用户名: 密码: 验证码:
NaZn_(13)型和Ce6_Ni_2Si_3型稀土-过渡族化合物的磁性和磁热效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了NaZn_(13)型La(Fe, M)_(13) ( M=Si,Al )基化合物和Ce6Ni2Si3型(Tb_(1-x)Dy_x)_6Co_(1.67)Si_3化合物的磁性和磁熵变,得到的主要结果有:
     1、利用磁测量和中子衍射的方法研究了La_(0.6)Pr_(0.4)Fe_(11.5)Si_(1.5)化合物的结构、磁性和磁热效应。结果表明,由于La_(0.6)Pr_(0.4)Fe_(11.5)Si_(1.5)化合物在居里温度附近存在~1.1 K的两相共存区,导致利用Maxwell关系计算所得磁熵变出现明显的尖峰。在居里温度以上发生磁场诱导的从顺磁态到铁磁态的变磁转变,变磁转变的临界磁场随温度的升高而升高。
     2、研究了La_(0.5)Pr_(0.5)Fe_(11.5-x)Co_xSi_(1.5)C_(0.2) (x=0, 0.2, 0.4, 0.6和0.8)化合物的磁性和磁熵变。结果表明,Co对Fe的替代可使居里温度明显升高,消除了磁滞后,但磁熵变明显降低。
     3、研究了La_(0.5)Pr_(0.5)Fe_(11.4)Si_(1.6)H_x(x=0, 0.9, 1.6)间隙化合物的结构、磁性和磁熵变。结果表明,氢原子的引入可调节居里温度至室温附近,可使变磁转变减弱,热滞后和磁滞后均明显减小,保持了大磁熵变和高制冷能力的特性。
     4、利用固-固反应和气-固反应制备了La_(0.7)Pr_(0.3)Fe_(11.5)Si_(1.5)C_(0.2)H_x间隙化合物。研究了该化合物的磁性、磁滞后、磁熵变和制冷能力。结果表明,少量间隙碳的引入使磁滞损耗明显降低,磁熵变略有降低。间隙氢原子的引入可以调节居里温度至~320 K,基本消除热滞后和磁滞后,且保持了大磁熵变的特性。此外,少量碳的引入有利于间隙氢化物的制备,提高了氢化物的机械性能和热稳定性。
     5、利用气-固反应制备了LaFe_(11.5)Al_(1.5)H_x和LaFe_(11.5)Al_(1.5_C_(0.2)H_x间隙氢化物,研究了它们的磁性和磁熵变。结果表明,当x=1.3时,LaFe_(11.5)Al_(1.5)H_x化合物的居里温度达到295K,具有明显的二级相变特征,在0-5T磁场变化下,最大磁熵变和制冷能力分别达到12.3 J·kg~(-1) K~(-1)和387 J·kg~(-1)。LaFe_(11.5)Al_(1.5)C_(0.2)H_(1.0)化合物在0-5 T磁场变化下的最大磁熵变为_(13).8 J·kg~(-1)·K~(-1),比金属Gd高出~ 40%,并在623 K以下仍能保持良好的热稳定性。
     6、合成了(Tb_(1-x)Dy-x)_6Co_(1.67)Si_3(x=0, 0.2, 0.4, 0.6, 0.8)化合物,分析了Dy替代Tb对磁性和磁熵变的影响。结果表明,(Tb_(1-x)Dy_x)_6Co_(1.67)Si_3化合物存在多个相变(TC、TSR、T1和T2),随着Dy含量的增加,居里温度线性降低,磁熵变略有减小。替代前后,均具有很高的制冷能力,具有很大的应用潜力。
The structure, magnetism, magnetic transition, magnetic entropy change, magnetic hysteresis, and refrigeration capacity of La(Fe,M)_(13) (M=Si,Al) and (Tb_(1-x)Dy_x_6Co_(1.67)Si_3 compounds, were systematically studied in present paper. The main results are as follows:
     1. The structure, magnetism, and magnetic entropy change of La_(0.6)Pr_(0.4)Fe_(11.5)Si_(1.5) compound were studied utilizing magnetic measurement and neutron diffraction method. It is found that the coexistent phase area about 1.1K for Pr_(0.4)La_(0.6)Fe_(11.5)Si_(1.5), measured with temperature cooling or heating, results in the false peak of magnetic entropy. The magnetic field induced metamagnetic transition takes place above Curie temperature. And the critical field grows up with increasing temperature.
     2. The substitution of Co for Fe strengthens the exchange interaction among T-T in La_(0.5)Pr_(0.5)Fe_(11.5-x)Co_xSi_(1.5)C_(0.2) compounds, and leads to the Curie temperature increasing obviously. Large magnetic entropy and efficient refrigeration capacity are retained. A little bit of Co can eliminate the magnetic hysteresis and drive the magnetic phase transition from first-order to second-order.
     3. Magnetic properties and magnetic entropy changes have been investigated in La_(0.5)Pr_(0.5)Fe_(11.4)Si_(1.6)H_x (x=0, 0.9, 1.6) hydrides. It is found that the Curie temperature can be tuned to room temperature by adjusting hydrogen content. It is attractive that both thermal and magnetic hysteresis are remarkably reduced because of the weakness of the itinerant-electron metamagnetic transition after hydrogenation, while the large magnetic entropy change and considerable RC are retained.
