用户名: 密码: 验证码:
葡萄无核基因定位与作图的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无核葡萄具有重要的商业价值,葡萄无核育种已成为当今葡萄育种的重要方向。近年的研究表明,葡萄无核性状由主效基因和一些微效基因共同作用而控制。本研究以红地球、红光无核、无核白及红地球×红光无核F_1代163株杂种为试材,对葡萄无核主效基因进行了定位与作图研究,对与无核主效基因紧密连锁的特异标记的DNA序列在GenBank中进行了相似性分析和开放阅读框架(ORF)分析,还进行了Southern杂交分析,主要结果如下。
     1.葡萄无核基因连锁的SCAR标记的获得
     以UBC-269_(484)和GSLP1_(569)的序列为支点,设计合成了包括UBC-269和GSLPI在内的9条引物,用有核亲本红地球和无核亲本红光无核的DNA为模板,对这9个引物进行筛选,结果序列长度均为18个核苷酸的GSLP1、39970524-5号引物和39970524-6号引物在无核亲本红光无核上扩增出了特异标记。GSLP1扩增出的特异标记为GSLP1_(569),39970524-5号引物扩增出的特异标记为39970524-5-564,39970524-6号引物扩增出的特异标记分别为39970524-6-1538和39970524-6-1200。用这3个特异引物在红地球、红光无核、无核白和红地球×红光无核杂交组合F_1代163株杂种的DNA样上进行PCR扩增,结果4个特异标记在F_1群体中与无核主效基因共分离。这4个特异标记也出现于本研究所用组合中无核基因原始供给者无核白上。这些标记和葡萄的无核主效基因相连锁。
     2.葡萄无核基因的定位与作图
     用QTXb17遗传作图软件,对葡萄无核主效基因S定位与作图,特异标记GSLP1_(569)、39970524-5-564、39970524-6-1538和39970524-6-1200与无核主效基因S连锁紧密。当P=0.01时,LOD值在32.7—46.4之间,置信界限在0.2—9.9之间。这4个特异标记和无核主效基因S处于在同一连锁群,位于无核主效基因S的两侧,覆盖基因组12.3cM。特异标记39970524-5-564距S基因0.6cM,特异标记GSLP1_(569)距S基因1.2cM,特异标记39970524-6-1538距S基因4.9cM,特异标记39970524-6-1200
    
    距特异标记n.lcM。
     3.葡萄无核基因特异标记DNA序列的相似性分析
     与葡萄无核基因相连锁的特异标记39970524一5一564和39970524一6一1538的DNA
    片段回收、克隆、测序,特异标记39970524一5一564长度为564bp,39970524一6一1538
    长度为1538bp。这两个序列已登录GenBank,序列号分别为AY327513和AY327514。
     在GenBanLk中,用BLAST对39970524一5一564和39970524一6一1538特异标一记的DNA
    序列进行了相似性分析,这2条DNA序列和GenBallk中其他生物的DNA序列同源
    性较小,为葡萄(巧tis vin沙ra)基因组所特有。39970524一5一564特异标记DNA序列
    中第38一59碱基间的22个碱基和拟南芥的2条编码MAP3K(受分裂素激活的蛋白激
    酶激酶激酶激酶)有关的核酸序列有相似性,39970524一5一 564特异标一记DNA序列中
    第38一59碱基间的22个碱基同时还和拟南芥第3条染色体的1条DNA序列有相似性。
    39970524一5一564特异标记这22个碱基所提供信息的实际意义有待进一步研究。
    39970524一6一1538特异标记的DNA序列和拟南芥的DNA序列没有相似性,但和水稻
    第6条染色体的DNA片段有23个碱基的相似性。
     4.葡萄无核基因特异标记DNA序列开放阅读框架分析
     在GenBank中,对 39970524一5一564和39970524一6一1538特异标记DNA序列的开
    放阅读框架分析表明,39970524一5一564在第405一536碱基间存在一个开放阅读框架,
    共包含1犯个碱基,可编码44个氨基酸。但在BLASTp中没有检测到与其同源的蛋
    白序列。
     39970524一6一1538的序列最大的一个开放阅读框架在第1168一704碱基间,序列长
    度为465bp,可编码154个氨基酸。将这个开放阅读框架所编码的氨基酸序列,在
    BLASTP中和拟南芥的功能蛋白序列进行相似性比较,这一氨基酸序列和13个拟南
    芥的蛋白序列有部分相似性,相似位点在39一42个氨基酸间,E值在0.003一0.032间。
    这13个蛋白中,2个蛋白和胚胎发育后期丰富蛋白有关;1个蛋白和种子贮藏物及油
    脂转移蛋白酶抑制因子有关;还有一些分别和富脯氨酸、富亮氨酸及胞壁脂质体蛋白
    有关。由于39970524一6一1538的这个开放阅读框架所编码的序列和拟南芥蛋白序列的
    同源性偏小(E值0.003一0.033),所以这个开放阅读框架的实际功能还需进一步验证。
     5.葡萄无核基因特异标记DNA序列酶切位点和Southem blot分析
     用Wingene23 1 DNA分析软件对39970524一5一564和39970524一6一1538序列的限制
    性内切‘酶酶切位点进行了分析,分别有30和130个可识别6个碱基及其以上序列酶
    
