用户名: 密码: 验证码:
CD44+/CD24-表型乳腺癌细胞的干性研究以及干细胞相关因子Oct-4在乳腺癌中的表达和临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     越来越多的证据表明,乳腺癌起源于一部分数量很少,有着特殊表型的乳腺癌细胞群。这类细胞有自我更新的潜能,能够生成新的异质性肿瘤。这类肿瘤细胞代表了乳腺癌的无限制生长,侵袭和转移,免疫逃逸,放疗不敏感,化疗耐药等特点,这一类细胞群被称为肿瘤干细胞(CSC)。在实体肿瘤中,乳腺癌,胶质细胞瘤,直肠癌,前列腺癌,肺癌等几种恶性肿瘤中的肿瘤干细胞已经被成功分离并证明。乳腺癌中CD44+/CD24-表型的细胞被认为是富集乳腺癌干细胞的细胞群,它能够反映乳腺癌的生物学特点。从人乳腺癌转移淋巴结和癌性胸水中分离的乳腺癌CD44+/CD24-表型的细胞被确定具有干性。在乳腺癌肿瘤细胞中CD44+/CD24-表型的细胞亚群具有强大的成瘤能力,仅几百个这类细胞就可以在重症免疫缺陷小鼠中产生肿瘤,而注射100倍的不表达同样抗原的其他乳腺癌细胞亚群并不能形成肿瘤。越来越多的研究显示,乳腺癌干细胞是乳腺癌发生和发展的源泉,在乳腺癌的治疗中,完全杀灭和消除乳腺癌干细胞是彻底治愈乳腺癌的关键。本研究目的分离乳腺癌干细胞并验证其成瘤能力及其生物学行为特点,为乳腺癌的治疗提供依据。乳腺癌中CD44+/CD24-表型的细胞的分离培养,分化,成瘤等生理特征尚存在争论,其所占比率与乳腺癌临床病理学特点的关系鲜有报道,这样一群肿瘤细胞和乳腺癌临床指标的关系值得进一步探讨。
     Octamer-4 (Oct-4)是一种在胚胎干细胞和成体干细胞中表达的转录因子,他在干细胞和生殖细胞中与细胞的增殖分化,细胞的多能性和自我更新有关。迄今为止,Oct4在成体组织中的表达主要局限于具有干细胞特性的细胞,如皮肤基底细胞层中的个别细胞、乳腺干细胞和胃干细胞等。随着肿瘤干细胞理论不断深入,干细胞相关基因在恶性肿瘤中的作用越来越被学界所关注。目前Oct-4在乳腺癌干细胞的生物学行为中所起作用及机制的研究尚鲜有报道,且Oct-4蛋白的表达水平与乳腺癌生物学行为及临床病理特征的关系尚不清楚。我们应用基因芯和免疫组化方法对Oct-4蛋白的表达水平与乳腺癌生物学行为及临床病理特征的关系进行研究,以期为乳腺癌的治疗提供理论依据。
     实验材料与方法
     一、乳腺癌CD44+/CD24-表型细胞的分离以及其成瘤能力的鉴定
     应用流式细胞仪分选技术,从乳腺癌手术标本中,分离出乳腺癌CD44+/CD24-表型的肿瘤细胞亚群,分析这一类细胞在整个乳腺癌肿瘤细胞中所占的比率以及其与临床生物学行为的关系。在免疫缺陷小鼠体内验证乳腺癌CD44+/CD24-表型的肿瘤细胞与其它亚群细胞相比成瘤能力明显增强。
     二、干细胞相关基因Oct-4表达的检测
     用基因芯片方法检测Oct-4等肿瘤相关基因在乳腺癌中的表达情况。通过免疫组化方法分析Oct-4表达与乳腺癌临床病理指标的关系。
     三、统计方法
     所有数据用SPSS13.0统计学软件进行分析。组问比较用χ2检验,生存率分析用Kaplan-Meier法计算,生存率比较用Log rank检验,采用COX模型进行预后多因素分析。
     结果
     一、乳腺癌CD44+/CD24-表型细胞在病灶中的比率与临床病理学指标的关系以及其成瘤能力的特点
     乳腺癌CD44+/CD24-细胞在病灶中的比率3.75%-33.11%,平均含量(13.67+9.71%)。其比率与N分期有关(10.37%VS 16.16%P=0.037),与ER,Her-2受体表达状态密切相关(11.05%VSl6.27 P=0.043:9.47%VS 17.52%P=0.013)。用流式细胞仪分离出CD44+/CD24-标记亚群细胞5000个细胞接种糖尿病重症免疫缺陷鼠(SCID/NOD鼠)中可生成肿瘤,其余细胞接种105个细胞无肿物生成。用未经过分选的原代肿瘤细胞106个细胞接种免疫缺陷小鼠可以成瘤。说明乳腺癌中CD44+/CD24-细胞亚群与其他细胞相比,有更强大的成瘤能力,成瘤能力是未分选肿瘤细胞的100倍以上。
     二、干细胞相关基因Oct-4表达的临床意义
     1、CD44+/CD24-的乳腺癌肿瘤细胞与非CD44+/CD24-肿瘤细胞的基因表达谱差异:以下基因在实验组中表达明显高于对照组:干细胞分化相关因子CD44,Oct4,nestin,(145.82,64.28,49.17);细胞周期调节因子:APC,CDC2(4.79,33.0);生长因子:HGF,TGF(12.82,37.38)。
     2、Oct-4在乳腺癌中的表达及与临床病理特征的关系:Oct-4基因在肿瘤组织表达明显高于癌旁,与组织学类型、有无淋巴结转移和乳腺癌的分子分型显著相关。Oct-4蛋白表达阳性患者术后生存率与Oct-4蛋白表达阴性患者术后生存率有统计学差异(P=0.001)。通过COX回归模型进行分析发现肿瘤大小,组织学类型,病期,淋巴结转移,Her-2,Oct4是乳腺癌独立的预后因素(P=0.031;0.012;0.001;0.002:0.030;0.003)。
     结论
     1、乳腺癌病灶中存在CD44+/CD24-表型的细胞亚群,不同病例中的CD44+/CD24-细胞在乳腺癌中的比率有很大差别。乳腺癌中CD44+/CD24-细胞比率与乳腺癌的进展有一定关系,与乳腺癌雌激素受体表达成正相关,与Her-2受体表达负相关。
     2、乳腺癌中CD44+/CD24-表型肿瘤细胞在体内实验中有很强的成瘤能力,证明这一细胞群具有干细胞的特征。