     4. La_(0.7)Pr_(0.3)Fe_(11.5)Si_(1.5)C_(0.2)H_x (x=0, 0.6, 1.2) compounds were successfully prepared by solid-solid and gas-solid phase reactions. The structure, magnetism, magnetic entropy change, magnetic hysteresis, and refrigeration capacity of La_(0.7)Pr_(0.3)Fe_(11.5_Si_(1.5)C_(0.2)H_x were studied. It is found that small content carbon introducing can not sacrifice the large magnetic entropy, while the maximal hysteresis loss at TC decreases remarkably. The Curie temperature TC can be tuned to ~320 K by the following introduction of interstitial hydrogen. It is attractive that both thermal and magnetic hysteresis are eliminated after hydrogenation,while the large magnetic entropy change is retained. Moreover, the introduction of a small content of carbon is benefit to the following preparation of hydride and improved the mechanical performance and the thermostability.
     5. The LaFe_(11.5)Al_(1.5)H_x and LaFe_(11.5)Al_(1.5)C_(0.2)H_x compounds were prepared by gas-solid phase reaction, and the magnetism and magnetic entropy change were well studied. The Curie temperature TC can be tuned to 295 K for LaFe_(11.5)Al_(1.5)H_x compounds by the introduction of interstitial hydrogen (x=1.3). It is obvious that LaFe_(11.5)Al_(1.5)H_(1.3) compound shows the second-order transition feature. The maximal values of -ΔS for LaFe_(11.5)Al_(1.5)H_(1.3) compound is 12.3 J·kg~(-1) K~(-1) at TC for a field change of 0-5 T. The maximal values of -ΔS for LaFe_(11.5)Al_(1.5)C_(0.2)H_(1.0) compound is _(13).8 J·kg~(-1) K~(-1) at TC for a field change of 0-5 T, which is ~ 40% higher than that of Gd. Moreover, the LaFe_(11.5)Al_(1.5)C_(0.2)H_(1.0) compound is stable even at 623 K.
     6. The magnetic and magnetocaloric properties of (Tb_(1-x)Dy_x)_6Co_(1.67)Si_3 (x=0, 0.2, 0.4, 0.6, and 0.8) have been experimentally investigated. The compounds undergo multiple second-order magnetic transitions. The Curie temperature decreases linearly as the content of Dy grows from 0 to 0.8. The maximal magnetic entropy change slightly decreases when Dy is introduced. Large refrigeration capacity (RC) value are achieved for (Tb_(1-x)Dy_x)_6Co_(1.67)Si_3 (x=0, 0.2, 0.4, 0.6, 0.8) compounds under a field change of 0-5 T, which is benefit for application.
引文
[1] Phan MH, and Yu SC, Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 325-340.
    [2] Warburg E, Untersuchungen M, Magnetische Untersuchungen. Annual Physics, 1881, 13: 141-164.
    [3] Tishin AM, Handbook of Magnetic Materials. edited by Buschow KHJ. Amsterdam: Elsevier,1999, vol. 12: 395-524.
    [4] Oesterreicher H, Parker FT, Magnetic cooling near Curie temperatures above 300 K. Journal Applied Physics, 1984, 55: 4334-4338.
    [5] Gschneidner KA, Pecharsky VK, Tsokol AO, Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479-1539.
    [6] Langevin P. Magnetism and theory of electrons. Ann Chim Phys, 1905, 5: 70-127.
    [7] Debye P, Some observations on magnetisation at a low temperature. Ann. Phys., 1926, 81: 1154-1160.
    [8] Giauque WF, A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1°absolute. Journal of the American Chemistry Society, 1927, 49: 1864-1870.
    [9] Giauque WF, MacDougall DP, Attainment of temperatures below 1 degrees absolute by demagnetization of Gd2(SO4)3.8H2O. Physical Review, 1933, 43: 768-768.
    [10] Barclay JA,. Steyert WA, Materials for Magnetic Refrigeration between 2 K and 20 K, Cryogenics, 1982, 22: 73-80.
    [11] Shull RD, Magnetocaloric Effect of Ferromagnetic Particles, IEEE Trans. Magn, 1993, 29: 2614-2615.
    [12] Mcmichael RD, Ritter JJ, Shull RD, Enhanced Magnetocaloric Effect in Gd3Ga5-xFexO12 Journal of Applied Physics, 1993, 73: 6946-6948.
    [13] Levitin RZ, Snegirev VV, Kopylov AV, et al. Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields, Journal of Magnetism and Magnetic Materials, 1997, 170: 223-227.
    [14] Dipirro M, Tuttle J, Jackson M,et al. Progress on a 4 K to 10 K continuously operating adiabatic demagnetization refrigerator, Advances in Cryogenic Engineering, 2006, Vols 51A and B 823: 969-976.
    [15] Brown GV. Magnetic heat pumping near room temperature. Journal of Applied Physics, 1976, 47: 3673-3680.
    [16] Pecharsky VK, Gschneidner KA, Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 1997, 78(23): 4494-4497.
    [17] Liu GJ, Sun JR, Jia L, et al., Entropy changes due to the first-order phase transition in the Gd5SixGe4-x system. Applied Physics Letters, 2006, 88: 212505.
    [18] Provenzano V, Shapiro AJ, and Shull RD, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron (vol 429, pg 853, 2004). Nature, 2005, 435(7041): 528-528.
    [19] Long Y, Chen YP, Li LH, et al., Magnetocaloric effect in Gd5Si1.85Ge2.15 prepared by Gd metal with lower purity. Chinese Science Bulletin, 2003, 48(17): 1791-1793.
