配方为Ni-21%,Fe-29%,Mn-4%,663-Cu-36%,WC-10%:二次烧结工艺为烧结温度955℃,压力为15MPa,保温时间7min。对用该配方和工艺生产出的28个不同规格(20个φ75.5/55mm和8个φ56.5/38mm)的普通双管钻头在四川电站大坝工程工地、福建某矿区和湖南平江金矿区等三个钻探工地进行了野外试验。试验结果表明,钻头钻进时效较工地上使用他其他厂家的钻头提高了20%以上,钻头寿命提高了20以上%。针对弱研磨性的硬~坚硬致密地层的钻头用钎料配方为:NiCrBSi+w (Fe)30%;粘结层与层之间的胎体材料配方为:Ni-21%,Fe-39%,Mn-4%,663-Cu-36%;二次烧结工艺为:烧结温度为950℃,压力设为15MPa,保温时间为7min。对用该配方和工艺生产出的5个φ56.5/38mm的普通双管钻头在大连某工地进行了野外试验。试验结果表明,钻头钻进时效较该工地使用的传统钻头提高了25%,寿命降低了11.6%。分析认为,钻头胎体较软和金刚石浓度较低导致钻头寿命降低。试验表明,开发的钎焊——热压多层有序排列金刚石钻头具有钻头时效高、寿命长和适应性能好等优点。
     总的来说,本文通过大量试验和理论分析,确定了以NiCrBSi为钎料,分层——复合法制作钎焊多层有序排列孕镶金刚石钻头的钎焊和热压配方、工艺以及金刚石的宏观排列模式,成功地将钎焊技术和有序排列技术引入到地质金刚石钻头制造中,实现了采用钎焊法制作高时效、长寿命、低成本的多层有序排列地质金刚石钻头,达到了预期目标。钻头的二次成型虽使得制作成本有所增加,但有序排列技术和钎焊技术的引用,使得钻头金刚石用量大大减少,镍基钎料的价格也低于WC粉、Co粉的价格,钻头原材料成本大大降低,使得钻头总体成本下降。
From the11th Five-Year period, Premier Wen Jiabao made important instructions on the decision of the State Council on the geological work, after a period of doldrums, geological exploration began to rebound obviously. Core drilling as one of the main prospecting, there was a period of rapid development. Currently, geological exploration in China has gradually developed in the direction of depth, the rock that deep drilling faces is more and more complex, the diamond drill bit performance requirements are also higher. Traditional methods of manufacturing diamond drill bit are hot-pressing method and electroplating method. Performance of hot-pressing method for manufacturing diamond drill bit is more difficult to control, it is difficult to adapt to deep complex and changeable stratigraphic drilling. Electroplating manufacture of diamond drill bit is often less effective in its internal and external diameter, bits are of low life. So it is difficult to adapt to the complex formation in deep, especially the incomplete stratigraphic and strong abrasive formations for electroplated diamond bit. In addition, the internal structure in working-level of traditional diamond drill bit is relatively homogeneous, diamond and matrix materials inside of the matrix are consistent in a uniform distribution on the work floor performance, leading to the adaptability of the drill bit on the rock is not ideal, greatly reduce a bit of performance. In recent years, scholars, home and abroad, are like to research the new method of braze welding manufacturing diamond tools. Brazing techniques can make the activity of certain elements in the solder and surface carbon atoms in diamond chemical metallurgy reaction occurs, a layer of metal carbide formed on the diamond surface, through this carbide layer, three of diamond, solder and substrate form a strong combination of chemistry and metallurgy. However, it was hard to make impregnated diamond tools by braze-welding method. Currently successful development of brazing diamond tools are single-layer brazed. Diamond tools for ordering the diamond is also a hot research topic in recent years, an ordered arrangement of diamond tools can make full use of each diamond within the tools, diamond consumption thereby reduced, costs reduced. However, because it is difficult to make a template with the ordered arrangement of high-density holes, more orderly arrangement technology in the production of diamond tools for application in low concentrations. Therefore, orderly arrangement technique is often applied to the diamond saw blades, diamond grinding wheels, and other low concentration diamond tools. The purpose of this article is drawing on brazing technology in successful application of monolayer diamond tools, and orderly arrangement technology in low concentrations diamond tools in successful application, hadorwould brazing technology and orderly arrangement technology introduced to geological diamond bit production. Use the specific advantage as high holding force to diamond of the brazing technology to reduce the diamond concentration, at the same time use the orderly arrangement technology to result every diamond in bit in full effect. Eventually developed a high prescription, long life and low cost of new diamond drill bit, to meet the requirements of deep wire-line core drilling in hard rock, and make a positive contribution to the new round of prospecting work.
