用户名: 密码: 验证码:
姜黄素逆转肺癌细胞对顺铂耐药性的FA/BRCA途径机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     研究已经证明FA/BRCA途径是修复细胞DNA交联损伤的重要组成部分,该途径的功能状态与细胞对致交联损伤药物如顺铂(DDP)的敏感性相关,正常的FA/BRCA途径被激活是细胞对DNA链间交联剂(DDP等)耐药的分子基础。但是肺癌细胞对DDP耐药现象与FA/BRCA途径功能状态的关系还不很清楚,迄今为止FA/BRCA途径在肺癌细胞对DDP耐药中的作用机制尚无研究报道,FA/BRCA途径抑制剂姜黄素是否可逆转DDP耐药肺癌细胞对DDP的耐药性亦未见文献报告。因此,本研究以体外培养肺癌细胞株为研究对象,通过检测对DDP具有不同敏感性的肺癌细胞株FA/BRCA途径相关基因FANCC、FANCF、 FANCL、FANCD2mRNA及蛋白表达和FANCD2单泛素化状态,探讨FA/BRCA途径参与肺癌细胞对交联剂DDP耐药的分子机制。通过应用姜黄素和DDP处理DDP耐药肺癌细胞,观察FA/BRCA途径功能状态和肺癌细胞对DDP敏感性的变化,研究FA/BRCA途径抑制剂姜黄素增加肺癌细胞对DDP敏感性的作用机制,探讨姜黄素作为DDP耐药逆转剂用于肺癌治疗的可行性。
     方法:
     1、体外培养肺癌细胞株A549、Calu-1,应用CCK-8法检测经不同浓度DDP处理后肺癌细胞株A549和Calu-1的细胞增殖抑制率,观察比较不同肺癌细胞株对DDP敏感性的差异。实时荧光定量RT-PCR法分别测定用不同浓度DDP处理前后A549、Calu-1的FANCC、FANCF、FANCL和FANCD2mRNA表达水平的变化,Western blotting法分别测定不同浓度DDP处理后A549、Calu-1细胞株FANCC、FANCF、FANCL和FANCD2蛋白的表达,测定以FANCD2-L和FANCD2-S比值所表示的FANCD2单泛素化程度。探讨FA/BRCA途径在肺癌细胞对DDP耐药中的作用机制。
     2、体外培养DDP敏感肺癌细胞株A549和耐药肺癌细胞株A549/DDP,分别用不同浓度的姜黄素、DDP及姜黄素加DDP处理后,Western blotting法测定这两个肺癌细胞的FANCD2单泛素化程度,免疫荧光染色法观察胞核内FANCD2核聚小体的形成,CCK-8法测定细胞增殖抑制率,DAPI荧光染色检测细胞凋亡,Annexin V/PI流式细胞术测定细胞凋亡率。观察姜黄素、DDP及姜黄素加DDP分别对肺癌细胞的细胞增殖和凋亡的作用,以及与FA/BRCA途径激活状态之间的关系,探讨姜黄素增加耐DDP肺癌细胞对DDP敏感性的效应,以及其这一效应的FA/BRCA途径机制。
     结果:
     1、DDP对肺癌细胞A549、Calu-1的增殖抑制作用均呈剂量依赖性和时间依赖性关系。经过不同浓度DDP处理24H和48H后,细胞A549的IC50明显低于细胞Calu-1,表明细胞A549对DDP的敏感性高于细胞Calu-1,细胞Calu-1对DDP相对耐药。与此相对应的是,肺癌细胞A549的FANCF和FANCL mRNA的表达(主要在DDP浓度2.5-5μg/ml时和20μg/ml)低于细胞Calu-1, A549细胞FANCD2mRNA的表达在DDP处理24H有所增高,但在DDP处理48H后明显降低,而Calu-1细胞FANCD2mRNA的表达在DDP处理24H(除DDP浓度20μg/ml外)和48H后均明显升高(除DDP浓度20μg/ml外)。肺癌细胞A549中的FANCF. FANCL和]FANCD2蛋白表达水平随DDP浓度增高呈进行性降低,而肺癌细胞Calu-1的FANCF蛋白(在2.5-10μg/ml DDP浓度范围内)表达随DDP作用时间的延长和浓度的逐渐上升呈进行性增高。Calu-1细胞的FANCD2单泛素化程度明显高于A549细胞。