     3、通过本研究提示Oct-4在乳腺癌CD44+/CD24-表型细胞中高表达,不但与乳腺癌的生物学行为密切相关,而且是乳腺癌的独立预后因素。
Emerging evidence have been carried out that the breast cancer cells originate from a rare population of tumor cells, which maintain the property of stem cells. These cells have enhanced self-renewal capacity, tumorigenic, and construct the whole population of tumor cells. These cells represent some main character of breast cancer such as unlimited growth pattern, invasion and metastasis, immunal released, irresponsable to radiation, chemotherapy resistance. Cancer stem cells were successfully isolated and identified in some solid tumors such as breast cancer, brain cancer, rectal cancer and prostate cancer. The population of breast cancer cells with the phenotype of CD44+/CD24- was considered to be enriched for breast cancer stem cells, and this population of tumor cells reflects some biology characteristics of breast cancer. Breast cancer cells with the phenotype of CD44+/CD24- isolated from metastatic pleural effussion show enhanced tumorigenesis and less to 100 cells with this type can form tumor in SCID/NOD mouse, further more other subpopulation of tumor cells 100 fold more fail to form tumor in vivo. Resent studies show that the breast cancer stem cells are the resource of the breast cancers. It is the key procedure to eliminate the breast cancer stem cells in treating breast cancers. The objective of this project is to isolate the population of CD44+/CD24- phenotype of breast cancer cells and identify its tumorigenic capacity and the correlation between the ratio of these cells in breast cancer and the pathological character of breast cancers.
     Octamer-4 (Oct-4) is a transcription factor in ESCs, it is correlated with the pluripotency, proliferative potential and self-renew capacity in embryonic stem cells and germ cells. Up to the present the research on Oct-4 is limited in cells with stem property, such as stem cells of skin basal layers, breast stem cells and gastric cells. With the profound investigation in cancer stem cells, role of stem related genes are more concerned. There is rare research about the mechanism of Oct-4 in breast cancer cells properties. We focus on the expression of Oct-4 in breast cancers with gene chip arrays and immunochemical analysis and illuminate its relationship with the clinical pathological character of breast cancer, in order to provide more evidence for breast cancer therapy.
