用户名: 密码: 验证码:
农田土壤重金属污染监测及其空间估值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是当前土壤生态环境保护研究的热点问题。受城市工业化及集约化农业发展的影响,城郊土壤重金属污染远比一般农业地区更为显著。本研究选取北京城郊地区——大兴区为研究对象,对土壤景观异质下土壤重金属含量的空间分布规律、重金属积累与景观要素的关联性、污染溯源的可视化表达方法及土壤重金属含量的空间估值几个主要问题进行了探讨,主要研究内容及创新性进展如下:
     (1)土壤重金属含量分布及其污染状况。对京郊重点蔬菜产区大兴地区3054个样点的表层土壤重金属取样监测表明,大兴区土壤重金属As、Cu、Pb、Hg、Cd、Cr的平均值分别为6.5mg.kg-1、25.9mg.kg-1、20.6mg.kg-1、0.078mg.kg-1、0.15mg.kg-1、59.3mg.kg-1。6种重金属中Cu、Cd、Cr的累积污染指数平均值都大于1,虽然As、Pb、Hg的累积污染指数均值小于1,但三种重金属的累积污染指数大于1的样点百分数介于12.8%~32.5%。从单因子污染指数评价结果看,6种重金属中只有As、Cu、Pb、Cd有部分样点超过国家二级标准处于污染状态,其中Pb有12.87%的样点处于污染状态,As、Cu、Cd含量超过国家二级标准的处于污染状态的样点较少,分别为0.20%、0.04%、0.38%。内梅罗污染指数评价方法结果显示Hg和Cr处于清洁状态,As、Cu、Cd处于尚清洁状态,Pb元素处于轻度污染状态。该地区应该加强Pb污染的控制。地积累评价的结果显示,As、Hg、Cd、Cr处于无污染的状态,而Cu、Pb轻度~中等污染状态。通过计算6种重金属的潜在生态危害系数,大兴区土壤中Hg处于中度生态危害状态,其余5种重金属均在轻度生态危害状态,大兴区土壤重金属的潜在生态危害指数值为123.79,处于轻度生态危害状态。各评价方法不同及选用的评价标准不同,各土壤重金属的评价结果也略有差异。
     (2)土壤重金属积累与潜在污染源的关联性分析。研究提出了一个定量化土壤重金属累积与潜在污染源(土地利用方式、路网、建筑区)的关联性分析方法。研究结果表明,土地利用方式(粮田、蔬菜地、果园)下土壤重金Cu和Hg发生累积的概率置信度要高于As、Pb及Cu三种重金属出现累积的概率置信度。而路网和建筑区对土壤重金属含量累积的影响与样点到路网和建筑区的距离有关,分别以道路及建筑区为中心,在0-1500米范围内按250米步长设置6个缓冲区,总体上在1500米范围内道路及建筑区对大兴区土壤重金As、Pb、Cu及Cr的累积的贡献不大,但对重金属Cd以及Hg含量有影响。
     (3)点状土壤重金属污染扩散及溯源的可视化表达。研究建立了一个土壤重金属污染扩散及溯源的可视化表达方法。该方法假设随到污染源的距离增加土壤重金属含量降低。基于此,研究将样点分布图映射成有向图G=(V,E),即每个样点由一个节点表征,表示一个可能潜在的重金属污染源,邻近节点间的有向边表征重金属污染物由一个节点向邻近节点扩散的过程;一个节点是否向其邻近的节点发出一条有向边,由重金属污染物扩散半径R及两节点的污染物含量的差异强度参数δ控制。与传统方法相比,该方法的主要优点在于:①动态地实现重金属污染物的扩散过程的可视化;②便捷地搜索出潜在的污染源;③对多重金属污染源的发生地区,有效地给出重金属污染的扩散方向。
     (4)土壤重金属含量的空间估值理论模型。模型假设:影响土壤重金属含量的外源变量,如植被类型、地形地貌、气象、水文及人为扰动等在全局空间上空间异质而在局部空间上空间同质,而土壤重金属含量分布满足相似的空间分布特征。模型实施的核心内容包括:在全局空间上对影响重金属含量的外源因子进行分类,获取不同的土壤单元类;构建空间估值方法,该方法自适应选择在空间同质的土壤单元类内完成对未知位点的空间估值。
Heavy metal pollution of soils is a hot issue of soil ecology and environment Protection. With urban industrialization and intensive agricultural development, the impact of heavy metal pollution in suburban areas is more significant than the outer suburbs. The peri-urban area of Daxing District, Beijing is selected as a research object. In the context of landscape heterogeneity, the spatial distribution of heavy metals, the relationship between heavy metal accumulation and landscape features, visualization and expression of tracing heavy metal pollution sources and theory model of spatial estimating of heavy metal contents are observed. Our works are presented as follows:
     (1) Spatial distribution of soil heavy metals contents.