    [20] Pecharsky AO, Gschneidner KA, and Pecharsky VK, The giant magnetocaloric effect ofoptimally prepared Gd5Si2Ge2. Journal of Applied Physics, 2003, 93(8): 4722-4728.
    [21] Pecharsky VK and Gschneidner KA, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from similar to 20 to similar to 290 K. Applied Physics Letters, 1997, 70(24): 3299-3301.
    [22] Morellon L, Algarabel PA, Ibarra MR, et al., Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2). Physical Review B, 1998, 58(22): 14721-14724.
    [23] Morellon L, Blasco J, Algarabel PA, et al., Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compounds Gd5(SixGe1-x)4. Physical Review B, 2000, 62(2): 1022-1026.
    [24] Morellon L, Stankiewicz J, Garcia-Landa B, Algarabel PA, et al., Giant magnetoresistance near the magnetostructural transition in Gd5(Si1.8Ge2.2). Applied Physics Letters, 1998, 73: 3462-3464.
    [25] Levin EM, Pecharsky VK, and Gschneidner KA, Magnetic-field and temperature dependencies of the electrical resistance near the magnetic and crystallographic first-order phase transition of Gd5(Si2Ge2). Physical Review B, 1999, 60: 7993-7997.
    [26] Levin EM, Pecharsky VK, Gschneidner KA, et al., Magnetic field and temperature-induced first-order transition in Gd5(Si1.5Ge2.5): a study of the electrical resistance behavior. Journal of Magnetism and Magnetic Materials, 2000, 210: 181-188.
    [27] Tocado L, Palacios E, Burriel, R. Adiabatic measurement of the giant magnetocaloric effect in MnAs. in 7th Mediterranean Conference on Calorimetry and Thermal Analysis. 2005, Thessaloniki, Greece.
    [28] Wada H, Morikawa T, Taniguchi K, et al., Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition. Physica B: Condensed Matter, 2003, 328: 114-116.
    [29] Wada H, Tanabe Y, Giant magnetocaloric effect of MnAs1-xSbx. Applied Physics Letters, 2001, 79(20): 3302-3304.
    [30] Tegus O, Bruck E, Buschow KHJ, et al., Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002, 415(6868): 150-152.
    [31] Tegus O, Bruck E, Zhang L, et al., Magnetic-phase transitions and magnetocaloric effects. Physica B, 2002, 319(1-4): 174-192.
    [32] Tegus O, Fuquan B, Dagula W, et al., Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex. Journal of Alloys and Compounds, 2005, 396(1-2): 6-9.
    [33] Dagula W, Tegus O, Li XW, et al., Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5-xSix(x=0-0.3) compounds. Journal of Applied Physics, 2006, 99(8): 08q105.
    [34] Thanh DTC, Bruck E, Tegus O, et al., Magnetocaloric effect in MnFe(P,Si,Ge) compounds. Journal of Applied Physics, 2006, 99(8): 08q107.
    [35] Yan A, Muller KH, Schultz L, et al., Magnetic entropy change in melt-spun MnFePGe (invited). Journal of Applied Physics, 2006, 99(8): 08k903.
    [36] Liu DM, Yue M, Zhang JX, et al., Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn1.1Fe0.9(P0.8Ge0.2). Physical Review B, 2009, 79(1): 014435.
    [37] Hu FX, Shen BG, and Sun JR, Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Applied Physics Letters, 2000, 76: 3460-3462.
    [38] Hu FX, Shen BG, Sun, JR, et al., Large magnetic entropy change in a Heusler alloyNi52.6Mn23.1Ga24.3 single crystal. Physical Review B, 2001, 64: 132412.
    [39] Krenke, T, Duman, E, Acet, M, et al., Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nature Material, 2005, 4: 450-454.
    [40] Liu J, Scheerbaum N, Lyubina J, et al., Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co. Applied Physics Letters, 2008, 93(10): 102512.
    [41] Goodenough JB, ed. Handbook on the Physics and Chemistry of Rare Earths. ed. K.A. Gschneider Amesterdam: Elsevier, 2003, Vol. 33.
    [42] Zhang XX, Tejada J, Xin Y, et al., Magnetocaloric effect in La0.67Ca0.33Mnδand La0.60Y0.07Ca0.33MnOδbulk materials. Applied Physics Letters, 1996, 69(23): 3596-3598.
    [43] Guo ZB, Du YW, Zhu JS, et al., Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides. Physical Review Letters, 1997, 78: 1142-1145.
    [44] Guo ZB, Zhang JR, Huang H, et al., Large magnetic entropy change in La0.75Ca0.25MnO3. Applied Physics Letters, 1997, 70: 904-906.
    [45] Buschow KHJ, Intermetallic compounds of rare-earth and 3d transition metals. Reports on Progress in Physics, 1977, 40: 1179-1185.
    [46] Palstra TTM, Nieuwenhuys GJ, Mydosh JA, et al., Mictomagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1-x)13 intermetallic compounds. Physical Review B, 1985, 31: 4622-4632.
    [47]胡凤霞.铁基La(Fe,M)13化合物和Ni-Mn-Ga合金的磁性和磁熵变:[博士学位论文].北京:中国科学院研究生院,2001.
    [48]沈俊. 2:17型和1:13型稀土-铁基金属间化合物的结构、磁性和磁熵变:[硕士学位论文].天津:河北工业大学,2004.
    [49] Shiga M, in Materials Science and Technology, edited by R. W. Cahn, P. Haasen, and E. J. Kramer, Electronic and Magnetic Properties of Metals and Ceramics, 1993, 3B-II: Chap. 10.