     Materials and Methods
     一.Isolation of CD44+/CD24- phenotype breast cancer cells and identify its tumorigenic capacity
     The flow cytometry(FCM) technique is performed to isolate the cell population with CD44+/CD24- phenotype from breast cancer specimens, and analysis the ratio of these cells in breast cancer and investigate its significant comparing with the breast cancer clinical parameters. Also we test the tumorigenic capacity of this population of cancer cells in vivo.
     二.Test of stem cell associate gene Oct-4
     Gene chip array and immunochemical analysis are used to prove the relationship between the expression of Oct-4 and breast cancer clinical parameters, immunochemical methods are also used to test the expression of ER, PR and Her-2 gene expression in breast cancer research.
     三.Statistic methods
     Datas are analysis by SPSS13.0 statistic software. T-test and X2 test were used to analysis the relationship of these parameters. Kaplan-Meier method and Log rank method are used to analysis the survival rate and COX model is used to test prognosis factors.
     Results
     一.Ratio of CD44+/CD24- phenotype of breast cancer cells indicate clinicopathological characters and its tumorigenic capacity
     The cell population of CD44+/CD24- phenotype take up the ratio of cancer cells between 3.75%-33.11%, the mean ratio is 13.67%. Compared with the NO stage of breast cancer, cases with positive lymph node metastasis, N1N2, exhibit an accelerated CD44+/CD24-cancer cell ratio (10.37% VS 16.16% P=0.037). In respect with the hormone receptor expression, CD44+/CD24-cancer cells have more enrichment in ER- cases than that in ER+ breast cancers (11.05% VS 16.27% P=0.043). Her-2+ breast cancers have higher CD44+/CD24- cancer cell ratio than Her-2- ones (9.47% VS 17.52% P=0.013). Breast cancer cells with phenotype of CD44+/CD24- isolated by FCM were injected in SCID/NOD mouse together with other subpopulation of cancer cells as negative a control, as little as 5000 CD44+/CD24- tumor cells can develop new tumor in mouse, nevertheless 105 other phenotype cancer cells fail to develop tumor, which indicate the enhanced tumorigenic facility in CD44+/CD24- subpopulation of breast cancer cells.
     二.Expression of Oct-4 in CD44+/CD24- breast cancer cells and its clinical implications
     The difference of gene expression profile between CD44+/CD24- tumor cells and CD44+/CD24- negative tumor cells:the list of genes which are highly expressed:stem cells associated factors CD44, Oct4, nestin,(145.82,64.28,49.17);cell cycle regulators:APC,CDC2(4.79,33.0); growth factors:HGF, TGF (12.82,37.38). Oct-4 is highly expressed in breast cancer tissues compared with the adjacent normal tissues.Oct-4 positive breast cancer patients own shorter survival rate (P=0.001). COX model indicate that tumor size, histological type, stage of cancer, lymph node metastasis, Her-2 and Oct-4 expression are the independent prognosis factors of breast cancer (P=0.031;0.012; 0.001; 0.002; 0.030; 0.003).
     Conclusions
     1. Breast cancer cells contain a subpopulation of CD44+/CD24- tumor cells. CD44+/CD24- tumor cell ratio is correlated with N stage of breast cancer, and is with relationship to ER, Her-2 expression.
     2. The subpopulation of CD44+/CD24- phenotype of tumor cells are enriched for breast cancer stem cells and exhibit enhanced tumorigenicity which reflect its stem cell properties.
     3. Oct-4 gene is highly expressed in CD44+/CD24- breast cancer cells. Its expression is correlated with clinicopathological character of breast cancer, and is an independent factor for the survival rate.
引文
1 Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994;367(6464):645-8.
    2 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997; 3(7):730-7.
    3 Jin L, Hope KJ, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol.2004; 5(7):738-43.
    4 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.2003; 100(7): 3547-9.
    5 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature.2004;432(7015): 396-401.
    6 O'Brien CA, Pollett A, Gallinger S, Dick JE.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.445(7123):106-10,2007.
    7 Ricci-Vitiani L, Lombardi DG, De Maria R, et al. Identification and expansion of human colon-cancer initiating cells. Nature.2007; 445(7123):111-5.
    8 Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells.J Cell Sci.2004;117(16):3539-45.
    9 Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ.Prospective identification of tumorigenic prostate cancer stem cells.Cancer Res.2005;65(23):10946-51,.