     2. A549/DDP细胞株对DDP中度耐药。分别用不同浓度的姜黄素、DDP及姜黄素加DDP处理后,A549/DDP细胞FANCD2单泛素化程度明显高于A549细胞。当用姜黄素联合DDP处理A549/DDP细胞时,姜黄素的加入显著降低A549/DDP细胞的FANCD2单泛素化水平,且联合用药组的FANCD2单泛素化水平在0-20μg/ml DDP浓度范围内均低于单独用药组,显示出明显的抑制效应。当姜黄素和不同浓度DDP联合分别处理两个肺癌细胞时,A549/DDP细胞核聚小体的表达较A549细胞明显减弱,表明姜黄素能抑制以FANCD2单泛素化及核聚小体形成为激活特征的FA/BRCA途径功能,逆转肺癌细胞对DDP的耐药性。姜黄素联合DDP处理时A549细胞增殖抑制率均高于两药单用时的增殖抑制率,但并未观察到两个药物之间的协同作用,q值<1.15。姜黄素联合DDP处理时A549/DDP的细胞增殖抑制率亦高于两药单用时的增殖抑制率,但姜黄素和DDP显示出明显的协同效应,q值>1.15。姜黄素和DDP联用时DDP抑制A549/DDP细胞的IC50显著下降,逆转倍数显著增高,表明细胞对DDP的敏感性增加。同时DAPI法显示A549/DDP细胞经姜黄素联合DDP处理时,细胞核染色质固缩明显,形成很多颗粒物质,核内染色质由于浓集而呈亮蓝色,细胞核破裂形成碎片,核解体,可见凋亡小体。应用Annexin V/PI双染法结合流式细胞仪检测细胞凋亡率发现,单用姜黄素或DDP分别处理A549和A549/DDP细胞48H后,A549细胞凋亡率明显高于A549/DDP细胞。而与之相反的是,用姜黄素联合DDP处理A549/DDP细胞后,细胞凋亡率在DDP浓度10-20μg/ml范围明显高于A549细胞。表明姜黄素与DDP共同作用时,DDP介导的FA/BRCA途径DNA损伤修复功能的激活受到姜黄素抑制,从而增强DDP诱导耐药肺癌细胞A549/DDP凋亡的作用。结论:
     1、FA/BRCA途径参与了肺癌细胞对DDP的耐药机制,其中蛋白FANCF、 FANCD2在肺癌Calu-1细胞对DDP的耐药中可能起了较大作用,FANCD2单泛素化程度与肺癌细胞对DDP的耐药性相关,DDP处理肺癌细胞后的FANCD2单泛素化状态有可能作为预测肺癌患者是否对铂类药物化疗敏感的候选指标。
     2、姜黄素可抑制DDP耐药肺癌细胞株A549/DDP细胞的FANCD2单泛素化,减少核聚小体形成,增强DDP对耐药肺癌细胞的增殖抑制作用,并在诱导肺癌细胞凋亡时与DDP有协同作用,进而逆转了DDP耐药肺癌细胞对DDP的耐药性。因此我们的实验结果证明,姜黄素作为FA/BRCA途径抑制剂,可抑制肺癌细胞FA/BRCA途径的DNA损伤修复功能,逆转肺癌细胞对DDP的耐药性,有望在今后成为肺癌临床治疗中的重要成员。
Background and Objective
     FA/BRCA pathway plays a pivotal role in repair of DNA cross-linking damage induced by DNA interstrand cross-link (ICL) agents and greatly influences drug response in cancer treatment. The studies have demonstrated that inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. But the mechanism for relationship between the FA/BRCA pathway function status and chemoresistance to cisplatin (DDP) in lung cancer cells is poorly understood. Also it is not clear whether FA/BRCA pathway inhibitor, such as curcumin, can enhance sensitivity to DDP in A549/DDP cell, a DDP-resistant lung cancer cell line. Thus, the purposes of this study are to explore the FA/BRCA pathway mechanism of resistance to DDP in lung cancer cells, and investigate the efficiency of curcumin in potentiating the cytotoxic effects of DDP in A549/DDP cells, and explore the feasibility of curcumin as DDP-resistant reversal agent in treatment of lung cancer.