    切位点的限制性内切酶在39970524一5一564和39970524一6一1 538的DNA序列上存在酶
    切位点;EcoRI和Hindlll在39970524一5一564特异标记上没有酶切位点,而EeoRI在
    39970524一6一1538第135个碱基处有一个酶切位点,Hindlll在39970524一6一1538上没有
    酶切位点。
     用39970524一5一564DNA作探针对葡萄基因组DNA作Southem杂交,结果在无核
    亲本红光无核及无核基因供给者无核白和无核杂种上杂交带出现,而且呈单拷贝,而
    在有核亲本红地球及有核杂种上杂交带未出现,进一步证明了39970524
Seedless grapes have high commercial value and seedlessness for table grapes and raisins is one of the principle objectives of Vitis vinifera grape breeders. Recent studies have shown that the seedless trait in grapes is controlled by one major and some minor genes. The position and mapping of the major gene for seedlessness was studied in this research using Red Globe, Flame Seedless, and Thompson Seedless, together with Fl progenies from Red Globe X Flame Seedless crosses. The sequences of marker linked to the major seedlessness gene were analyzed by BLAST in GenBank and the open reading frame (ORF) of these sequences was also found in GenBank. 39970524-5-564 DNA labeled with a DIG DNA Labeling and Detection Kit was used as a probe against Southern blot with genomic DNA from grapes. The main results were as follows.
    1. Identification of SCAR markers linked to grape seedlessness gene
    Nine primers (including UBC-269 and GSLP1) were designed and synthesized based on DNA sequences of UBC-2694g4 and GSLP1569. The template DNA from Red Globe (seeded paternal parent) and Flame Seedless (seedless maternal parent) were screened using these primers. For Flame Seedless, GSLP1 yielded specific marker GSLPlseg; No.39970524-5 primer yielded specific marker 39970524-5-564; and No.6 primer yielded specific marker 39970524-6-1538 and 39970524-6-1200. GSLP1, No. 39970524-5, and No. 39970524-6 primers were used specifically to screen template DNA from the experimental plant materials: results showed that the specific markers GSLPlseg, 39970524-5-564, 39970524-6-1538 and 39970524-6-1200 were co-segregating with the major seedlessness gene. All these specific loci were also present in Thompson Seedless which was the initial donor of the seedlessness gene. It suggests that these SCAR markers are linked to a major grape seedlessness gene S .
    2. Position and mapping for grape seedlessness gene
    Marker order and map distance were estimated using the software 'QTXbl7'. This showed that GSLP1569, 39970524-5-564, 39970524-6-1538 and 39970524-6-1200 were
    IV
    
    
    tightly linked to gene S. When P=0.01, confidence limits for map distance ranged from 0.2 to 9.9; standard errors of map distance were from 0.6 to 1.9; LOD for linkage were from 32.7 to 46.4. These markers and the gene S were found to be in the same group. The markers were either sides of gene S, covering 12.3 cM of the grape genome. The genetic distances between gene S and 39970524-5-564, GSLP1569, 39970524-6-1538 and 39970524-6-1200 were 0.6 cM, 1.2 cM, 4.9 cM and 11.1 cM respectively.
    3. Comparative analysis of the DNA sequences of specific markers linked to grape seedlessness gene
    DNA fragments of 39970524-5-564 and 39970524-6-1538 derived from Flame Seedless were retrieved from agarose gel and ligated into the pGEMB-T Easy Vector System, and then transformed into E. coli DH5-a. Sequencing of positive clones was carried out and the result showed that the 39970524-5-564 was 564bp and the 39970524-6-1538 was 1538bp. The sequences data had submitted to GenBank. The GenBank accession number for 39970524-5-564 is AY327513 and 39970524-6-1538 is AY327514.
    It has been suggested that the sequences of 39970524-5-564 and 39970524-6-1538 are unique to the grape (Vitis viniferd) genome. But, these sequences were extensively compared by BLAST in GenBank and a small part was found to be homologous. 22 base pairs from the sequence of 39970524-5-564 (from 38 to 59) matched two nucleic acid sequences coded MAP3P from Arabidopsis thaliana and also matched the sequence for Arabidopsis thaliana BAG T17H7 from Chromosome 1. Further study is needed to determine the significance of the 22 base pairs from the sequence of 39970524-5-564. The sequence of 39970524-6-1538 was not homologous with Arabidopsis thaliana, but it matched rice [Oryza sativa (Japonica cvs)] genomic DNA from chromosome 6.
    4. Finding ORF's of the DNA sequences of specific markers linked to grape seedlessness gene
    ORFs of the sequences of markers linked to gene S were found in GenBank. There was an ORF in the sequen
引文
1.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,5:19-22
    2.危文亮,赵应杰.分子标记在作物育种中的应用.生物技术通报,2000,2:12-16
    3.吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用.高技术通讯,2001,4:99-103
    4.王跃进,徐炎,张剑侠,等.中国野生葡萄果实抗炭疽病基因的RAPD标记.中国农业科学,2002,35 (5):536-540
    5.王跃进,王西平,周鹏,等.中国野生葡萄抗黑痘病基因的RAPD标记.园艺学报,2000,275:321-325
    6.王跃进,张剑侠,周鹏,等.中国野生葡萄抗白粉病基因的RAPD标记.西北农林科技大学学报(自然科学版),2001,19 (1):1-5
    7.王彩虹,王倩,戴洪义,等.与苹果柱型基因(Co)相关的AFLP标记片段的克隆.果树学报,2001,18 (4):193-195
    8.毕晓颖,吴禄平,安利佳.一个与苹果显性矮生主基因Dw连锁的RAPD标记.园艺学报.2002,29 (1):1-4
    9.杨克强,王跃进,张银东,等.核桃早实性状的RAPD分析.园艺学报,2002,29(6):573-574
    10.王晓梅,宋文芹,刘松,等.利用AFLP技术筛选与银杏性别相关的分子标记.南开大学学报(自然科学版),2001,34 (1):5-9
    11.尹佟明,黄敏仁,朱立煌.利用显性分子标记和F_1群体进行林木遗传连锁图谱的构建.生物工程进展,1996,16 (4):12-16
    12.易能君,尹佟明,黄敏仁,等.林木数量遗传基因定位中的若干问题.生物工作进展,1998,18 (3):19-24
    13.吴为人,李维明.基于性状标记回归的QTL区间测验方法.全国动植物数量遗传与育种学术讨论会文集,中国遗传学会,扬州大学编.2000,13-18
    14.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,57-79
    15.王跃进,杨英军,周鹏,等.用DNA探针检测我国栽培的无核葡萄及辅助育种初探.园艺学报,2002,29 (2):105-108
    16.韩振海,牛立新,王倩,等.落叶果树种质资源学.北京:中国农业出版社,1994,308-312
    17.王跃进,Lamikanra O,Schell L,等.用RAPD分析鉴定葡萄属远缘杂种.西北农业大学学报,1997,25 (3):16-20
    18.王倩,王斌.DNA分子标记在果树遗传学上的利用.遗传,2000,22 (5):339-344
    19.王彩虹,束怀瑞.利用分子标记研究苹果资源与基因组的进展.果树学报,2001,18 (2):104-109
    20.程中平,陈志伟,胡春根,等.分子标记在桃上的应用.中国南方果树,2002,31 (2):60-62
    21.吴俊,魏钦平,束怀瑞,等.分子标记及其在果树种质资源研究中的应用.安徽农业大学学
    