    10 Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell.2005; 121(6):823-35.
    11 Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif.2003;36:59-72.
    12 Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture:implications for stem cell biology and neoplasia.J Mammary Gland Biol Neoplasia.2005;10(1):75-86.
    13 Liu J, Hao XS, Yu Y, Fang ZY, Liu JT, Niu Y, Fentiman IS.Long-term results of breast conservation in Chinese women with breast cancer. Breast J.2009;15(3):296-8.
    14 Liu C, Zhang H, Shuang C, Lu Y, Jin F, Xu H, Lu P. Alternations of ER, PR, HER-2/neu, and P53 protein expression in ductal breast carcinomas and clinical implications.Med Oncol.2009; Epub.
    15 Steinman S, Wang J, Bourne P, Yang Q, Tang P.Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann Clin Lab Sci.2007;37(2):127-34.
    16 Fillmore CM, Kuperwasser C, et al. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypiclly diverse progeny and survive chemotherapy. Breast Caner Res.2008; 10(2):Epub.
    17 Liu R, Wang X, Chen G Y, Dalerba P, Guney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke ME The Prognostic Role of a Gene Signature from Tumorigenec Breast-cancer cells. The New England J of Med.2007; 356(3):217-26.
    18 Wright MH, Calcaqno AM, Varticovski L, et al. Brcal breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res.2008; 10(1):Epub.
    19 Sheridan C, Kishimoto H, Nakshatri H, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties:an early step necessary for metastasis. Breast Cancer Res.2006; 8(5):R59.
    20 Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-endothelial interaction links the CD44+/CD24- phenotype with poor prognosis in early-stage breast cancer. Neoplasia. 2009;11(10):987-1002.
    21 Ginestier C, Hur MH, Wicha MS, Dontu G, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell.2007; 1(5):555-67.
    22 Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content.Cell.2010;140(1):62-73.
    23 Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE.2006.Targeting of CD44 eradicates human acute myeloid Ieukemic stem cells. Nat Med.2006; 12(10):1167-74.
    24 Shackleton M, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84-88.
    25 Stingl J. Purification and unique properties of mammary epithelial stem cells. Nature.2006; 439: 993-997.
    26 Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.2005;65:5506-11.
    27 Abraham BK, Fritz P, McClellan M, Brauch H, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clinical Cancer Research.2005;11(3):1154-9.
    28 Vassilopoulos A, Wang RH, Deng CX, et al. Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int J Biol Sci.2008;4(3):133-142.
    29 L m E, Vaillant F, Wu D,et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med.2009; 15(8):907-13.
    30 Christgen M, Ballmaier M, Bruchhardt H, von Wasielewski R, Kreipe H, Lehmann U. Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol Cell Biochem.2007;306(1-2):201-12.
    31 Dontu G, El-Ashry D, Wicha MS, et al. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab.2004; 15(5):193-7.
    32 Pommier SJ, Quan GG, Christante D, et al. Characterizing the HER2/neu status and metastatic potential of breast cancer stem/progenitor cells. Ann Surg Oncol.2009; 17(2):613-23.
    33 Klonisch T, Wiechec E, Hombach-Klonisch S, Los M, et al. Cancer stem cell markers in common cancers-therapeutic implications. Trends in Molecular Medicine.2008;14(10): 450-60.
    34 Shipitsin M, Campbell L, Argani P, Polyak K, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell.2007;11:259-73.
    35 Dalfonso T, Liu YF, Monni S, Rosen PP, Shin SJ. Accurately Assessing HER-2/neu Status in Needle Core Biopsies of Breast Cancer Patients in the Era of Neoadjuvant Therapy:Emerging Questions and Considerations Addressed.Am J Surg Pathol.2010; Epub ahead of print.
    36 Wo JY, Taghian AG, Nguyen PL,et al. The Association Between Biological Subtype and Isolated Regional Nodal Failure After Breast-Conserving Therapy. Int J Radiat Oncol Biol Phys. Epub ahead of print.2010.
    37 Puglisi F, Minisini AM, et al. Adjuvant endocrine therapy in postmenopausal breast cancer patients:Does hormone receptor status influence decision-making? Crit Rev Oncol Hematol. 2010; Epub ahead of print.
    38 Yamashita T, Iwata K, et al. New development in the treatment of breast cancer. II. Future anti-HER2 therapy. Gan To Kagaku Ryoho.2009; 36(13):2551-4.