    [50] Shen BG, Sun JR, Hu FX, et al., Recent Progress in Exploring Magnetocaloric Materials. Advanced Materials, 2009, 21: 4545-4564.
    [51] Jia L, Sun JR, Wang FW, et al., Volume dependence of the magnetic coupling in LaFe13-xSix based compounds. Applied Physics Letters, 2008, 92(10): 101904.
    [52] Fujita A, Akamatsu Y, Fukamichi K, Itinerant electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds. Journal of Applied Physics, 1999, 85: 4756-4758.
    [53] Fujita A, Fujieda S, Fukamichi K, et al., Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1-x)13 compounds. Physical Review B, 2001, 65(1): 014410.
    [54] Fujita A, Fukamichi K, Wang JT, et al., Large magnetovolume effects and band structure of itinerant-electron metamagnetic La(FexSi1-x)13 compounds. Physical Review B, 2003, 68(10): 104431.
    [55] Liu Y, Sellmyer DJ, Shindo D, eds. Handbook of Advanced magnetic Materials. Vol. Volume II. 2006, Springer: Tsinghua University Press.
    [56] Hu FX, Shen BG, Sun JR, et al., Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co doping. Chinese Physics, 2000, 9(7): 550-553.
    [57] Hu FX, Qian XL, Sun JR, et al., Magnetic entropy change and its temperature variation incompounds La(Fe1-xCo x) 11.2Si1.8. Journal of Applied Physics, 2002, 92(7): 3620-3623.
    [58] Hu FX, Shen BG, Sun JR, et al., Very large magnetic entropy change near room temperature in LaFe 11.2Co0.7Si1.1. Applied Physics Letters, 2002, 80(5): 826-828.
    [59] Shen J, Gao B, Yan LQ, et al., Magnetic properties and magnetic entropy changes of La1-xPrxFe11.5Si1.5 compounds with 0 <= x <= 0.5. Chinese Physics, 2007, 16(12): 3848-3852.
    [60] Shen J, Li YX, Dong QY, et al., Magnetocaloric properties of the La0.7Pr0.3Fe13-xSix compounds. Journal of Magnetism and Magnetic Materials, 2009, 321(15): 2336-2339.
    [61]沈俊. NaZn13型和Ce6Ni2Si3型稀土-过渡族化合物及尖晶石结构CdCr2S4的磁性和磁热效应:[博士学位论文].天津:河北工业大学,2008.
    [62] Fujita A, Fujieda S, Fukamichi K, et al., Giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)13Hy compounds. Materials Transactions, 2002, 43(5): 1202-1204.
    [63] Chen YF, Wang F, Shen BG, et al., Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound. Chinese Physics, 2002, 11(7): 741-744.
    [64] Fujita A, Fujieda S, Hasegawa Y, et al., Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Physical Review B, 2003, 67(10): 104416.
    [65] Chen YF, Wang F, Shen BG, et al., Magnetism and magnetic entropy change of LaFe11.6Si1.4Cx (x=0-0.6) interstitial compounds. Journal of Applied Physics, 2003, 93(2): 1323-1325.
    [66] Chen YF, Wang F, Shen BG, et al., Effects of carbon on magnetic properties and magnetic entropy change of the LaFe11.5Si1.5 compound. Journal of Applied Physics, 2003, 93(10): 6981-6983.
    [67]陈远富. La(Fe, M)13间隙氢(氮、碳)化物的结构、磁性和磁熵变:[博士后研究工作报告].北京:中国科学院物理研究所,2003.
    [68]贾琳.典型磁制冷材料的磁热效应及相关问题研究:[博士学位论文].北京:中国科学院研究生院,2008.
    [69] Shen J, Dong QY, Li YX, et al., Effect of Pr and Co substitution on magnetic properties and magnetic entropy changes in LaFe13-xSix compounds. Journal of Alloys and Compounds, 2008, 458(1-2): 115-118.
    [70] Shen J, Gao B, Dong QY, et al., Magnetocaloric effect in La1-xPrxFe10.7Co0.8Si1.5 compounds near room temperature. Journal of Physics D-Applied Physics, 2008, 41(24): 245005.
    [71] Shen J, Gao B, Zhang HW, et al., Reduction of hysteresis loss and large magnetic entropy change in the NaZn13-type LaPrFeSiC interstitial compounds. Applied Physics Letters, 2007, 91(14): 142504.
    [72] Helmholdt RB, Palstra TTM, Nieuwenhuys GJ,et al., Magnetic properties of La(FexAl1-x)13 determined via neutron scattering and M?ssbauer spectroscopy. Physical Review B, 1986, 34: 169-173.
    [73] Palstra TTM, Mydosh JA, Nieuwenhuys GJ, et al., Study of the critical-behavior of the magnetization and electrical-resistivity in cubin La(Fe,Si)13 compounds. Journal of Magnetism and Magnetic Materials, 1983, 36(3): 290-296.
    [74] Palstra TTM, Werij HGC, Nieuwenhuys GJ, et al., metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic compounds. Journal of Physics F-Metal Physics, 1984, 14(8): 1961-1966.
    [75] Hu FX, Shen BG, Sun JR, et al., Magnetic entropy change in La(Fe0.98Co0.02)11.7Al1.3. Journal of Physics-Condensed Matter, 2000, 12(46): L691-L696.
    [76] Hu FX, Shen BG, Sun JR, et al., Large magnetic entropy change in La(Fe,Co)11.83Al1.17. Physical Review B, 2001, 64(1): 012409.