     Based on monitoring data of surface soil heavy metals mainly collected in Daxing district, it shows that the average contents of heavy metals of As, Cu, Pb, Hg, Cd,and Cr, are respectively6.5mg-kg-1,25.9mg.kg-1,20.6mg.kg-1,0.078mg.kg-1,0.15mg.kg-4,59.3mg.kg-1. Due to impact of human activities, accumulation of heavy metals occurs in a certain degree. For the elements of Cu, Cd and Cr, their averages of cumulative pollution index are greater than1, while ones of As, Pb, Hg less than1, and percentage of samplers ranged from12.8%to32.5%, whose accumulation pollution index is greater than1. According to a single factor pollution index, the evaluation results show that the As, Cu, Pb and Cd in six kinds of heavy metals, exceed the national secondary standard in a polluted state. There are12.87%of samples with Pb contents in the polluted state, and As, Cu, or Cd concentrations over the national secondary standard pollution are respectively0.20%,0.04%, and0.38%
     ㏑elationships between soil metal accumulation and potential pollution sources.
     Soil metals in Beijing region were considered as a study case. A method is proposed to quantify the relationship between heavy metal accumulation and potential pollution sources (land use, road network, buildings). The results show that the probability confidence which Cu and Hg accumulate more than ones of As, Pb and Cu under there land use types of grain, vegetable, and orchard. The influence of road networks and buildings on the accumulation of soil heavy metals depends on the distances of monitoring samples to the road network and built-up areas, within the1,500meters, roads and construction areas in Daxing District, have no contributions to As, Pb, Cu and Cr accumulation of small, and but affect the contents of Cd and Hg.
     (3) Visualization and expression of tracing multi-point Pollution sources of heavy metals.
     A novel study method is established to visualize potential contamination sources of soil heavy metals. This method assumes that the pollution source is only one and the contents of soil heavy metals decrease with increasing distance to the source. Based on that, the monitoring samples of heavy metals will be mapped to a direct graph G=(V, E), that is:each sample is characterized by a node, indicating a possible potential sources of heavy metals, and the direct edge between two adjacent nodes stands for the diffusion process of pollutants from one node to neighboring nodes. Whether a node has a connected edge to its neighboring nodes is under control of two parameters of the radius R of pollutants spread and difference coefficient8of pollutants contents in the two adjacent nodes. Compared with traditional methods, the main advantages of this method includes1) dynamic visualization of heavy metal spread;2) easy to search out potential sources of pollution;3) For the occurrence of multiple heavy metal pollution areas, effectively to give the direction of the spread of heavy metal pollutants.
     (4) Theory model for spatial estimation of Heavy Metal Contents
     The theory model gives an assumption:since exogenous factors affecting soil heavy metal contents, such as vegetation type, topography, meteorology, hydrology and human disturbance have spatial heterogeneity in the global space and spatial homogeneity in the local space, the distributions of heavy metal contents are similar like that of the exogenous factors. The core ideas of the model include: classification of exogenous factors that affect the contents of heavy metals in the global space, and then achieve different soil unit classes; Construction of spatial estimation method, which adaptively restricts the interpolation of an unknown location within a spatial homogeneous soil unit.