     In this paper, basing on the analysis of brazing orderly arrangement diamond bit's performance requirements for filler, diamond and matrix material researches were carried out. Combined with production experience, put to use microanalysis testing technology, material mechanical properties testing technology and simulation technology, etc., then studied the mechanism of filler bond to diamond, the influence of filler composition to matrix performance, matrix material composition between the brazed cutting units, second hot-pressing process, design of ordering array template, and the influence of macro arrangement patterns of diamond in bit to its working performance. After that, selected the primary formula and production technology of brazed multilayer orderly arranged diamond bit, and produced three types diamond bit with different arrangement patterns, and put them up indoor drilling test. As a follow, optimized the diamond bit formula, production technology and macro arrangement patterns of diamond in bit for field drilling test.
     As brazing diamond bits are fabricated by a new method, according to the new methods requires to the diamond, solder powder and sintering process for the diamond bit, a number of basic researches were done at first in the paper. The diamond in the bit is directly involved in the breaking of rock cut, so diamond is a fine performance has a large impact on drill bit's performance. Impact strength tests on diamond after brazing were done. Result showed that thermal shock resistance as TTI value is61.75%went down near33%than the raw materials of diamond as TI value is91.6%. The diamond used in the manufacture of brazing diamond bit requires a good shock resistance and thermal shock resistance, so the TT value of raw diamond should not be less than80%, and TTI value of not less than75%. In order to prove if there are chemical and metallurgical reactions between solder powder and diamond, surface topography test of diamond after brazing was done, energy spectrum technology was used to test the element generated on the diamond surface. Test indicated that a column of silver-like substance which rich in Cr and C elements generated on the diamond surface. Analysis believe that the active element of Cr in the filler occurred chemical and metallurgical reactions with the C atom from the surface layer of diamond, and the metal carbide on the surface of diamond is the root cause of stronger bonder between filler and diamond. Liquidity test was done on the experimental brazing powder as liquidity of powder directly affects production quality and speed of brazing diamond cutting units. Result showed that liquidity of powder was between14-26s, met the machine requirements of spread powder automatically. But the powder added30%WC relatively has poor mobility, affected of hand-made brazing diamond cutting units speed, while brazing layer properties are not uniform. The solder composition has a large impact on physical and mechanical properties of the matrix. Hardness, flexural strength and wear resistance tests of brazing matrix added WC powder and Fe powder were done in this paper. Results showed that, adding appropriate amount of WC powder can increase hardness and wear resistance of the matrix, but it will reduce the plastic of the matrix, matrix performance best when added in20%.Add the appropriate Fe powder can improve the plastic of matrix, but it will reduce the hardness and wear resistance, matrix performs best when added in30%. In order to prove the internal mechanism of matrix generated physical and mechanical changes by adding metal brazing, metallographic analysis and EDS testing were done on the brazing matrix in the paper. Metallographic analysis showed the second phase of ball and needle-like organizations in matrix added WC powder played an enhanced role of the matrix, hardness and wear resistance of matrix were increased, but the flexural strength of the matrix decreased because of the elastic modulus was different between matrix and WC which played a role in fragmented. There were no globular structure and needle-like organization in the matrix added Fe powder, the disappearance of second phase brittle tissue, making matrix on bending strength increase and yield strength lower, so hardness and wear resistance of matrix decreased. The microscopic spectroscopy tests showed that the gray and black areas of the microstructure in the second phase globular organization and needle-like organization, the area enriched in the elements of Cr, O and B, the possible formation of compounds of CrB and Crx (O) y.