    39 Ciampa A, Xu B, Ayata G, et al. HER-2 status in breast cancer:correlation of gene amplification by FISH with immunohistochemistry expression using advanced cellular imaging system. Appl Immunohistochem Mol Morphol.2006; 14(2):132-7.
    1 Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP.Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell.2010;140(1):62-73.
    2 Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brcal breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics.Breast Cancer Res.2008;10(1):RIO.
    3 Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med.2007; 356(3):217-26.
    4 Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K.Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer.Clin Cancer Res.2010; 16(3):876-87.
    5 Merlo LM, Maley CC.The role of genetic diversity in cancer. J Clin Invest.2010;120(2): 401-3.
    6 Sullivan JP, Minna JD, Shay JW.Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy.Cancer Metastasis Rev.2010; 29(1):61-72.
    7 Monsef N, Soller M, Isaksson M, Abrahamsson PA, Panagopoulos I.The expression of pluripotency marker Oct 3/4 in prostate cancer and benign prostate hyperplasia. Prostate.2009; 69(9):909-16.
    8 Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J.Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells.2007;25(2):500-10.
    9 Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L.Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA.2010; 16(2):324-37.
    10 Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer.2007; 120(7):1598-602.
    11 Niwa H, Miyazaki J, Smith AG.Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet.2000;24(4):372-6.
    12 Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R.In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach. BMC Genomics.2009; 10:314.
    13 van de Geijn GJ, Hersmus R, Looijenga LH.Recent developments in testicular germ cell tumor research.Birth Defects Res C Embryo Today.2009; 87(1):96-113.
    14 Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE.Oct4 expression in adult human stem cells:evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005; 26(2):495-502.
    15 Trosko JE.From adult stem cells to cancer stem cells:Oct-4 Gene, cell-cell communication, and hormones during tumor promotion. Ann N Y Acad Sci.2006; 1089:36-58.
    16 Cai J, Xie D, Fan Z, Chipperfield H, Marden J, Wong WH, Zhong S.Modeling Co-Expression across Species for Complex Traits:Insights to the Difference of Human and Mouse Embryonic Stem Cells.PLoS Comput Biol.2010; 6(3):Epub.
    17 Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY.Oct4 and Nanog Expression Is Associated With Early Stages of Pancreatic Carcinogenesis.Pancreas.2010; [Epub ahead of print].
    18 Li YQ.Master stem cell transcription factors and signaling regulation.Cloning Stem Cells.2010; 12(1):3-13.
    19 Kristensen DM, Nielsen JE, Kalisz M, Dalgaard MD, Audouze K, Larsen ME, Jacobsen GK, Horn T, Brunak S, Skakkebaek NE, Leffers H.OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres.Mol Hum Reprod. 2010; [Epub ahead of print].
    20 Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T, Lim B, Ng HH.The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.Cell Stem Cell.2010; 6(2):167-74.
    21 Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J.Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis.Stem Cell Rev.2009; 5(4):378-86.
    22 Kellner S, Kikyo N.Transcriptional regulation of the Oct4 gene, a master gene for pluripotency.Histol Histopathol.2010; 25(3):405-12.
    23 Sanchez-Sanchez AV, Camp E, Garcia-Espana A, Leal-Tassias A, Mullor JL.Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads.Dev Dyn.2010; 239(2):672-9.
    24 Cantz T, Key G, Bleidissel M, Gentile L, Han DW, Brenne A, Scholer HR.Absence of OCT4 expression in somatic tumor cell lines.Stem Cells.2008; 26(3):692-7.
    25 Gup ta S, V erfaillie C, Chm ielew sk i D, et al. Isolation and Characterization of Kidney Derived Stem Cells [J] J Am Soc Nephrol.2006; 23(2):20.
    26徐珂佳,索振河,樊青霞,吕新全.Oct4在乳腺癌组织中的表达及意义.山东医药.2009;49(15):56-57.
    27 Cattaneo E, McKay R.Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor.Nature.1990; 347(6295):762-5.
    28 Tropepe V, Alton K, Sachewsky N, Cheng V, Kuo C, Morshead CM. Neurogenic potential of isolated precursor cells from early post-gastrula somitic tissue. Stem Cells Dev.2009; 18(10): 1533-42.
    29 Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE. A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death.EMBO J.2006;25(20):4808-4819.