引文
[1]. Agrawal, R., Imielinski, T., Swami, A., Mining association rules between sets of items in massive databases. In Proceedings of ACM International Conference on Management of Data. ACM[C], Washington D.C.,1993,207-216
    [2]. Ankerst, M., Elsen, C., Ester, M., Kriegel, H.-P. Visual classification:An interactive approach to decision tree construction. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,1999,392-396
    [3]. Ankerst, M., Ester, M., Kriegel, H.-P. Towards an effective cooperation of the user and the computer for classification. In Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining,2000,179-188
    [4]. Barlow, S. T., Neville, P. A comparison of 2-D visualizations of hierarchies. In Proceedings of IEEE Symposium on Information Visualization,2001,131-138
    [5]. Barlow, S. T., Neville, P. Case study:Visualization for decision tree analysis in data mining. In Proceedings of IEEE Symposium on Information Visualization,2001,149-152
    [6]. Bi, X. Y., Feng, X.B., Yang, Y.G., et.al. Heavy metals in an impacted wetland system:A typical case from southwestern China. Science of the total Environment,2007,387,257-268
    [7]. Brus, D. J., de, Gruijter, J. J., Romkens, P. F. A. M. Probabilistic quality standards for heavy metals in soil derived from quality standards in crops. Geodema,2005,128,301-311
    [8]. Castrignano, A., Buttafuoco, G. Geostatistical stochastic simulation of soil water content in a forested area of south Italy. Biosystems Engineering,2004,87,257-266
    [9]. Cattle, J. A., Mcbratney, A. B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality,2002,31,1576-1588
    [10]. Chen, T. B., Liu, X., Zhu, M., et al.. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution,2008,151,67-78
    [11]. Chen, T. B., Zheng, Y. B., Lei, M., et al.. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemsphere,2005,60,542-551
    [12].Facchinelli, A., Sacchi, E., Mallen, L. Multivariate statistical and gis-based approach to identify heavy metal sources in soils. Environmental Pollution,2001,114,313-324
    [13].Forstner, U. Lecture notes in earth sciences (contaminated sediments). Berlin:Springer Verlag, 1989,107-109
    [14].Francis, D., Hellene, R.,Christelle, P., et al. Impact of a smelter closedown on metal contents of wheat cultivated in the neighborhood. Environmental Science and Pollution Research,2008,15, 162-169
    [15].Goovaerts, P. Geostatics for natural resources evaluation. USA:Oxford University Press,1997
    [16].Han, J.W., Michelin, K. Data Mining:Concepts and Techniques. Morgan kaufman Publishers, 2001
    [17].Hansen, M. K., Brown, D. J., Dennison, P. E., et al. Bricklemyer. Inductively mapping expert-derived soil-landscapes units within dambo wetland catenae using multispectral and topographic data. Geoderma,2009,150,72-84
    [18].Hakanson, L. An ecology risk index for aquatic pollution control:a sedimentological approach. Water Resource,1980,14,975-1001
    [19]. Hudson, B.D. The soil survey as paradigm-based science. Soil Science Society of America Journal,1992,56,826-841
    [20]. Hu, K. L., Zhang, F. R., LI, H., et al. Spatial pattern of soil heavy metal in urban rural transition zone of Beijing. Pedosphere,2006,16,690-689
    [21].Isaaks, E. H., Srivatava, R.M. Applied geostatistics. New York, Oxford University Press,1989, 278-364
    [22]. Jose Antonio Rodriguez, Nikos Nanos, Jose Manuel Grau, et al. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere,2008,70,1085-1096
    [23].Juang, K. W., Chen, Y. S., Lee, D. Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy metal contaminated soils. Environ Pollut,2004,127,229-238
    [24]. Kerry, K., Oliver, M. A. Variorums of ancillary data to aid sampling for soil surveys. Prec. Agric, 2003,4,261-278
    [25].Knorr, E. M., Ng, R.T. Algorithm for mining distance-based outliers in large datasets. In Proceedings of the VLDB Conference,392-403,1998, New York, USA.