     In view of the multilayer ordered brazed diamond bit's working conditions and its working layer's functions, wettability between brazing alloy and substrate, brazing process, macro arrangement patterns of diamond in bit, the spacing between diamond grits in the cutting unit, matrix materials used for connecting cutting units, and the second hot-pressing process are all have important influence on bit's performance.
     In this paper, lower melting point metal such as Cu, Mn has greatly improved the wettability of the solder and matrix. With added Cu, Mn elements in NiCrBSi filler, production of single-layer thin-walled brazed diamond bits were made, with the heating rate of10~15℃/min, heating to the brazing temperature1010℃, holding for10min, cooling to room temperature with rate of10℃/min. Indoor drilling tests showed that aging than electroplated diamond bit and hot diamond bit when drilling granite was increased by46.7%and85.7%, the drill life was increased by33.3%and11.1%. To increase the bit life, brazed impregnated diamond bit was made by conventional mixing material method. It is difficult to arrange the diamond in an orderly way for this drill bit, while the matrix showed high wear resistance, diamond exposed hard during the drilling process, and layer change for diamond was obvious, so the drilling speed decreased. Finally, layering-composite method has been used to fabricate ordering multilayer brazing diamond bit, with thickness of0.2mm stainless steel plate as a brazing substrate. Brazed diamond cutting units are fabricated in accordance with the formulation and process of single-layer thin-walled brazed diamond bit, diamond of each monolayer in the unit were arranged orderly, then overlaid the monolayer brazed diamond cutting units in plural layer according to the law, finally manufactured the multilayer ordered brazing diamond drill bit by secondary sintering process.
     Diamond with an orderly arrangement helps to reduce the diamond concentration in the drill bit, while can design different concentration and particle size of diamond in the drill bit according to the different working environment. The horizontal distance between diamond particles determines the scope of broken rock, and the longitudinal distance between the brazed diamond layers determines the exposure of diamond in a timely manner. The design of ordering template parameter was in accordance with the rock broken mechanism of impregnated diamond bit, and the horizontal spacing of holes in the template was (2.8-3.1) d, the longitudinal spacing was (1.67-1.9)d, lap height was (1/7-1/3) d, where d was the diamond particle size.
     Multilayer brazing diamond bit produced by stratification method has three options:cutting units which arranged in concentric with vertical overlay as arcs, in radial with vertical stacking as radials and in fan-shaped with planar overlay as fans. Both finite element simulation of explicit dynamic analysis and indoor drilling tests showed that diamond in bit macro arranged in arcs did better performance than in radials and fans. Analysts believe that, diamond in bit macro arranged in arcs has conductive to the full use of ring fragment body which formed by the rotary bit, using the vibration of the drill bit and forming a bulk broken, and then the rock broken efficiency of bit was improved.