     Methods
     1. The proliferation inhibition rates of lung cancer cell lines A549and Calu-1treated with variant concentration of DDP were measured using the CCK-8assay. The expression levels of FANCC, FANCF, FANCL and FANCD2mRNA were detected by real-time fluorescent quantitative PCR (RFQ-PCR). The expressions of FANCC, FANCF, FANCL and FANCD2proteins were determined by Western blotting. FANCD2monoubiquitination level was defined as the ratio of FANCD2-L and FANCD2-S (L/S).
     2. After treatment with different concentrations of curcumin, DDP alone or combination of curcumin with DDP, the FANCD2monoubiquitination levels were measured by Western blotting in lung cancer cell lines A549and A549/DDP, respectivly. The formation of FANCD2nuclear foci were determined by immunofluorescence staining. The rate of cell proliferation inhibition was detected by CCK-8assay. Apoptosis was assessed by DAPI staining. Apoptosis rate was measured by flow cytometry using Annexin V/PI methods.
     Results
     1. After treatment with DDP, the rates of proliferation inhibiting of A549and Calu-1lung cancer cell lines were increased gradually with a dose-dependent manner (P<0.05) and a time-dependent manner (P<0.05). The50%inhibitory concentrations of DDP were significantly lower in A549cells than in Calu-1cells. FANCF and FANCL mRNA expression levels in A549cells were markedly lower than those in Calu-1cells. The FANCD2mRNA levels were increased in A549cells at24H after treatment of DDP (in2.5-5μg/ml and20μg/ml DDP respectively) and were decreased at48H after treatment of DDP, while the FANCD2mRNA expression were significantly increased in Calu-1cells at24H and48H after treatment of DDP (except for DDP concentration of20μg/ml at two time points). Meantime, the expressions of FANCC, FANCF and FANCL protein in A549cells were significantly decreased during the treatment of5-20μg/ml DDP as compared with control group. After treatment of5-10μg/ml and20μg/ml DDP, however, FANCC and FANCF mRNA levels in Calu-1cells were initially increased and then decreased after treatment of variant concentrations DDP. The FANCD2monoubiquitination levels in Calu-1cells were significantly higher than those in A549cells.
     2. A549/DDP cell lines were moderately resistant to DDP. The FANCD2monoubiquitination levels in A549/DDP cells were significantly higher than those in A549cells following treatment with different concentrations of curcumin, DDP alone or combination of curcumin and DDP. In the concentration range of0-20μg/ml DDP, the addition of curcumin can significantly reduce FANCD2monoubiquitination levels in A549/DDP cells. FANCD2monoubiquitination levels in A549/DDP cells treated with combination of DDP and curcumin were significantly lower than those in these cells treated with curcumin or DDP alone. After treatment with combination of curcumin and DDP, the fluorescence nuclear foci expressions were significantly decreased in A549/DDP cells than in A549cells, implying that curcumin can inhibite FANCD2monoubiquitination levels and the formation of nuclear foci induced by DDP in these DDP-resistant lung caner cells. Proliferation inhibition rate in A549cells treated with curcumin puls DDP was significantly higher than that in these cells treated with curcumin or cisplatin alone, but synergism of curcumin and DDP on proliferation inhibition is not found in the DDP-sensitive cells (q value<1.15). Proliferation inhibition rate in A549/DDP cells treated with curcumin puls cisplatin was also significantly higher than that in these cells treated with single drug, moreover, there is a synergistic effect both curcumin and cisplatin on proliferation inhibition in the DDP-resistant cells(q values>1.15). The inhibitory concentrations of50%of DDP in A549/DDP cells were decreased significantly after treatment with cisplatin plus DDP. In addition, after treatment with curcumin plus DDP in A549/DDP cells, DAPI stained showed that their nuclear chromatin condensation which formed a lot of particulate matter, the nucleus breaks down into fragments, and apoptotic bodies can be seen. Apoptosis rate was markedly higher in A549cells than in A549/DDP cells after treatment with single drug. However, apoptosis rate in A549/DDP cells was significantly higher than that in A549when treatment with combination of curcumin and DDP of10-20μg/ml concentration. These results indicate that the activity of FA/BRCA pathway DNA damage repair function induced by DDP is inhibited effectively by curcumin.