    [26].Korre, S. Durucan, Koutrouman, A. Quantitative-spatial assessment of the risks associated with high Pb loads in soil around Lavrio, Greece Applied Geochemistry,2002,17,1029-1045
    [27].Lark, R. M. Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma,2002,105,49-80
    [28].Lesch, S.M., Corwin, D. L. Prediction of spatial soil property information from ancillary sensor data using ordinary linear regression:Model derivations, residual assumptions and model validation tests. Geoderma,2008,148,130-140
    [29].Lin, Y. P., Chang, T. K., Teng, T. P. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods, Environmental Geology,2001,41,189-199
    [30].Lin, Y. P., Chang, T. K. Simulated annealing and kriging method for identifying the spatial patterns and variability of soil heavy metal. Journal of Environmental Science and Health, Part A, Toxic/Hazard,2000,35,1089-1115
    [31].Luis, R. L., Tomislav, H., Hannes, I. R. Heavy metal in European soils:A geostatistical analysis of Foregs geochemical database. Geoderma,2008,148,189-199
    [32].Luo, W., Wang, T. Y, Lu, Y. L., et al. Landscape ecology of the Guanting Reservoir, Beijing, China:multivariate and geostatistical analyses of metal in soils. Environmental Pollution,2007, 146,567-576
    [33].Markus, M. B., Hans-peter, K., Raymond, T.N., et.al. LOF:identifying density-based local outliers. In Proceedings of ACM SIGMOD 2000 International Conference on Management of Data,2000,1-12, Dallea, TX,USA
    [34].Mcbratney, A. B., Mendonca S. M. L., Minasy, B. On digital soil mapping. Geoderma,2003,117, 3-52
    [35].Mico, C., Recatala, L., Peris, M., Sanchez, J. Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariable analysis. Chemosphere,2006,65,863-872
    [36].Minsny, B., McBratney, A.B., Walvoort, D. J. J. The variance quadtree algorithm:use for spatial sampling design. Computers & Geosciences,2007,33,383-392
    [37].Muller, G.. Index of geoaccumulation in sediments of the Rhine River, Geological Journal, 1969,108-118
    [38].Odelh, O. A, Mctratney, A. B., Chittleborough, D. J. Spatial prediction of soil properties from landform attribute derived from a digital elevation model. Geoderma,1994,63,197-214
    [39]. Ramos, M. I., Feito, F. R., Gil, A. J., et al. A study of spatial variability of soil loss with high resolution DEMs:A case study of a sloping olive grove in southern Spain. Geoderma,2008,148, 1-12
    [40]. Rodriguez, J. A., Nanos, N., Grau, J. M., et al. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere,2008,70,1085-1096
    [41]. Shi, J., Malik, J. Normalized cuts and image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22,888-905
    [42].Simbahan,G. C., Dobermann, A. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma,2006,133,345-362
    [43].Singh,O.V., Labana, S., Pandey, G. Phytoremediation:an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology,2003,61,405-412
    [44].USEPA United States Environmental Protection Agency. Soil Screening Guidance:Users Guide. Office of So lid Waste and Emergency Response, Washington, DC,1996
    [45].USEPA United States Environmental Protection Agency. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, DC,2003
    [46].Van Meivenne, M., Govaerts, P. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Gerderma,2001,102,75-100
    [47]. Wan, Y., Zhou, J. G., CODEM:Spatial co-location and de-location associate algorithm for very large datasets. The 5th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD' 08),2008,2,234-239
    [48]. Wan, Y., Zhou, J. G. KNFCOM:A K-nearest feature based co-location pattern miming algorithm for large spatial datasets by using T-trees. International Journal of Business Intelligence and Data Mining,2008,3,375-389
    [49]. Wang, G., Gertner G, Parysow P, et al. Spatial prediction and uncertainty analysis of topographic factors for the revised soil loss equation. Journal of Soil and Water Conservation,2000,55, 374-384
    [50]. Wei, B., Yang, L.. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal,2010,99-107
    [51]. Wu, C. F., Wu, J. P., Luo,Y. M., et al. Statistical and geostatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units. Geoderma,2008,144, 171-179
    [52].Yay, O.D., Alaghab, O., Tuncel, G.. Multivariate statistics to investigate metal contamination in surface soil, Journal of Environmental Management,2008,581-594
    [53]. Yu, S.X., Shi, J. Multiclass spectral clustering. International Conference Computer Vision,2003, 11-17
    [54].Zhu, A. X., Band, L. E., Vertessy, R., et al. Derivation of soil properties using a soil land inference model (SoLIM). Soil Science society of America Journal,1997,61,523-533
    [55].Zhu, A. X., Huson, B., Burt, J. E., et al. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science society of America Journal,2001,65,1463-1472
    [56].Zhu, A. X. Mapping soil landscape as spatial continua:the neural network method. Water Resource Research,2000,36,663-677
    [57].Zhang, C. Using multivariate analysis and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution,2006,142,501-511
    [58]. Zhang, C.S., Deirdre, E, David, M., et al. Statistical analysis of geochemical variables in soils of Ireland. Geoderma,2008,146,378-390
    [59]. Zhang, X. Y., Lin, F. Y., Jiang,Y. G, et al. assessing soil Cu content and anthropogenic influences using decision tree analysis. Environmental Pollution,2008,156,260-1267
    [60].北京市环境保护监测中心.北京市规范化畜禽养殖场污染物排放量与污染防治设施状况调查与监测报告,2001
    [61].毕晓丽,周睿,刘丽娟,等.泾河沿岸景观格局梯度变化及驱动力分析[J],生态学报,2005,5:32-37
    [62].柴旭荣,黄元仿,苑小勇.用高程辅助提高土壤属性的空间预测精度[J].中国农业科学,2007,40(12):2766-2773
    [63].陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策[J].Ambio,1999,28 (2): 130-134
    [64].陈怀满.环境土壤学[M].北京:科学出版社,2005
    [65].陈晶中,陈杰,谢学俭,等.北京市土壤重金属污染分布特征[J].土壤学报,2005,42(1):149-152
    [66].曹银贵,袁春,周伟,等.三峡库区耕地城镇化及城镇扩展测度[J].农业工程学报,2009,32(4):55-76
    [67].陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004(25):117-122.