     According to the explicit finite element dynamic analysis of simulation results and indoor drilling test results, diamond should be macro arranged in arcs in the field drilling diamond bit. The filler formula of diamond bit drilled in hard to strong hard formations with moderate to strong abrasive was determined as NiCrBSi+w (WC)20%; Formula of matrix material bonded cutting units as Ni-21%, Fe-29%, Mn-4%,663-Cu-36%, WC-10%; And then heat the bit to955℃, hold for7min, put on15MPa pressure to the bit simultaneously, steps ahead called secondary hot-pressing process. Twenty eight different specifications of ordinary double tue diamond bits as twenty (p75.5/55mm bits and eight (p56.5/38mm bits, produced by previous formula and process were tested by field drilling in Power plant dam project site in Sichuan, mining area in Fujian, and Pingjiang gold mining area in Hunan. The result was that, the performance of this new bit of multilayer orderly brazed diamond bit compared to the bit with other manufactures used in sites, aging of bit had increased by more than20%, and the bit life had increased by more than20%. For drill of the hard to strong hard stratum with weak abrasive and tight dense, the filler formula was determined as NiCrBSi+w (Fe)30%; Formula of matrix material bonded cutting units as Ni-21%, Fe-39%, Mn-4%,663-Cu-36%; And then heat the bit to950℃holding for7min, put on15MPa pressure to the bit simultaneously. Five φ56.5/38mm ordinary double tue diamond bits, produced with previous formula were tested by field drilling in a site in Dalian. The result was that, compared to the bit site with other manufactures, the performance of these new bits of multilayer orderly brazed diamond bit were well, as aging had increased by38%, but drill life had reduced by27%. Analysts believe that bit with a soft matrix and lower concentration of diamond caused a reduction in bit life. All the tests demonstrated that the development of brazing-hot pressing diamond bit with multilayer ordered brazed cutting units showed a well performance as high aging, long life and wide adaptability.
     Overall, through a large number of experiments and theoretical analysis, formula and manufacturing technique of Multilayer Orderly-Arranged Brazed Diamond Bit was determined, that is using NiCrBSi for the base brazing material, through bonding metal with secondary sintering process to attach the monolayer cutting units as layered-composite method. Also, the macro arranged mode of diamond in the bit was identified as in arcs. Both brazing technology and orderly arrangement technology were successfully applied to production the geological diamond drill bit which owned better bit performance. The desired goal of using brazing method to manufacturing high-aging, long life, low-cost multilayer ordered geological diamond bit was achieved. Bit makes an increment in the cost of production for the second molding, but the orderly arrangement technical and brazing technique cause diamond consumption for bit greatly reduced, prices of nickel-based brazing filler are also lower than the price of WC powder, Co powder, so the cost of raw materials for bit reduced significantly, then the overall cost of bit was reduced.
引文
[1]李大佛.电镀金刚石钻头研究[M].第三版.武汉:武汉地质学院出版社,1987.
    [2]杨凯华,潘秉锁.金刚石地质钻头的现状与发展[J].超硬材料工程.2009(2):40-45.
    [3]汤凤林,杨凯华,段隆臣.脉冲电镀工艺参数对镀层性能影响的研究[J].探矿工程(岩土钻掘工程).1996(3):28-30.
    [4]段隆臣,杨凯华,汤凤林.脉冲电镀金刚石钻头试验研究[J].现代地质.1996(3):132-135.
    [5]方小红.超声波电镀镍及镍基复合镀层的研究进展[J].材料保护.2008(5):58-61.
    [6]陈小松,周艳萍.阴极移动对提高电镀金刚石钻头质量的研究[J].工业金刚石.2009(2):23-26.
    [7]潘秉锁.稀土对提高电镀金刚石钻头性能的研究[D].武汉:中国地质大学,2003.
    [8]王群英,杨凯华.铵盐镍基电镀金刚石钻头[J].地质科技情报.2007(4):82-84.
    [9]杨洋,潘秉锁,杨凯华.新型高速氨性镀镍液性能的研究[J].金刚石与磨料磨具工程.2006(1):68-70.
    [10]章文姣,杨凯华.电镀镍-铁胎体金刚石钻头的试验与研究[J].金刚石与磨料磨具工程.2008(3):43-46.
    [11]段隆臣,杨凯华.新型金刚石工具研究[M].第一版.武汉:中国地质大学出版社,2001.
    [12]宋月清,孙毓超.金刚石工具制造理论与实践[M].第一版.郑州:郑州大学出版社,2005.
    [13]叶培松,吴贻琨,张弘,等.金刚石钴基结合剂材料的表面分析[J].大连理工大学学报.1994(05):551-555.