    报,2002,29 (2):158-162
    22.薛庆中.应用分子辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24 (6):581-582
    23.张增艳,陈孝,张超,等.分子标记选择小麦白粉病基因Pm4b、Pm13和Pm21聚合体.中国农业科学,2002,35 (7):789-793
    24.刘来福,毛盛贤,董远樟.作物数量遗传.北京:农业出版社,1984
    25.周国岭,杨光圣,傅廷栋.基因克隆技术.华中农业大学学报,2001,20 (6):584-592
    26.陈桂信,潘东明,吕柳新,等.果树核DNA提取、目的基因分离与克隆技术研究进展.福建农林大学学报(自然科学版),2002,31 (1):44-50
    27.陈大明,徐昌杰,张上隆.脐橙基因组文库的构建.园艺学报,2002,27 (6):401-405
    28.苏晓华,张冰玉,黄烈健.转基因林木研究进展.林业科学研究,2003,16 (1):95-103
    29.贾士荣.转基因作物的安全性争论及对策.生物技术通报,1999,6:1-7
    30.贺普超主编.葡萄学.北京:中国农业出版社,1999,240-267
    31.王跃进,Lamikanra Olusola.检测葡萄无核基因DNA探针的合成与应用.西北农林科技大学学报(自然科学版),2002,30 (3):42-46
    32.杨英军,王跃进,周鹏,等.葡萄无核基因SCAR标记的序列构成与酶切分析.果树学报,2002,19 (1):12-14
    33.王近卫,堀内昭作.无核白葡萄的无核果形成的组织形态学研究.园艺学报,1992,(1):1-6
    34.王晶,罗国光.巨峰葡萄胚和胚乳的发育.园艺学报,1996,23 (2):191-193
    35.王跃进,万怡震.美国加州的葡萄生产与科研.西北农林科技大学学报(自然科学版),2002,143 (1):134-140
    36.刘崇怀,孔庆山,潘兴.我国鲜食葡萄的种质基础与种质创新.果树学报,2002,19 (4):256-261
    37.李德葆,徐平.重组DNA的原理和方法.杭州:浙江科技出版社,1994:69-83
    38.刘春明.胚胎发育的分子遗传学分析.许智宏,刘春明主编,植物发育的分子机理.北京:科学出版社,1999,54-68
    39.张巍.不同时期GA处理对葡萄无核化及果实品质的影响.中外葡萄与葡萄酒,1999,2:38-40
    40.黄丛林,张大鹏,贾文锁.葡萄种子细胞中脱落酸的胶体金免疫电镜定位.中国农业大学学报,1999,4 (5):111-117
    41.王跃进,张剑侠,等.采用胚挽救技术获得抗病无核葡萄新材料的研究.甘肃农业大学学报.2001,(增刊):105-110
    42.孟金陵.植物生殖遗传学.北京:科学出版社,1995,15-32
    43.张承才,彭玲.蛋白激酶在植物生长发育中的作用.许智宏,刘春明主编,植物发育的分子机理.北京:科学出版社,1999,172-192
    