    [68].董克虞,杨春惠,林春野.北京市污水农业利用区划的研究[M].北京:中国环境科学出版社,1999
    [69].董雯,张小雷,王斌.乌鲁木齐城市用地扩展及其空间分异特征[J],中国科学D辑,2006,25(4):67-71
    [70].郭广慧,雷梅,陈同斌,等.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境科学学报,2008,28(10):1937-1945
    [71].郭晋平,张芸香.景观格局分析空间取样方法及其应用[J].地理科学,2005,25(5):584-589
    [72].郭笑笑,刘丛强,朱兆州,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896
    [73].黄勇,郭庆荣,任海,等.地统计学在土壤重金属研究中的应用展望[J].生态环境,2004,13(4):681-684
    [74].霍霄妮.北京市耕作土壤重金属空间格局及影响因素分析[D].中国农业大学,博士论文,2009
    [75].霍霄妮,李红,孙丹峰,等.北京市农业土壤重金属状态评价[J].农业环境科学学报,2009,28(1):66-71
    [76].霍霄妮,李红,张微微,等.北京耕作土壤重金属多尺度空间结构[J].农业工程学报,2009,25(3):223-229
    [77].胡克林,李保国,黄元仿,等.农田尺度下土体硝酸盐淋失的随机模拟及其风险性评价[J],土壤学报,2005,42(6):909-915
    [78].胡克林,李保国,吕贻忠,等.非平稳区域土壤Hg含量的各种估值方法比较[J].环境科学学报,2004(24):463-468
    [79].胡克林,张风荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468
    [80].姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270
    [81].蒋先军,骆永明,赵其国,等.重金属污染土壤的植物修护研究[J].土壤,2000,2:71-74
    [82].李保国,胡克林,陈德立,等.农田土壤表层饱和导水率条件的模拟[J].水利学报,2002,2:36-41
    [83].国家环保总局,土壤环境监测技术规范,北京,2004.24-25
    [84].国家统计局.2008.http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.htm
    [85].李健,郑春江.环境背景值数据手册[M].北京:中国环境科学出版社,1988,55
    [86].李海雯,陈振楼,王军,等.基于GIS的上海城市灰尘重金属空间分布特征研究[J].环境科学学报,2007,27(5):803-809
    [87].李廷芳,吴焕中,李玉浸.我国九个农业经济自然区土壤背景值图的编制[J].地理研究,1991,(10):39-47.
    [88].李晓秀,陆安祥,王纪华,等.北京地区基本农田土壤环境质量分析与评价[J].农业工程学报,2006,22(2):60-63
    [89].罗启仕,李小平,耿春女,等.上海建设用地土壤指导限值及其应用研究[J].农业环境科学学报,26(5):1952-1957
    [90].孟飞,刘敏,史同广.上海农田土壤重金属的环境质量评价[J].环境科学,2008,29(2)428-432
    [91].邵学新,黄标,孙维侠,等.长江三角洲典型地区工业企业的分布对土壤重金属污染的影响[J].土壤学报,2006,43(3):397-404
    [92].盛建东,肖华,武红旗,等.不同取样间距农田土壤全量养分空间变异特征研究[J].土壤通报,2006,7(6):1062-1065
    [93].石晓翠,钱翌,熊建新.模糊数据模型在土壤重金属污染评价中的应用[J].土壤通报,37(23):34-336,2006
    [94].孙孝林,赵玉国,赵量,等.应用土壤-景观定量模型预测土壤属性空间分布及制图[J].土壤,2008,40(5):837-842
    [95].孙孝林,赵玉国,张甘霖,等.预测性土壤有机质制图中模糊聚类参数的优选[J].农业工程学报,2008,24(9):31-37
    [96].檀满枝,陈杰,郑海龙,等.模糊c-均值聚类法在土壤重金属污染空间预测中的应用[J].环境科学学报,2006,26(12):2086-2092.