    [14]傅定发,隆威.金刚石锯片刀头铁基胎体研制[J].非金属矿.1996(6):56-57.
    [15]丘定辉,肖俊玲,胡国程.高磷铁基金刚石工具胎体合金的研究[J].湖南冶金.2001(06):21-26.
    [16]杨凯华,秦昊,潘秉锁.稀土在热压人造金刚石工具中的应用研究[J].地质科技情报.2001(3):110-112.
    [17]宋月清,甘长炎,夏志华,等.预合金粉末在金刚石工具中的应用研究[J].金刚石与磨料磨具工程.1997(1):2-7.
    [18]方俊,鄢泰宁,李田军.双层水口超高胎体金刚石钻头孔底磨损过程分析[J].煤田地质与勘探.2011(1):74-77.
    [19]王训波,谭刚,高晓亮.多层水口高胎体孕镶金刚石钻头研究[J].硬质合金.2011(2):93-97.
    [20]王传留,孙友宏,刘宝昌,等.仿生耦合孕镶金刚石钻头的试验及碎岩机理分析[J].中 南大学学报(自然科学版).2011(5):1321-1325.
    [21]蒋青光,张绍和,陈平,等.新型优质孕镶金刚石钻头研制[J].金刚石与磨料磨具工程.2008(6):12-16.
    [22]汤风林,杨凯华,段隆臣.金刚石表面金属化(镀膜)的试验研究[J].探矿工程(岩土钻掘工程).2000(5):14-16.
    [23]赵尔信,蔡家品,贾美玲,等.浅谈国内外金刚石钻头的发展趋势——高效、低耗[J].探矿工程(岩土钻掘工程).2010(10):70-73.
    [24]庄鸿寿,张启运.钎焊手册[M].第二版.北京:机械工业出版社,2008.
    [25]钟素娟,乔培新,龙伟民,等.基于钎焊连接的金刚石工具制造技术[Z].中国上海:2005110-112.
    [26]姚正军,徐鸿钧,肖冰,等Ni-Cr合金与金刚石和钢基体界面微区的分析研究[J].南京航空航天大学学报.2001(4):311-314.
    [27]邵浩明,王进保,李东平.Cr与金刚石界面碳化物形成机理研究[J].超硬材料工程.2008(1):19-21.
    [28]Wang C Y, Zhou Y M, Zhang F L, et al. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy[J], JOURNAL OF ALLOYS AND COMPOUNDS.2009,476(1-2):884-888.
    [29]Huang S F, Tsai H L, Lin S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix[J]. MATERIALS CHEMISTRY AND PHYSICS.2004,84(2-3):251-258.
    [30]甘国友,陈敬超,孙加林,等.Ti-Si-C三元系金属间化合物Gibbs生成自由能估算[J].昆明理工大学学报(理工版).2002(2):1-4.
    [31]石霖.合金热力学[M].第1版.北京:机械工业出版社,1992.
    [32]李文超.冶金与材料物理化学[M].第1版.北京:冶金工业出版社,2001:543.
    [33]Hsieh Y Z, Lin S T. Diamond tool bits with iron alloys as the binding matrices[J]. MATERIALS CHEMISTRY AND PHYSICS.2001,72(2SI):121-125.
    [34]Sung J C, Sung M. The brazing of diamond[J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS.2009,27(2):382-393.
    [35]钟建平,王明智,王艳辉.复合镀钛-镍金刚石的钎焊工艺[J].金刚石与磨料磨具工程.2001(5):31-32,35.
    [36]钟正刚,王峻,丁士安,等.一种钎焊金刚石工具用镍基钎焊料及其制备方法[P].201010237468.4.2010.11.24.
    [37]印有胜.镍基钎料的钎缝脆性及其影响因素[J].焊接学报.1997(3):6-12.
    [38]吴文军.Ni-Fe二元系合金钎焊金刚石的研究[D].成都:四川大学,2006.