    [77] Hu FX, Qian XL, Sun JR, et al., Magnetic entropy change and its temperature variation in compounds La(Fe1-xCox)11.2Si1.8. Journal of Applied Physics, 2002, 92(7): 3620-3623.
    [78] Hu FX, Shen BG, Sun JR, et al., Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1. Applied Physics Letters, 2002, 80(5): 826-828.
    [79] Wang F, Wang GJ, Sun JR, et al., Magnetic properties and magnetocaloric effect in NdxLa1-xFe11.5Al1.5 compounds. Chinese Physics B, 2008, 17(8): 3087-3092.
    [80]王芳. NaZn13型La(Fe,M)13化合物的磁性和磁热效应:[博士学位论文].北京:中国科学院研究生院,2005.
    [81] Wang F, Chen YF, Wang GJ, et al., Magnetism and magnetic entropy change in LaFe11Al2Cx compounds around room temperature. Chinese Physics, 2004, 13(3): 393-396.
    [82] Wang F, Chen YF, Wang GJ, et al., The large magnetic entropy change and the change in the magnetic ground state of the antiferromagnetic compound LaFe11.5Al1.5 caused by carbonization. Journal of Physics-Condensed Matter, 2004, 16(12): 2103-2108.
    [83] Bodak OI, Gladyshe EI., Kharchen OI, Crystal-Structure of Ce6Ni2Si3 and Related Compounds. Kristallografiya, 1974, 19(1): 80-83.
    [84] Chevalier B, Gaudin E, Weill F, The new ternary silicides RE6Co1.67Si3 (RE=Ce, Nd, Gd, Tb, Dy) investigated by X-ray diffraction and magnetization measurements. Journal of Alloys and Compounds, 2007, 442(1-2): 149-151.
    [85] Gaudin E and Chevalier B, On the structural and magnetic properties of the ternary silicides Ce6M1.67Si3 (M=Co, Ni) and Ce5Ni1.85Si3. Journal of Solid State Chemistry, 2007, 180: 1397-1409.
    [86] Gaudin E, Weill F, Chevalier B, Structural, magnetic and electrical properties of the ternary silicide Gd6Co1.67Si3 derived from the hexagonal Ho4Co3.07 (or Ho6Co4.61) type structure. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 2006, 61(7):825-832
    [87] Tence S, Gaudin E, Andre G, et al., Multi-magnetic phases in the ferromagnetic ternary silicides Nd6Co1.67Si3 and Tb6Co1.67Si3. Journal of Physics D: Applied Physics, 2009, 42(16): 165003.
    [88] Mohapatra RN, Jammalamadaka SN, and Das DD, et al., Magnetic anomalies in Nd6Co1.67Si3: A first-order transition in the low-temperature isothermal magnetization behavior. Physical Review B, 2008, 78(5): 054442
    [89] Janssen Y, Dennis KW, Prozorov R, et al., Exotic (anti)ferromagnetism in single crystals of Pr6Ni2Si3. Physical Review B, 2008, 77(21): 214407.
    [90] Shen J, Wang F, Li YX, et al., Magnetic properties and magnetocaloric effects in Tb6Co1.67Si3 compound. Chinese Physics, 2007, 16(12): 3853-3857.
    [91] Shen J, Li YX, Dong QY, et al., Magnetocaloric effect in Gd6Co1.67Si3 compound with a second-order phase transition. Chinese Physics B, 2008, 17(6): 2268-2271.
    [92] Shen J. Wang F. Li YX. et al., Magnetocaloric effect in Pr6Co1.67Si3 compound. Journal of Alloys and Compounds, 2008, 458(1-2): L6-L8.
    [93] Jammalamadaka SN, Mohapatra N, Das D, et al., Magnetic anomalies in Gd6Co1.67Si3 andTb6Co1.67Si3. Journal of Physics-Condensed Matter, 2008, 20(42): 425204.
    [94] Shen J. Li YX, and Sun JR. Magnetic properties and magnetocaloric effects in R6Co2Si3 compounds with R =Nd and Tb. Journal of Alloys and Compounds, 2009, 476: 693-696
    [95] Shen J, Wu JF, and Sun JR, Room-temperature large refrigerant capacity of Gd6Co2Si3. Journal of Applied Physics, 2009, 106: 083912.
    [96] Gaudin E. Sophie T, Fran?ois W, et al, Structural and Magnetocaloric Properties of the New Ternary Silicides Gd6M5/3Si3 with M = Co and Ni. Chemistry of Materials, 2008, 20: 2972-2979.
    [97] Coehoorn R,. Buschow KHJ, Dirken MW, et al., Valence-electron contributions to the electric-field gradient in hcp metals and at Gd nuclei in intermetallic compounds with the ThCr2Si2 structure. Physical Review B, 1990, 42: 4645-4655.
    [98]梁敬魁.《相图与相结构》.北京:科学出版社,1993: 1-30
    [99]周公度.《晶体结构测量》.北京:科学出版社,1982: 91-99
    [100]戴道生,钱昆明.《铁磁学》.北京:科学出版社1992: 53-64
    [101] Navarathna A, Hegde H, Rani R, et al., High anisotropy Nd(Fe,T)12Nx, T=Ti, Mo, films and disordered RE(Fe,Ti) phases before and after nitriding. Journal of Applied Physics, 1993, 73: 6242-6244.
    [102] Wang JL, Zhao RW, Tang N, et al., Magnetic properties of R2Fe17-xGax compounds (R=Y, Ho). Journal of Applied Physics, 1994, 76: 6740.