    
    44.粱小娥,张大鹏,贾文锁.苹果和葡萄果实蛋白激酶特性分析.植物生理学报,2000,26 (3):257-262
    45.景润新,黄春阳,朱国英.图位克隆技术在分离植物基因中的应用.遗传,2000,22 (3):180-185
    46.Clark MS主编.顾红雅,瞿礼嘉译.植物分子生物学——实验手册.北京:高等教育出版社,1998,13-42
    47. Abbott A, Georgi L, Yvergniaux D, et al. Peach: the model genome for Rosaceae. Acta Hort, 2002, 575: 145-155
    48. Adams M D, Celniker S E, Holt R A, et al. The Genome sequence of Drosophila melancyaster. Science, 2000, 287:2185~2195
    49. Adams MD, Kelly JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    50. Akopyanz N, Bukanov NO, Westblom TU, et al. PCR-based analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acids Research, 1992, 20: 6221-6225
    51. Alston FH, Batlle I. Genetic markers in apple breeding. Phytoparasitica, 1992, 20(Supplement): 89-92
    52. Antcliff AT. Inheritance of sex in Vitis. Plant, 1980, 30: 113-122
    53. Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter, 1991, 9: 208-218
    54. Arus P, Ballester J, Jauregui B, et al. The European Prunus mapping project: update on marker development in almond. Acta Horti, 1999, 484: 331-336
    55. Arus P, Messeguer R, Viruel M, et al. The European Prunus mapping project. Progress in the almond linkage map. Euphytica, 1994, 77(1-2): 97-100
    56. Arus P. Developing tools for more efficient fruit breeding: the European Prunus Mapping project. NUCIS-Newsletter, 1996, 5: 6-8
    57. Badenes LM, Hurlado MA, Sanz F, et al. Searching for molecular markers linked to male sterility and self-compatibility in apricot. Plant Breeding. 2000, 119: 157-160
    58. Baird WV, Ballard RE, Rajapakse S, et al. Progress in Prunus mapping and application of molecularmakers to germplasm improvement. HortScience, 1996, 31(7): 1099-1106
    59. Baird WV, Extager AS, Wells J. Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Amer Soc Hor Sci, 1994, 119: 1312-1316
    60. Bartolozzi F. Genetic choracterization and relatedness among California almond cultivars and breeding lines detected by randomly amplified polymorphic DNA (RAPD) analysis. J Hort Cultur Sci, 1998, 123(3): 381-387
    61. Bechtold N, Ellis J. Pelletier G. In planta agrobacterium mediated gene transfer by infiltration of
    
    adult Arabidopsis thaliana Plants. Acad Sci Paris, 1993, 3:1194-1199
    62. Bhattacharyya MK. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching emzyme. Cell, 1990, 60: 115-122
    63. Bliss FA, Arulsekar S, Foolad MR, et al. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome, 2002, 45(3) : 520-529
    64. Botstein D, White RL, Skolnick MH, et al. Construction of a genetic linkage map on men using restriction fragment length polymorphism. Am J Hum Genent, 1980, 32:314-331
    65. Bouquet A, Danglot Y. Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis, 1996, 35: 35-42
    66. Bowers JE, Dangl GS. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 1996, 39: 628-633
    67. Bowers TE, Meredith CP. The parentage of a classic wine grape, Cabernet Sauvignen. Nature genetic, 1997, 16:84-87
    68. Bozhinova-Boneva I. Inheritance of seedlessness in grapes. Genet Sel, 1978, 11:399-405
    69. Byrne F, McMullen MD. Defining genes for agricultural traits: QTL analysis and the candidate gene approach. Probe, 1996, 7: 24-27
    70. Cai Q. Extention of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation responsive loci. Theor Appl Genet, 1994, 89: 606-614
    71. Case H. Development of the UK Nationol Fruit collection. European Apple, 1994, 2:7
    72. Chakravarti A, Lasher LK, Reefer JE. A maximum-likelihood method for estimating genome length using genetic linkage data. Genetics, 1991, 128: 175-182
    73. Chao S, Sharp PJ, Cale MD. A linkage map of wheat homologous group 7 chromosome using RFLP markers. Miller TE, Koebner RMD (eds) Proc 7th Int wheat Genet Symp. Cambridge laboratory: Cambridge, 1988, 493-498
    74. Chaparro JX, Werner DJ, O'Malley D, et al. Targetted mapping and linkage analysis of morphological, isoenzyme, and RAPD markers in peach. Theor Appl Genet, 1994, 87: 805-815
    75. Chen Wei, Lu Liu-Xin. Relationship between Litchi embryo abortion and phenolic inhibitors,植物学报, 2002, 44 (2) : 168-172
    76. Cheng FS. Molecular markers for fruit colour in Apple (Malus domestica). HortScience, 1994, 29: 529
    77. Chevalier M, Lespinasse Y, Renaudin S. A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia in aqualis). Plant-pathol, 1991, 40(2) : 249-256
    78. Chevalier M, Lespinasse Y. Apple Scab: Studies of sensitivity and resistance using scanning electon microsecopy. Phytoma, 1989, 408: 47-49
    