    [39]Chattopadhyay A K, Chollet L, Hintermann H E. Experimental inverstigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere [J]. JOURNAL OF MATERIALS SCIENCE.1991,26(18):5093-5100.
    [40]马伯江,徐鸿钧,付玉灿,等.两种钎焊金刚石工具微观结构的对比分析[J].机械工 程材料.2005(7):10-13.
    [41]陈燕,徐鸿钧,傅玉灿,等.钎焊气氛对金刚石磨粒与钎料界面微观结构的影响(英文)[J]Transactions of Nanjing University of Aeronautics & Astronautics.2008(4): 248-253.
    [42]张国青,徐西鹏.基于钎焊金刚石工具技术的高频感应加热研究[J].机械制造.2006(8):53-55.
    [43]马伯江,徐鸿钧.高频感应钎焊镀钛金刚石界面特征的研究[J].金刚石与磨料磨具工程.2007(3):1-3.
    [44]Chen S M, Lin S T. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals[J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE. 1996,5(6):761-766.
    [45]Hsieh Y, Lin S. Microstructural development of Cu-Sn-Ti alloys on graphite[J]. JOURNAL OF ALLOYS AND COMPOUNDS.2008,466(1-2):126-132.
    [46]Li W C, Liang C, Lin S T. Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE.2002,33(7):2163-2172.
    [47]Tillmann W, Vogli E, Nebel J. Development of detonation flame sprayed Cu-base coatings containing large ceramic particles[J]. JOURNAL OF THERMAL SPRAY TECHNOLOGY. 2007,16(5-6):751-758.
    [48]钟如涛,秦应雄,唐霞辉,等.金刚石颗粒-金属粉末的CO2激光烧结机理研究[J].金刚石与磨料磨具工程.2009(4):18-23.
    [49]Klotz U E, Liu C, Khalid F A, et al. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond [J]. MATERIALS SCIENCE AND ENGINEERING:A.2008,495(1-2):265-270.
    [50]Khalid F A, Klotz U E, Elsener H R, et al. On the interfacial nanostructure of brazed diamond grits[J]. SCRIPTA MATERIALLY 2004,50(8):1139-1143.
    [51]徐可为,南俊马,赵宁,等.金属-金刚石钎焊用铜锰基预合金粉末及其制备方法[P].200610104846.5.2007.4.18.
    [52]于新泉,乔培新,龙伟民,等.钎焊金刚石工具用铜锌钛钎料[P].201010275482.3.2010.12.15.
    [53]林增栋,印红羽,彭晓芙.钎焊单层金刚石工具的工艺机理[Z].中国湖南长沙:2004106-112.
    [54]林增栋.钎焊法制造金刚石单层工具的研究[J].金刚石与磨料磨具工程.2004(3):1-5.
    [55]孟卫如,徐可为,杨吉军,等.金刚石工具真空钎焊钎料的适应性[J].焊接学报.2004(1):80-82.
    [56]袁洁,赵宁,南俊马,等CuMn基含Ti预合金钎焊金刚石的结合界面分析[J].焊接学报.2007(6):69-72.
    [57]赵宁,袁洁,南俊马,等Cu-32Mn-8Ti预合金粉末与金刚石颗粒的界面反应[J].人工晶体学报.2008(1):124-128.
    [58]武志斌,肖冰,徐鸿钧.金刚石与金属基体钎焊机理的研究[J].工具技术.2000(11):6-8.
    [59]孙凤莲,冯吉才,刘会杰,等Ag-Cu-Ti钎料中Ti元素在金刚石界面的特征[J].中国有色金属学报.2001(1):103-106.
    [60]Sun F L, Feng J C, Li D. Bonding of CVD diamond thick films using an Ag-Cu-Ti brazing alloy[J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY.2001,115(3): 333-337.
    [61]关砚聪,陈玉全,姚德明Ag-Cu-Ti钎料钎焊单晶金刚石磨粒的研究[J].金刚石与磨料磨具工程.2005(3):23-25.