    [103] Yang YC, Pan Q, Zhang XD, et al., Magnetic properties of R2Fe17CNx. Journal of Applied Physics, 1992, 72: 2989-2992.
    [104] Kong LS, Cao L, and Shen BG, Structures and magnetic properties of the nitrides (Nd1-xDyx)TiFe11Ny. Journal of Magnetism and Magnetic Materials, 1993, 124: 301-304.
    [105] Huang H, Guo ZB, Zhang JR, et al., Large magnetic entropy change in perovskite La0.67-xGdxCa0.33MnO3 Chinese Physics Letter, 1997, 10: 786-788.
    [106] Pecharsky, VK and Gschneidner, KA, Magnetocaloric effect from indirect measurements: Magnetization and heat capacity. Journal of Applied Physics, 1999, 86(1): 565-575.
    [107] Roy SB, Chattopadhyay, MK, Manekar, MA, et al. First order magneto-structural transition in functional magnetic materials: phase-coexistence and metastability. in 1st Indo-Singapore Symposium on Advanced Functional Materials. 2006, Bombay, INDIA.
    [108] Liu GJ, Sun JR, Shen J, et al., Determination of the entropy changes in the compounds with a first-order magnetic transition. Applied Physics Letters, 2007, 90(3): 032507.
    [109] Liu XB and Altounian Z, Effect of Co content on magnetic entropy change and structure of La(Fe1-xCox)11.4Si1.6. Journal of Magnetism and Magnetic Materials, 2003, 264(2-3): 209-213.
    [110] Yamada H and Goto T, Itinerant-electron metamagnetism and giant magnetocaloric effect. Physical Review B, 2003, 68(18): 184417
    [111] Dong QY, Zhang HW, Zhao TY, et al., Realization of a small hysteresis loss and a large magnetic entropy change in NaZn13-type La-Fe-Si compound. Solid State Communications, 2008, 147(7-8): 266-270.
    [112] Shen J, Li YX, Zhang J, et al. Large magnetic entropy change and low hysteresis loss in the Nd- and Co-doped La(Fe,Si)13 compounds. Journal of Applied Physics, 2007, 103: 07B317.
    [113] Fujieda S, Fujita A, Fukamichi K, et al., Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds. Applied Physics Letters, 2001, 79(5): 653-655.
    [114] Fukamichi K, Fujita A, and Fujieda S. Control of magnetocaloric effects by hydrogen absorption into La(FexSi1-x)(13) magnetic refrigerants. in 2nd Symposium on Advanced Materials for Energy Conversion held at the 2004 TMS Annual Meeting. 2004, Charlotte, NC.
    [115] Fujita A and Fukamichi K, Control of large magnetocaloric effects in metamagnetic La(FexSi1-x)13 compounds by hydrogenation. Journal of Alloys and Compounds, 2005, 404-406: 554-558.
    [116] Goto T, Fukamichi K, and Yamada H, Itinerant electron metamagnetism and peculiar magnetic properties observed in 3d and 5f intermetallics. Physica B: Condensed Matter, 2001, 300(1-4): 167-185.
    [117] Zou JD, Shen BG, Gao B, et al., The Magnetocaloric Effect of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and Ni43Mn46Sn11 Compounds in the Vicinity of the First-Order Phase Transition. Advanced Materials, 2009, 21(6): 693-696.
    [118] Givord D and Lemaire R, Magnetic transition and anomalous thermal expansion in R2Fe17compounds. IEEE Transactions on Magnetics, 1974, 0(2): 109-113
    [119] Liu XB, Ryan DH, and Altounian Z, The order of magnetic phase transition in La(Fe1-xCox)11.4Si1.6 compounds. Journal of Magnetism and Magnetic Materials, 2004, 270(3): 305-311.
    [120] Shimizu M, Itinerant electron magnetism. Reports on Progress in Physics, 1981, 44(4): p. 329-409.
    [121] Shen J, Dong QY, Li YX, et al., Effect of Pr and Co substitution on magnetic properties and magnetic entropy changes in LaFe13-xSix compounds. Journal of Alloys and Compounds, 2008, 458(1-2): 115-118.
    [122] Li ZW and Morrish AH, Negative exchange interactions and Curie temperatures for Sm2Fe17sand Sm2Fe17Nys. Physical Review B, 1997, 55(6): 3670-3676.
    [123].Gschneidner KA Jr, Pecharsky VK, Pecharsky AO, et al., Recent developments in magnetic refrigeration. Materials Science Forum, 1999, 315: 69-76
    [124] Sharma VK, Chattopadhyay MK, and Roy SB, Large inverse magnetocaloric effect in Ni50Mn34In16. Journal of Physics D-Applied Physics, 2007, 40(7): 1869-1873.
    [125] Balli M, Fruchart D, and Gignoux D, Optimization of La(Fe,Co)13-xSix based compounds for magnetic refrigeration. Journal of Physics-Condensed Matter, 2007, 19(23): 236230.
    [126] Balli M, Fruchart D, and Gignoux D, The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature. Applied Physics Letters, 2008, 92(23): 232505.
    [127] Fujieda S, Fujita A, and Fukamichi K, Enhancement of magnetocaloric effects in La1-zPrz(Fe0.88Si0.12)13 and their hydrides. Journal of Applied Physics, 2007, 102(2): 023907.
    [128] Chen YF, Wang F, Shen BG, et al., Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds. Journal of Physics-Condensed Matter, 2003, 15(7): L161-L167.