    
    79. Constantinescu G, Pena A, Indreas A. Inheritance of some quanlitative and quantitative characters in the progeny of crosses between functionally female (gynodynamic) and apyrene (androdynamic) varieties. Plobleme de Genetica Teoretica, SiAplicata, 1975, 7: 213-241
    80. Crosby JA, Janick J, Pecknold PC, et al. Breeding apples for scab resistance: 1945-1990. Acta Horticulture, 1992, 317: 43-70
    81. Dalbo MA, Ye GN, Weeden NF, et al. Marker-assisted selection for powdery mildew resistance in grapes. J Amer Soc Hort Sci, 2001, 126(1) : 83-89
    82. Dalbo MA, Ye, NF. Weeden H, et al. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome, 2000, 43: 333-340
    83. Diatchenbo L, Lau YFC. Camphell AP, et al. Suppression substractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
    84. Dirlewanger E, Bodo C. Molecular genetic mapping of peach. Euphytica, 1994, 77: 101-103
    85. Dirlewanger E, Pascal T, Zugerc, et al. Aanalysis of molecular markers associated with powdery milder resistance gene in peach [Prunus persica (L.) Batsch]×Prunus davidiana hybrids. Theor Appl Genet, 1996, 93(56) : 909-919
    86. Dirlewanger E, Pronier V, Parver C, et al. Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet, 1998, 97: 888-895
    87. Doligez A, Bouquet A, Danglot Y, et al. Genetic mapping of grapevine(Vitis vinifera L.)applied to the detection of QTL for seedlessness and berry weight. Theor Appl Genet, 2002, 105: 780-795
    88. Donald TM, Pellerone F, Adam-Blondon AF,et al.Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet, 2002, 104 (4) : 610-618.
    89. Dudley JW. Molecular markers in plant improvement manipulation of genes affecting quantitative. Crop Sci, 1993,33:660-668
    90. Dudnik NA, Moliver MG. Inheritance of seedlessness in grape in the south of the Ukrainian SSR. Referalivnyi Zhurnal, 1976, 5,55,118
    91. Eldredge L, Ballard R, Baird WV, et al. Application of RFLP Ananysis to Genetic linkage mapping in peaches. Hortscience, 1992, 27(2) : 160-163
    92. Etienne C, Rothan C, Moing A, et al. Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet, 2002, 105(1) : 145-159
    93. Faure S, Noyer JL, Horry JP. A molecular marker-based linkage map of diploid bananas (Musa accuminata). Theor Appl Genet, 1993, 87: 517-526
    94. Fitch WM. Distingushing homologous from analogous proteins. Syst Zool, 1970, 19: 99-113
    95. Foolad MR, Arulsekar S, Becerra V, et al. A genetic linkage map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet, 1995, 91: 262-269
    96. Gale MD, Devos KM. Plant comparative genetics after 10 years. Science, 1998, 282: 656-659
    
    
    97. Gardiner SE, Bassett HCM, Noiton DAM, et al. A detailed linkage map around an apple acab resistance gene demonstrates that two disease resistance class both carry the Vf gene. Theor Appl Genet, 1996, 93(4) : 485-493
    98. Gardiner SE, Zhu-JM, Whitehead HCM, et al. The New Zealand apple genome mapping project. A progress report. Euphytica, 1994, 77(1-2) : 78-81
    99. Georgi LL,Wang Y,Yvergniaux D,et al. Construction of a BAC library and its application to the identification of simple seqence repeats in peach [Primus persica (L.)Batsch]. Theor Appl Genet, 2002, 105: 1151-1158
    100. Gmitter TG, Xiao SY, et al. A localized linkage map of the Citrus tristeza virus resistance gene region. Theor Appl Genet, 1996, 92: 688-695
    101. Golodriga PY, Troshin LP, Frolava. Inheritance of character of seedlessness in the hybrid generation of V. vinifera. Tsitologyia: Genetika, 1986, 19: 372-376
    102. Gray DJ, Finsher LC, Mortensen JA. Comparison of methodologies for in ovule embryo reseue of seedless grapes. HortScience, 1987, 22: 1334-1335
    103. Hamada H. A novel repeated element with Z DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA, 1982, 79: 6465-6469
    104. Hemmat M, Weeden NF, Ganganaris AG, et al. Molecular marker linkage map for apple. J. Heredity, 1994,85:4-11
    105. Hemmat M,Brown SK, Weeden NF. Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hortic Sci, 2002, 127 (3) : 365-370.
    106. Hemmat M, Weeden NF,Aldwinckle HS,et al. Molecular markers for the scab resistance (Vf) region in apple. J Amer Soc Hort Sci, 1998,123 (6) :992-996.
    107. Hisada S, Akihama T, Endo T, et al. Expressed sequence tags of Citrus fruit during rapid cell development phase. J Amer Soc Hort Sci, 1997, 122(6) : 808-812
    108. Hisada S, Moriguchi T, Hidaka T, et al. Random sequencing of Sweet Orange (Citrus sinensis Osheck) cDNA library derived from young seeds. J Japan Hort Sci, 1996, 65(3) : 487-495
    109. Hong X, Wilson DJ, Arulsekar S, et al. Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. J Amer Hort Sci, 1995, 120(5) : 714-720
    110. Hormaza JI. Identification of a RAPD Marker linked to sex delermination in Pistacia Vera using bulked segregant analysis. Theor Appl Gent, 1994, 89(9) : 9-13
    111. Hospital F, Charcosset A. Marked-assisted introgression of quantitative trait loci. Genetic, 1997, 147: 1469-1485
    112. Huang H, Dane F, Norton JD. Linkage relationships of isozymes and morphological trait in interspecific chestnut crosses. HortScience, 1996, 31(3) : 419-420
    113. Hurtado MA, Romero C, Vilanova S, et al. Genetic linkage maps of two apricot cultivars (Prunus
    