    [62]孙文山,李丹,赵密Ag-Cu-Ti钎料在金刚石表面的润湿状况[J].哈尔滨理工大学学报.2000(03):101-104.
    [63]卢金斌,徐九华Ag-Cu-Ti钎焊金刚石的界面结构及热应力分析[J].稀有金属材料与工程.2009,38(4):642-646.
    [64]Klotz U E, Khalid F A, Elsener H R. Nanocrystalline phases and epitaxial interface reactions during brazing of diamond grits with silver based Incusil-ABA alloy [J]. DIAMOND AND RELATED MATERIALS.2006,15(10):1520-1524.
    [65]张凤林,周玉梅,付凯旋,等.Cr、Ti金属粉改善Ag-Cu-Zn合金对金刚石的钎焊性能研究[J].金刚石与磨料磨具工程.2007(3):22-25.
    [66]Sung J C. Diamond tools with diamond grits set in a predetermined pattern[M].2007: 534-536,1101-1104.
    [67]Sung C. Metal bond diamond tools that contain uniform or patterned distribution of diamond grits and method of manufacture thereof[P]. US 6286498 B1.2001.9.11.
    [68]Sung C. Brazed diamond tools by infiltration[P]. US 6193770.2001.2.27.
    [69]Sung C. Brazed diamond tools by infiltration[P]. US 6193770.2001.2.27.
    [70]Sung C. Diamond grid CMP pad dresser[P]. US 6368198.2002.4.9.
    [71]Sung C. Brazed diamond tools and methods for making[P].6679243.
    [72]Sung C. Diamond grid CMP pad dresser[P]. US 6884155.2005.4.26.
    [73]P P S, W L H, H P J. Study on Cutting Performance of the Uniform Diamond Saw[C].2005.
    [74]布克哈德G.,齐格利希B.,波勒提乌斯M.,等.用有序排列的金刚石或立方氮化硼磨料作切削加工[J].超硬材料工程.2006(3):50-55.
    [75]Burkhard G, Rehsteiner F. High efficiency abrasive tool for honing[J]. CIRP ANNALS-MANUFACTURIG TECHNOLOGY.2002,51(1):271-274.
    [76]陈铨祥.一种单层金刚石磨削工具及其制造方法[P].CN200510075742.1.2006.12.
    [77]吕华伟,马涛,刘志杰,等.金刚石、CBN有序排列及择优取向工具的研发及应用[J].金刚石与磨料磨具工程.2007(2):44-47.
    [78]肖冰,王波,李松.磨料呈螺旋形有序排布的钎焊金刚石线锯及其制作工艺[P].CN101704276A.2010.5.12.
    [79]Pal B, Chattopadhyay A K, Chattopadhyay A B. Development and performance evaluation of monolayer brazed cBN grinding wheel on bearing steel[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY.2010,48(9-12): 935-944.
    [80]宋健民.超硬材料[M].第1版.台北:金华科技图书股份有限公司印制,1989:118.
    [81]马若飞.钎焊金刚石工具浅析[C].郑州:第五届郑州国际超硬材料及制品研讨会:2008.
    [82]张小军,徐西鹏,韩权利.一种新型钎焊金刚石串珠及使用此串珠的绳锯[P].CN200710008871.8.2007.9.19.
    [83]卜长根.一次成型多层钎焊金刚石钻头[P].CN101862834A.2010.10.20.
    [84]章文姣,叶宏煜,杨凯华.钎焊地质金刚石钻头的试验与研究[J].金刚石与磨料磨具工程.2009(1):44-48.
    [85]阎承沛.真空与可控气氛热处理[M].第1版.北京:化学工业出版社,2006:101.
    [86]袁公昱.人造金刚石合成与金刚石工具制造[M].第1版.长沙:中南工业大学出版社,1992:381.