    30 Parry S, Savage K, Marchio C, Reis-Filho JS. Nestin is expressed in basal-like and triple negative breast cancers J Clin Pathol.2008; 61(9):1045-50.
    1 Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.367(6464),645-8,1994.
    2 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.3(7),730-7,1997.
    3 Jin L, Hope KJ, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol.5(7),738-43,2004.
    4 Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci.1044,1-5,2005.
    5 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 432(7015),396-4012004.
    6 Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 121(6),823-35,2005.
    7 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100(7),3547-9,2003.
    8 Ricci-Vitiani L, Lombardi DG, De Maria R, et al. Identification and expansion of human colon-cancer initiating cells. Nature.445(7123):111-5,2007.
    9 O'Brien CA, Pollett A, Gallinger S, Dick JE.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.445(7123):106-10,2007.
    10 Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+/CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer.26;98(4):756-65.2008.
    11 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene.25;1696-708.2006.
    12 Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med,12(10):1167-74,2006.
    13 Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nature Reviews cancer.5(4): 275-84,2005.
    14 Klonisch T, Wiechec E, Hombach-Klonisch S, Los M, et al. Cancer stem cell markers in common cancers- therapeutic implications. Trends in Molecular Medicine.14(10):450-60, 2008.
    15 Phillips TM, McBride WH, Pajonk F. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J Natl Caner Inst.98:1777-85,2006.
    16 Mimeault M, Hauke R, Mehta PP, et al. Recent advantages in cancer stem/progenitor cell research:therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med.11(5):981-1011.2007.
    17 Reim F, Dombrowski Y, Ritter C, et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells:selective escape of CD44high/CD241ow/HER21ow breast cancer stem cells. Cancer Res.15;69(20):8058-66.2009.
    18 Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers.Clin Cancer Res.15(12):4234-41.2009.
    19 Fleming ID, Cooper JS, Henson DE, et al. AJCC Cancer Staging Manual (ed 5). Philadelphia: Lippincott-Raven,1997.
    20 Liu J, Hao XS, Yu Y, Fang ZY, Liu JT, Niu Y, Fentiman IS. Long-term results of breast conservation in Chinese women with breast cancer.Breast J.2009.15(3):296-8.
    21 Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res.7:86-95,2005.
    22 HU M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet.37(8),899-905,2005.
    23 Raya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.414:105-11.2001.
    24 Sheridan C, Kishimoto H, Nakshatri H, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties:an early step necessary for metastasis. Breast Cancer Res.8(5): R59,2006.
    25 Honeth G, Bendahl PO, Ringner M, Saal LH, et al.The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res.10(3):R53 2008.
    26 Zhang Y, Yao F, Yao X, Yi C, Tan C, Wei L, Sun S.Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep.21(4):1113-21.2009.
    27 Rappa G, Lorico A. Phenotypic characterization of mammosphere-forming cells from the human MA-11 breast carcinoma cell line. Exp Cell Res. Epub ahead of print.2010.
    28 Meyer MJ, Fleming JM, Ali MA,et al. Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res.11(6):R82.2009.
    29 Abraham BK, Fritz P, McClellan M, Brauch H, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clinical Cancer Research.11(3):1154-9,2005.
    30 Mylona E, Giannopoulou I, Fasomytakis E, Nakopoulou L, et al. The clinicopathologic and prognostic significance of CD44+/CD24-/low and CD44-/CD24+ tumor cells in invasive breast cancinomas. Hum Pathol.39(7):1096-102,2008.
    31 Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-endothelial interaction links the CD44(+)/CD24(-) phenotype with poor prognosis in early-stage breast cancer. Neoplasia. 11(10):987-1002.2009.
    32 Zucchi I, Sanzone S, Astigiano S, Dulbecco R, et al. The properties of a mammary gland cancer stem cell. PNAS. (25):10476-81; 2007.
    33 Wright MH, Calcaqno AM, Varticovski L, et al. Brcal breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10(1):R10, Epub,2008.
    34 Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content.Cell.140(1):62-73,2010.
    35 Wicha MS. Identification of murine mammary stem cells:implications for studies of mammary development and carcinogenesis.Breast Cancer Res.8(5):109.2006.
    36 Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17(10):1253-70.2003.
    37 Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 36:59-72,2003.
    38 Ling LJ, Wang S, Liu XA,et al. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone. Chin Med J.121(20):1980-6.2008.