    [97].王初,陈振楼,王京,等.崇明岛公路两侧蔬菜地土壤和蔬菜重金属污染研究[J].生态与农村环境学报,2007,23(2):89-93
    [98].王纪华,沈涛,陆安祥,等.田块尺度上土壤重金属污染地统计分析及评价[J].农业工程学报,2008,24(11):226-229
    [99].王国庆,骆永明,宋静,等.土壤环境质量指导值与标准研究[J].土壤学报,2005(42):666-673.
    [100].王景雷,孙景生,刘祖贵,等.作物需水量观测站的优化设计[J].水利学报,2005,36(2):225-231.
    [101].王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,28(3):647-652
    [102].魏复盛,陈静生,吴燕玉,等.中国土壤背景值研究,环境科学[J],1990(12):12-19.
    [103].王茜,张增祥,牟凤云,等.“北京一号”小卫星影像质量及土地利用分类精度研究[J].中国矿业大学学报,2007,36(3):386-389
    [104].王先进.中国权威人士论中国怎样养活养好中国人[M].北京:中国财经出版社,1997,203-204
    [105].王学军,邓宝山,张泽浦.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报,1997,17:412-416
    [106].王学军,李本纲,陶澍,等.土壤重金属含量的空间分析[M].北京,科学出版社,2005
    [107].王再岚,何江,刘玉虹等.鄂尔多斯地区公路两侧土壤重金属污染特征[J].南京林业大学 学报(自然科学版),2006,2(30):15-19
    [108].王政权.地质统计学及在生态学中的应用[M].北京:科学出版社,1999
    [109].夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996:7-15
    [110].夏立江,温小乐.生活垃圾堆埋区周边土壤的性状变化及其污染状况[J].土壤与环境,2001,10(1):17-19
    [111].薛正平,杨星卫,段项锁,等.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002,18(4):6-9.
    [112].杨娟,王昌全,李冰,等.基于BP神经网络的城市边缘带土壤重金属污染预测—以成都平原土壤Cd为例[J].土壤学报,2007,44(3):430-436.
    [113].杨军,郑袁明,陈同斌,等.北京市凉凤灌区土壤重金属的累积变化趋势[J].环境科学学报,2005,25(9):1175-1181
    [114].杨华锋.北京地区污水灌溉农田若干特征研究[D].中国农业大学,2005
    [115].杨琳,朱阿兴,李宝林,等.应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究[J].土壤学报,2007,44(5):784-791
    [116].杨淑英,刘晓红,刘增强,等.杨凌市生活垃圾中重金属元素的污染特性分析[J].农业环境科学学报,2005,24(1):148-153
    [117].杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境,2000,9(1):15-18
    [118].朱阿兴,李宝林,杨琳,等.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844-851
    [119].张凤荣,赵华甫,陈阜,等.都市型现代农业产业布局[M].北京,中国农业大学出版社,2007
    [120].张剑清,朱丽娜,潘励,等.基于遥感影像和矢量数据的水系变化检测[J].武汉大学学报(信息科学版),2007,32(4):55-53
    [121].张辉,马东升.南京某合金厂土壤铬污染研究[J].中国环境科学,1997,17(1):80-82
    [122].张甘霖,赵玉国,杨金玲,等.城市土壤环境问题及其研究进展[J].土壤学报,2007,44(5):925-932
    [123].朱建军,崔宝山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金属空间分异特征[J].生态学报.2006,1(26):146-152
    [124].赵量,赵玉国,李德成,等.基于模糊集理论提取土壤—地形定量关系及制图应用[J].土壤学报,2007,44(6):961-967
    [125].曾希柏,李莲芳,梅旭荣.中国蔬菜土壤重金属含量及来源分析[J].中国农业科学,2007,40(11):2507-2517
    [126].郑喜砷,鲁安怀,高翔.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84
    [127].张学旬,吴燕玉,陈涛,等.张士灌区镉、铅等重金属迁移分布规律及其治理途径[J].环境科学.1982,6(3):7-9
    [128].郑袁明,陈同斌,陈煌,等.北京市不同土地利用方式下土壤铅的积累特征[J].地理学报,2005,60(5):791-797
    [129].左倬,王金凤,由文辉.上海城市不同绿地类型土壤重金属污染研究[J].生态科学,2008,27(1):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700