    [87]章文姣,段隆臣,谢涛,等.金刚石工具制作方法对金刚石性能的影响[J].粉末冶金材料科学与工程.2011(4):563-568.
    [88]贾成厂,宋月清,郭志猛,等.超硬材料与工具[M].第1版.北京:冶金工业出版社,1996:18-19.
    [89]林增栋.金属—金刚石的粘结界面与金刚石表面的金属化[J].粉末冶金技术.1989,7(1):1-9.
    [90]林增栋,高巧君.金刚石表面金属化技术[J].物理.1990,19(1):58.
    [91]高巧君,林增栋.金刚石表面生成碳化铬的物理机制[J].磨料磨具与磨削.1991(1):2-8.
    [92]王广生.航空制造工程手册热处理[M].第1版.北京:航空工业出版社,1993:766.
    [93]黄培云.粉末冶金原理[M].第2版.北京:冶金工业出版社,2008:133.
    [94]孟凡爱,刘英凯,王建强.粉末制粒工艺在金刚石工具制造中的应用研究[J].粉末冶金技术.2010,28(3):188-191.
    [95]叶宏煜,齐华斌,谢涛.钎焊金刚石工具自动布料装置[P].200910062368.X.2009.10.28.
    [96]贾妍,侯书军.振动作用下粘性颗粒动力学行为的实验研究[J].安徽化工.2005,31(3):41-42.
    [97]Cn-Gb.金属粉末流动性的测定——标准漏斗法(霍尔流速计)[S].1984.
    [98]刘琦,郭志猛,叶宏煜,等Ni-Cr合金钎焊金刚石磨粒的试验研究[J].超硬材料工程.2005(6):1-6.
    [99]Mitsche R, Jeglitsch F, Gabler F. Berg-und Hottenmannshe Monatschefte[M].1964:169.
    [100]刘媛媛.钎焊金刚石耐磨性基础研究[D].南京:南京航空航天大学,2007.
    [101]粟祜,李培森,任耀文.真空钎焊[M].第1版.北京:国防工业出版社,1984:17-18,38.
    [102]任耀文.真空钎焊工艺[M].第1版.北京:机械工业出版社,1993:75-79.
    [103]陆善平,郭义,陈亮山(WC-Co/NiCrBSi)钎焊涂层结合机制及磨损性能研究[J].材料 科学与工程.1999(2):49-51.
    [104]刘广志.金刚石钻探手册[M].第1版.北京:地质出版社,2009:116.
    [105]张清.金属磨损和金属耐磨材料手册[M].第1版.北京:冶金工业出版社,1991:49.
    [106]王智慧,杨爱弟,贺定勇,等.真空熔覆镍基合金涂层中碳化钨颗粒转变行为[J].稀有金属材料与工程.2008(10):1869-1871.
    [107]徐德生,任露泉,邱小明,等WC/Cu基仿生非光滑耐磨复合涂层的研究[J].农业机械学报.2004(6):148-151.
    [108]刘忠,陈泽民,刘建雄,等.金刚石刀头钎焊焊缝”冒泡”问题的分析与解决[J].热加工工艺.2005(10):72-74.
    [109]徐小荷,余静.岩石破碎学[M].第1版.北京:煤炭工业出版社,1984:78-230.
    [110]屠厚泽,高森.岩石破碎学[M].第1版.北京:地质出版社,1990:69-81.
    [111]章文姣,段隆臣,叶宏煜,等.孕镶金刚石钻头中有序排列参数的确定[J].金刚石与磨料磨具工程.2010(5):21-25.
    [112]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].第1版.北京:清华大学出版社,2005:28.
    [113]郭绍什,冯德强,杨凯华.钻探手册[M].第1版.武汉:中国地质大学出版社,1993:135.
    [114]白金泽LS-DYNA3D理论基础与实例分析[M].第1版.北京:科学出版社,2005:102.
    [115]张林中.金刚石切削岩石的模拟[D].中国地质大学(北京),2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700