    armeniaca L.), and mapping of ppv (sharka) resistance. Theor Appl Genet, 2002, 105:182-191
    114. Imazio S, Labra M, Grassi F, et al. Molecular tools for clone identification: the case of the grapevine cultivar 'Traminer'. Plant Breeding, 2002, 121: 531-535
    115. International Human Genome Sequencing Consortium. Initial Sequencing and analysis of the human gene. Nature, 2001, 409:860-921.
    116. Jarrell DC, Roose ML, et al. A genetic map of citrus based on the segregation of isozymes and RFLPs on interspecific cross. Theor Appl Genet, 1992, 84: 49-56
    117. Jelenkovic ZG, Harrington E. Morphology of the pachytene choromosomes in Prunus persica. Can J Genet Cytol, 1972, 14:317-324
    118. Joobeur T, Periam N, Devicente MC, et al. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome, 2000, 43: 649-655
    119. Joobeur T, Viruel MA, Vicente MC-De, et al. Construction of a saturated linkage map for Prunus using an almond×peach F2 progeny. Theor Appl Genet, 1998, 97(7) : 1034-1041
    120. Jun JH, Chung KH, Jeong SB, et al. Identification of RAPD and SCAR Markers linked to the fleshadhesion gene F in peach (Prunus persica (L.) Batsch). Horti Sci Bio, 2002, 77(5) : 598-603
    121. Kantety RV, Rota ML, Matthews DE, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Bio, 2002, 48(5-6) : 501-510
    122. Keightley PD, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res Camb, 1993, 62: 195-203
    123. Kellerhals M. Europen Apple Genome Project-bridge between genetics and market prospects of apple. Obstbau-Weinbau, 1997, 34: 7-8
    124. Kender WJ, Remaily G. Regulation of sex expression and seed development in grapes with 2-choroethylphosphonic acid. HortScience, 1970, 5: 491-492
    125. Khachatryan SS, Martirosyan EL. Nature of the inheritance of large fruit and size and number of seeds per fruit in hybrid progenies of vinifera. Referativnyi Zhurnal, 1971, 7, 55, 19
    126. King GJ, Alston F, Brown LM, et al. Multipe field and glasshouse assessments increase the reliability of likage mapping of the Vf source of scab resistance in apple. Theor Appl Genet, 1998, 96(5) : 699-708
    127. King GJ, Alston FH, Battle I, et al. The 'European Apple Genome Mapping Project'-developing as trategy for mapping genes coding for agronomics characters in tree species. Euphytica, 1991, 56(1) : 89-94
    128. King GJ. Progress in mapping agronomic genes in apple (the European Apple Genome Mapping Project). Euphytica, 1994, 77(1-2) : 65-69
    129. King GJ. Progress of apple genetic mapping in Europe. HortScience, 1996, 31(7) : 1108-1111
    130. Kristina MS, Regner F, Turetschek E, et al. Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 1999, 42: 367-373
    
    
    131. Lahogue F, This P, Bouquet. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Gent, 1998, 97: 950-959
    132. Lamboy WF, Alpha CG. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J Amer Soc Hort Sci, 1998, 123: 451-460
    133. Lande R, Thompson R. Eifficiency of marker-asisted selection in the improvement of quantitative traits. Genetics, 1990, 124: 743-746
    134. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    135. Lander ES, Gree P, et al. Mapmarker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural population. Genomics, 1987, 1: 174-181
    136. Laurie DA, Devos KM. Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Bio, 2002, 48(5-6) : 729-740
    137. Ledbetter CA, Burgos L. Inheritance of stenospermocarpic seedlessness in Vitis vinifera L. J Here, 1994,85(2) : 157-160
    138. Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolating pathogen resistance genes from potato with a potential for wide application in plant. Nature Genet, 1996, 14: 421-429
    139. Leyser HM. Arabidopsis auxin-resis tance gene AXR1 encodes a protein related to ubiqutin-actionting enzyme EI. Nature, 1993, 364: 161-164
    140. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103 (2/3) : 455-461
    141. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of ploymerase chain reaction. Science, 1992, 257: 967-971
    142. Liebhard R, Gianfranceschi L, Koller B, et al. Development and characterization of 140 New microsatellites in apple (Malus domestica Borkh). Molecular Breeding, 2002, 10: 217-241
    143. Lisitsyn N, Wigler M. Cloning the difference between two complex genomes. Science, 1993, 259: 946-951
    144. Lodhi MA, Daly MJ, Ye GN, et al. A molecular marker based linkage map of Vitis. Genome, 1995, 38: 786-794
    145. Lodhi MA, Reisch BI. Nuclear DNA content of Vitis species, cultivrars, and other genera of the Vitaceae. Theor Appl Genet, 1995, 90: 11-16
    146. Loomis NH, Weinberger JH. Inheritance studies of seedlessness in grapes. J Amer Soc Hort Sci, 1979, 104(2) : 181-184
    147. Lowson DM, Hemmat M, Weeden NF. The use of molecular markers to analyze the inheritance of morphological and developmental trait in apple. J Amer Soc Hort Sci, 1995, 120(3) : 532-537
    148. Lu XZ, Sosinski B, Reighard G, et al. Construction of a genetic linkage map and identification of
    
    AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome, 1998, 41: 199-207
    149. Maliepaard C, Alston F, Arkel G-van, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using muti-allelic markers. Theor Appl Genet, 1998, 97: 1-2
    150. Maliepaard C, Alston F, Arkel G-van, et al. The European apple map. Acta Horticulture, 1999, 484: 325-330
    151 . Markussent, Kruger J,Schrnidt H,et al. Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breeding, 1995, 114(6) : 530-534
    152. McGranahan GH, Leslie CA, Urat.su. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Techonology, 1988, 6: 800-804
    153. Meinke DW. Perspective on genetic analysis of plant embryogenesis. Plant Cell, 1991, 3: 857-866
    154. Meredith CP, Bowers JE, Riaz S, et al. The identify and parentage of the variety known in California as Petite Sirah. Amer J Enol Viti, 1999, 50(3) : 236-242
    155. Merideth, Plaisted RL, Tanskley SD. RFLP maps based on a common set of clones reveal models of chromosomal evolution in potato and tomato. Genetics, 1988, 120: 1095-1103
    156. Michelmore RN, Paran I, Kesseli RV. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9829-9832
    157. Muehlbauer GJ, Specht JE, Thomas-Compton MA, et al. Near-isogenic lines-A potential resource in the integration of conventional and molecular marker linkage maps. Grop Sci, 1988, 28: 729-735
    158. Mullis KB, Faloona FA. A specific synthesis of DNA in vitro varya polymerase chain reaction. Methods Enzymol, 1987, 115: 335-338
    159. Murray J.Larsen J,Michaels TE,et al.Indentification of putative gene in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs.Genome,2002,45:1013-1024
    160. Paran I, Michelmoer RN. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuse. Theor Apll Genet, 1993, 85: 985-993
    161. Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative trait into Mendelia factor by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721-726
    162. Pflieger S, Lefebvre V, Causse M. The candidate gene approach in plant genetics: a review. Molecular Breeding, 2002, 7: 275-291
    163. Rajapakse S, Belthoff LE, He G, et al. Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet, 1995, 90: 503-510
    164. Ramming DW, Emershad RL. In ovule embryo culture of seeded and seedless Vitis vinifera L. Hort Sci, 1982, 17(3) : 487
    
    
    165. Ramming DW, Ledbetter CA, Tarailo R. Hybridization of seedless grapes. Vitis, 1990, (special issue): 439-444
    166. Reid JB. Plant hormone mutants. J Plant Growth Regul, 1993, 12: 207-226
    167. Reyna L, GE, Simpson J, et al. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet, 1997, 253:703-710
    168. Roche P, Alston F, Maliepaard C, et al. RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet, 1997, 94(314) : 528-533
    169. Rommens JM, Iannuzzi MC, Kerem BS, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science, 1989, 245: 1058-1065
    170. Schere G, Telford J, Baldar C, et al. Isolation of cloned gene differentially expressed at early and late stage of Drosophila embryonic development. Dev Biol, 1981: 438-447
    171. Sheng Chen, XH Lin, CG Xu, et al. Improvement of Bacterial Blight resistance of 'Minghui 63', an Elite Restorer Line of hybrid rice, by molecular-asisted selection. Crop Science, 2000, 40: 38-42
    172. Sheridan WF, Clark JK. Mutational analysis of morphologenesis of maize embryo. Plant J, 1993, 3: 347-358
    173. Snell CD. The H-2 locus of mouse: observation and speculation concerning its comparative genetics and its polymorphism. Folia Bio, 1968, 14(5) : 335-358
    174. Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicated progenies.Theor Appl Genet, 1990, 67: 25-33
    175. Staub JE, Serquen FC. Genetic markers, map construction, and their application in plant breeding. HortScience, 1996, 31(5) : 729-741
    176. Straus D, Ausbel FM. Genomic subtraction for cloning DNA corresponding to detection mutations. Proc Natl Acad Sci USA, 1990, 87: 1889-1893
    177. Striem MJ, Ben-Hayyim G, Spiegel-Roy P. Indentifying molecular genetic markers associated with seedlessness in grape. J Amer Soc Hort Sci, 1996, 121(5) : 758-763
    178. Striem MJ, Spiegel-Roy P, Baron I, et al. The degree of development of the seedcoat and the endosperm as separate subtraits of stenospermocarpic seedlessness in grape. Vitis, 1992, 31: 149-155
    179. Tanekley SD, Bernataky R, Lapitan NL, et al. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci, 1988, 85(17) : 6419-6423
    180. Tartarini S, Gianfranceschi L,Sansavini S,et al. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding, 1999, 118 (2) : 183-186.
    181. Tartarini S.RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet. 1996, 92(7) :803-810
    