    [129] Wang F, Chen YF, Wang GJ, et al., Large magnetic entropy change and magnetic properties in La(Fe1-xMnx)11.7Si1.3Hy compounds. Chinese Physics, 2003, 12(8): 911-914.
    [130] Li JQ, Liu FS, Ao WQ, et al. Influence of carbon on the giant magnetocaloric effect of LaFe11.7Si1.3. Rare Metals, 2006, 25: 556-561.
    [131] Zhang HW, Chen J, Liu GJ, et al., Magnetic phase in LaFe11.4Al1.6 with very low interstitial carbon content. Physical Review B, 2006, 74(21): 212408.
    [132] Mandal K, Pal D, Gutfleisch O, et al., Magnetocaloric effect in reactively-milled LaFe11.57Si1.43Hy intermetallic compounds. Journal of Applied Physics, 2007, 102(5): 053906.
    [133] Balli M, Fruchart D, and Gignoux D, The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature. Applied Physics Letters, 2008, 92(23): 232505.
    [134] Li F, Song L, Bao LH, et al., Magnetocaloric effect of LaFe11.9-xCoxSi1.1B0.2 (x=0.7, 0.8, 0.9) alloys. Acta Metallurgica Sinica, 2008, 44(3): 371-374.
    [135] Lyubina J, Nenkov K, Schultz L, et al., Multiple Metamagnetic Transitions in the Magnetic Refrigerant La(Fe, Si)13Hx. Physical Review Letters, 2008, 101(17): 177203.
    [136] Fujieda S, Fujita A, and Fukamichi K, Strong Pressure Effect on the Curie Temperature of Itinerant-Electron Metamagnetic La(Fe0.88Si0.12)13Hy and La0.7Ce0.3(Fe0.88Si0.12)13Hy. Materials Transactions, 2009, 50(3): 483-486.
    [137] Chattopadhyay MK, Sharma VK, and Roy SB, Thermomagnetic history dependence of magnetocaloric effect in Ni50Mn34In16. Applied Physics Letters, 2008, 92(2): 022503.
    [138] Gschneidner KA and Pecharsky VK, Thirty years of near room temperature magnetic cooling: Where we are today and future prospects. International Journal of Refrigeration-Revue Internationale Du Froid, 2008, 31(6): 945-961.
    [139] Gschneidner KA, The magnetocaloric effect, magnetic refrigeration and ductile intermetallic compounds. Acta Materialia, 2009, 57(1): 18-28.
    [140] Hu FX, Shen BG, Sun JR, et al., Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Applied Physics Letters, 2001, 78(23): 3675-3677.
    [141] Hu FX, Gao J, Qian XL, et al. Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCox)11.9Si1.1. in 49th Annual Conference on Magnetism and Magnetic Materials. 2005, Jacksonville, Florida (USA): AIP.
    [142] Liu XB, Liu XD, and Altounian Z, Phase formation and magnetocaloric effect in rapidly quenched La(Fe1-xCox)11.4Si1.6. Journal of Applied Physics, 2005, 98(11): 113904.
    [143] Saito AT, Kobayashi, T, and Tsuji H, Magnetocaloric effect of new spherical magnetic refrigerant particles of La(Fe1-x-yCoxSiy)(13) compounds. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2808-2810.
    [144] Yan A, Muller KH, and Gutfleisch O, Magnetocaloric effect in LaFe11.8-xCoxSi1.2 melt-spun ribbons. Journal of Alloys and Compounds, 2008, 450(1-2): 18-21.
    [145] Zhang H, Bao B, Shi PJ, et al., Phase formation with NaZn13 structure in metamagnetic La(Fe1-xCox)11.9Si1.1 compounds. Journal of Rare Earths, 2008, 26(5): 727-730.
    [146] Anh DTKim, Thuy NP, Duc NH, et al., Magnetism and magnetocaloric effect in La1-yNdy(Fe0.88Si0.12)13 compounds. Journal of Magnetism and Magnetic Materials, 2003, 262(3): 427-431.
    [147] Fujieda S, Fujita A, and Fukamichi K, Enhancements of magnetocaloric effects in La(Fe0.90Si0.10)13 and its hydride by partial substitution of Ce for La. Materials Transactions, 2004, 45(11): 3228-3231.
    [148] Fujieda S, Fujita A, Fukamichi K, et al. Large magnetocaloric effects enhanced bypartial substitution of Ce for La in La(Fe0.88Si0.12)13 compound. in Rare Earths 2004 Conference. 2004, Nara, JAPAN.
    [149] Zhu YM, Xie K, Song XP, et al., Magnetic phase transition and magnetic entropy change in melt-spun La1-xNdxFe11.5Si1.5 ribbons. Journal of Alloys and Compounds, 2005, 392(1-2): 20-23.
    [150] Fujieda S, Fujita A, Fukamichi K, et al., Large magnetocaloric effects enhanced by partial substitution of Ce for La in La(Fe0.88Si0.12)13 compound. Journal of Alloys and Compounds, 2006, 408-412: 1165-1168.
    [151] Fujieda S, Fujita A, Kawamoto N, et al., Strong magnetocaloric effects in La1-zCez(Fex-yMnySi1-x)13 at low temperatures. Applied Physics Letters, 2006, 89(6): 062504.
    [152] Fujita A, Fujieda S, and Fukamichi K, Influence of partial substitution of Ce on the Curie temperature and magnetic entropy change in itinerant-electron metamagnetic La(FexSi1-x)13 compounds. Journal of Applied Physics, 2006, 99(8): 08k910.