    39 Oliveira LR, Jeffrey SS, Ribeiro-Silva A. Stem cells in human breast cancer. Histol Histopathol.25(3):371-85.2010.
    40 Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypiclly diverse progeny and survive chemotherapy. Breast Caner Res.10(2):R25, Epub,2008.
    41 Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature.439:84-88,2006.
    42 Stingl J, et al. Purification and unique properties of mammary epithelial stem cells. Nature.439: 993-997,2006.
    43 Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif.36:59-72,2003.
    44 Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65:5506-11,2005.
    45 Grimshaw MJ, Cooper L, Papazisis K,et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res.10(3):R52.2008.
    46 Patrawala L, Calhoun T, Robin SB, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic.65(14): 6207-19,2005.
    47 Christgen M, Ballmaier M, Bruchhardt H, Lehmann U, et al. Idendification of a distinct side population of cancer cells in the cal-51 human breast carcinoma cells line. Mol Cell Biochem. 306:201-12,2007.
    48 Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.117(3):455-60,2007.
    49 Ginestier C, Hur MH, Wicha MS, Dontu G, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell.1(5); 555-67,2007.
    50 Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med.l3(8B):2236-52.2009.
    51 Vassilopoulos A, Wang RH, Deng CX, et al. Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int J Biol Sci.4(3):133-142,2008.
    52 Shipitsin M, Campbell L, Argani P, Polyak K, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell.11:259-73,2007.
    53 Lindvall C. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev.3: 157-168,2007.
    54 Chen MS. Wnt/β-catenin mediates radiation resistance of Scal+ progenitors in an immortalized mammary gland cell line. J Cell Sci.120:468-77,2007.
    55 Woodward WA. Wnt/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A.104:618-23,2007.
    56 Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding coponents of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA.100:15853-8,2003.
    57 Farnie G, Clarke RB. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev.3(2):169-75,2007.
    58 Dontu G. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6:605-15,2004.
    59 Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res.70(2):709-18.2010.
    60 Liu S, Dontu G, Mantle ID, Wicha MS, et al. Hedgehog signaling and Bmi-1 regulate self-renew of normal and malignant human mammary stem cells. Cancer Res.66(12):6063-71, 2006
    61 Hatsell S, and Frost AR. Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biiol Neoplasia.12:163-73,2007.
    62 Yu F, Yao H, Zhu P, Zhang X,et al.let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell.131(6):1109-23.2007.
    63 Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene.27(47):6120-30.2008.
    64 Nakanishi T, Chumsri S, Khakpour N, et al.Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer.102(5):815-26.2010.
    65 Marhaba R, Zoller M. CD44 in cancer progression:adhesion, migration and growth regulation. J Mol Histol.35(3),211-31,2004.
    66 Friedrich K, Frank F, Lisboa BW, et al. CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Research.55;5424.1995.
    67 Delatorre M, Heldin P, Bergh J. Expression of the CD44 glycoprotein in untreatment hunman breast cancer and its relationship to prognostic markers. Anti-cancer Research.15;2791.1995.
    68 Regidor PA, Callies R, Rgdor M, et al. Expresion of the CD44 variation forms 6 and 4/5 in breast cancer. Correlation with established prognostic parameters. Arch gynecol Obstet.258: 125,1996.
    69 Kristiansen G, Winzer KJ, Mayordomo E, et al. CD24 Expresion is a new prognostic marker in breast cancer. Clin Cancer Res.9(13):4906-13,2003.
    70 Psaila B, Kaplan RN, Port ER, Lyden D. Priming the 'soil' for breast cancer metastasis:the pre-metastatic niche. Breast Dis.26:65-74,2007.
    71 Liu R, Wang X, Chen G Y, Dalerba P, Guney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF. The Prognostic Role of a Gene Signature from Tumorigenec Breast-cancer cells. The New England J of Med.356(3):217-26,2007.
    72 Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A.98: 10869-74.2001.
    73 Van't Veer LJ, Dai H, van de vijver MJ, et al. Gene expresion profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
    74 Wang Y, Klijin JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negtive primary breast cancer. Lancet.365:671-9.2005.
    75 van de vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med.347:1999-2009.2002.
    76 Ponta H, Sherman L, Herrlich PA. CD44:from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol.4(1),33-45,2003. Review.
    77 Cho RW, Clarke MF. Recent advances in caner stem cells. Current Opinion in Genetics and Development.18:48-53,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700