    
    182. Terrier N, Ageorges A, Abbal P, et al. Generation of ESTs from grape berry at various developments stages. J Plant Physi, 2001, 158(12) : 1575-1583
    183. Thanksley SD, Ganal MW, Martin GB. Chromosome Landing: A paradigm for map-based gene cloning in plant with large genome. Trends Genet, 1995, 11: 63-68
    184. The Arabidopsis Initiatie. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(14) :796-815.
    185. The C.elegans Sequencing consortium. Sequence and analysis of the genome of C.elegans. Science, 1988,282:2012-2018.
    186. This P, Cuisset C. Development of stable RAPD markers for the identification of grapevine rootstocks and the analysis of genetic relationships. J Amer Enol Viti, 1997, 48(4) : 492-501
    187. Thomas MR, Scott NS. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysis as sequence-tagged site (STS). Theor Appl Genet, 1993, 86: 985-990
    188. Tomkins JP,Peterson DG,Yang TJ.et al. Grape (Vitis vinifera L.) BAC library construction, preliminary STC analysis, and identification of clones associated with flavonoid and stilbene biosynthesis. American Journal of Enology and Viticulture, 2001, 52(4) : 287-291
    189. Tuberosa R, Gill BS, Quarrie SA. Gereal genomic: ushering in a brave new world. Plant Mole Bio, 2002, 48(5-6) : 443-444
    190. Urasaki N, Tokumoto M, Tarora K, et al. A male and hermaphrodite specific RAPD Marker for papaya (Carica papaya L.). Theor Appl Genet, 2002, 104(2/3) : 281-285
    191. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome . Science, 2001, 291:1304-1351.
    192. Virscek MM, Stampar F, Javornik B. Screening for scab resistance by RAPD markers in cultivars of apple (Malus spp.). Plant Breeding, 1995, 115(6) : 488-493
    193. Viruel MA, Messeguer R, devicente MC, et al. A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet, 1995, 91:964-971
    194. Wang D, Karle R, Brettin TS, et al. Genetic linkage map in sour cherring using RFLP markers. Theor Appl Genet, 1998,97(8) : 1217-1224
    195. Wang D, Karle R,Iezzoni AF. QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet, 1999, 101:535-545
    196. Wang DG, Fan JB, Siao CT, et al. Large scale identification, mapping and genotyping of single-nucleotide-polymorphism in the human genome. Science, 1998, 280: 1048-1077
    197. Wang Q, Zhang KC, Qu XP, et al. Construction and characterization of a bacterial artificial chromosome library of peach. Progrese in Natural Science, 2000, 10: 525-528
    198. Wang YJ, Lamikanra O, Lu J, et al. Identification of genetic marker linked to seedless genes in grapes using RAPD.西北农业大学学报, 1996, 24 (5) : 1-10
    199. Wang YJ. Lamikanra O. Analysis of sequencing the RAPD marker linked to seedless gene in grape.
    
    西北农业大学学报,1997,25(4) :1-5
    200. Warburton ML, Becerra V, Velasquez VL, et al. Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet, 1996, 93(5-6) : 920-925
    201. Weeden NF, Hemmat M, Lawson DM, et al. Development and application of molecular marker linkage maps in woody fruit crops. Euphytica, 1994, 77: 71-75
    202. Weeden NF, Muebauer FJ, Ladizinsky G. Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered, 1992, 83(2) : 123-129
    203. Weinberger JH, Harmon FN. Seedlessness in vinifera grapes. Proc Amer Soc Hort Sci, 1964: 85: 270-271
    204. Whittaker JC, Thompson R, Visscher PM. On the mapping of QTL by regression of phenotype on marker-type. Heredity, 1996, 77: 23-32
    205. Williams JGK, Kubelic AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18(22) : 6531-6535
    206. Williamson JD, Qutrano RS. ABA-regulation of two classes of embryo-specific sequence in mature wheat embryo. Plant Physiol, 1988, 86: 208-215
    207. Woeste K, McGranahan GH, Bernatzky R, et al. Randomly Amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii×J. regia)×J.regia]. J Amer Soc Hort Sci, 1996, 121(3) : 358-361
    208. Woeste K, McGranhan G, Bernatzky R. The identification and characterization of a gentic marker linked to hypersensitivity to the cherry leafroll virus in walnut. Molecular Breeding, 1996, 2: 261-266
    209. Wu WR, Li WM. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor Appl Genet, 1994, 89: 535-539
    210. Xianping Q, Jiang L, Lamikanra O. Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analysis. J Amer Hort Sci, 1996, 121(6) : 1020-1023
    211. Xu M, Huaracha E, Korban SS. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome, 2001, 44 (1) : 63-70.
    212. Xu M, Song J, Cheng Z,et al. A bacterial artificial chromosome (BAG) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 2001,44(6) :1104-1113.
    213. Xu ML, Korban SS. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet, 2000, 101: 844-851
    214. Yamamoto T, Hayashi T. New root-knot nematode resistance genes and their STS markers in peach. Scientia Horticulture, 2002, 96: 81-90
    
    
    215. Yang H, Korban SS. Screening apples for OPP20/600 using sequence-specific primer. Theor Appl Genet, 1996, 92(2) : 263-266
    216. Yang H, Krueger J. Identification of an RAPD marker linked to the Vf gene for scab resistance in apples. Plant Breeding , 1994, 112(4) : 323-329.
    217. Young ND, Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breading. Theor Appl Genet, 1989, 77: 353-359
    218. Yu J,Hu SN,Wang J,et al.A draft sequence of rice genome (Oryza sativa L.ssp.Indica). Scince, 2002, 296: 79-92
    219. Zabeau M, Vos, P. Selection restriction fragment amplification: A general method for DNA fingerprints. European Patent Application. Publ: 0534858A1
    220. Zanetto A, Formery B, Monet R. International network on Prunus genetic resources: the European Prunus database. Acta Horti, 1998, 465: 237-242
    221. Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    222. Zheng K, Huang N, Bennett J, et al. PCR-based marker-assisted selection in rice breeding. IRRI Discution Paper series No. 12. International Rice Research Institute, P. O. Box933, Manila, Philippines.1995
    223. Zhu J, Weir BS. Mixed model approaches for genetics amalysis of quantitative trait. In Chen LS, Ruan SG, Zhu J. ed. Advanced Topics in Biomathematics. Proceedings of International conference on Mathematical Biology. World Scientific Publishing Co., Singapore. 1998, 321-330
    224. Zietkiewicz E, Rafalski R, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183
    225. Zwaal RR, Broeks A, Meurs J, et al. Target selection genes inactivation in Caenorhubditis elegans by a frozen transposon insertion mutant bank. Proc Natl Acad Sci USA, 1993, 90: 7431-7435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700