    [153] Balli M, Fruchart D, Gignoux D, et al., Magnetic and magnetocaloric properties of La1-xErxFe11.44Si1.56 compounds. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 43-46.
    [154] Fujieda S, Fujita A, and Fukamichi K. Enhancement of magnetocaloric effects in single phase La1-zNdz(Fe0.88Si0.12)13. in 6th Pacific Rim International Conference on Advanced Materials and Processing. 2007, Cheju Isl, South Korea.
    [155] Passamani EC, Takeuchi AY, Alves AL, et al., Magnetocaloric properties of (La,RE)Fe11.4Si1.6 compounds (RE=Y,Gd). Journal of Applied Physics, 2007, 102(9): 093906.
    [156] Fujieda S, Fujita A, and Fukamichi K, Reduction of Hysteresis Loss in Itinerant-Electron Metamagnetic Transition of La1-zCez(FexMnySi1-x-y)(13) Magnetic Refrigerants at Low Temperatures. Materials Transactions, 2008, 49(9): 1994-1997.
    [157] Jia L, Sun JR, Shen J, et al., Magnetic coupling between rare-earth and iron atoms in the La1-xRxFe11.5Si1.5 (R=Ce, Pr, and Nd) intermetallics. Applied Physics Letters, 2008, 92(18): 182503.
    [158] Demuner AS, Takeuchi AY, Passamani EC, et al., Magnetocaloric properties of the (La-Gd) Fe11.4Si1.6 metamagnetic compound. Journal of Magnetism and Magnetic Materials, 2009, 321(12): 1809-1813.
    [159] Shen J, Li YX, Sun JR, et al., Effect of R substitution on magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 compounds with R=Ce, Pr and Nd. Chinese Physics B, 2009, 18(5): 2058-2062.
    [160] Balli M, Rosca M, Fruchart D, et al., Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound. Journal of Magnetism and Magnetic Materials, 2009, 321(2): 123-125.
    [161] Chiang TH, Matsubara E, Kataoka N, et al., Atomic structures and the mossbauer-effect in amorphous La(FexAl1-x)13 alloys consisting of icosahedral clusters. Journal of Physics-Condensed Matter, 1994, 6(19): 3459-3468.
    [162] Palstra TTM, Nieuwenhuys GJ, Mydosh JA, et al., Mictomagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1-x)13 intermetallic compounds. Physical Review B, 1985, 31: 4622-4632.
    [163] Irisawa K, Fujita A, Fukamichi K, et al., Change in the magnetic state ofantiferromagnetic La(Fe0.88Al0.12)13 by hydrogenation. Journal of Alloys and Compounds, 2001, 316(1-2): 70-74.
    [164] Irisawa K, Fujita A, Fukamichi K, et al., Change in the magnetic state of antiferromagnetic La(Fe0.88Al0.12)13 by hydrogenation. Journal of Alloys and Compounds, 2001, 316: 70-74.
    [165] Moze O, Kockelmann W, Liu JP, et al., Magnetic structure of LaFe10.8Al2.2 and LaFe10.8Al2.2N3 cluster compounds. Journal of Applied Physics, 2000, 87: 5284-5286.
    [166] Irisawa K, Fujita A, Fukamichi K, et al., Effect of pressure on magnetic properties of La(FexAl1-x)(13) ferromagnetic compounds. Journal of Alloys and Compounds, 2001, 329(1-2): 42-46.
    [167] Fukamichi K, Chiang TH, Fujita A, et al., Giant forced-volume and saturation magnetostrictions of amorphous La(FexAl1-x)13 alloys composed of icosahedral clusters. Journal of Physics-Condensed Matter, 1995, 7(14): 2875-2887.
    [168] Fukamichi K, Chiang TH, Matsubara E, et al., Atomic structures, magnetovolume and pressure effects in amorphous La(FexAl1-x)13 alloys consisting of icosahedral clusters. Science Reports of the Research Institutes Tohoku University Series a-Physics Chemistry and Metallurgy, 1995, 41(1): 9-40.
    [169] Tang WH, Liang JK, Rao GH, et al., Subsolidus phase-relations of the La-Fe-Al ternary-system. Journal of Alloys and Compounds, 1995, 218(1): 127-130.
    [170] Irisawa K, Fujita A, Fukamichi K, et al., Influence of nitrogen on the magnetovolume effects in La(FexAl1-x)13 compounds. Journal of Applied Physics, 2002, 91(10): 8882-8884.
    [171] Dan’kov SY, Ivtchenko VV, Tishin AM,et al., Advances in cryogenic engineering, springer, 2000, 46: 397- 404.
    [172] Zhang Q, Cho JH, Du J, et al., Large reversible magnetocaloric effect in Tb2In, Solid State Communications, 2009, 149: 396-399.
    [173] Singh NK, Suresh KG, Nigam A K,et al., Heat capacity and magnetoresistance in Dy(Co,Si)2 compounds. Journal of Applied Physics, 2005, 97: 10A301.
    [174]M. Balli, D. Fruchart, D. Gignoux, A study of magnetism and magnetocaloric effect in Ho1-xTbxCo2 compounds. Journal of Magnetism and Magnetic Materials, 2007, 314: 16-20.
    [175] Liu XB, Altounian Z, Magnetocaloric effect in (Er1-xGdx)Co2 pseudobinary compounds . Journal of Magnetism and Magnetic Materials, 2005, 292: 83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700