     Conclusions
     FA/BRCA pathway is involved in the mechanism of resistant to DDP in lung cancer cells, FANCF and FANCC protein of this pathway may play important roles in DNA damage signaling and repair induced by DDP in Calu-1cells. A high level of FANCD2monoubiquitination in lung cancer cells is a feature of resistance to cisplatin. FANCD2L/S ratio may be a useful indicator to predict the sensitivity to platinum-based chemotherapy in patients with lung cancer. Curcumin inhibits FANCD2monoubiquitination induced by DDP in A549/DDP cells, reduces nuclear foci formation, increases cell proliferation inhibition rates, and induces cell apoptosis, thereby reverse resistance to DDP in the DDP resistant-drug lung cancer cells. As a FA/BRCA pathway inhibitor, curcumin can inhibit FA/BRCA pathway DNA damage repair function, reverse resistance to DDP in lung cancer cell, suggesting that curcumin may serve as a chemosensitizer to ICL-inducing anticancer drugs.
引文
[1]Knipscheer P, Raschle M, Smogorzewka A, et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 2009, 326:1698-1701.
    [2]Taniguchi T, D'Andrea AD. Molecular pathogenesis of Fanconi anemia:recent progress. Blood 2006; 107:4223-4233.
    [3]Andrea AD. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med 2010,362:1909-1919.
    [4]Stoepker C, Hain K, Schuster B, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 2011,43: 138-141.
    [5]Vaz F, Hanenberg H, Schuster B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010,42:406-409.
    [6]Ciccia A, Ling C, Coulthard R, et al. Identification of FAAP24, a Fanconi Anemia Core Complex Protein that Interacts with FANCM. Mol Cell 2007,25:331-343.
    [7]Ling C, Ishiai M, Ali AM, et al. FAAP100 is essential foractivation of the Fanconi anemia-associated DNA damage response pathway. Embo J 2007,26:2104-2114.
    [8]Singh TR, Saro D, Ali AM, et al. MHF1-MHF2, a histonefold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010, 37:879-886.
    [9]Huang M, Kim JM, Shiotani B, et al. The FANCM/FAAP24 Complex Is Required for the DNA Interstrand Crosslink-Induced Checkpoint Response. Molecular Cell 2010,39:259-268.
    [10]Leveille F, Blom E, Medhurst AL, et al. The Fanconi anemia gene product FANCF is a flexible adaptor protein. J Biol Chem 2004,279:39421-39430.
    [11]Zhang Y, Zhou X, Huang P. Fanconi anemia and ubiquitination. J Genet Genomies 2007,34:573-580.
    [12]Smogorzewska A, Matsuoka S, Vineiguerra P, et al. Identification of the FANCI Protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007,129:289-301.
    [13]Moldovan GL, D'Andrea AD. How the Fanconi Anemia Pathway Guards the Genome. Annual Review of Genetics 2009,43:223-249.
    [14]Noda T, Takahashi A, Kondo N, et al. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage. Biochemical and Biophysical Res Commun 2011,404:206-210.
    [15]Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007,8:735-748.
    [16]Sietske T, Bakkerl Johan, P de Winter, et al. Learning from a paradox:recent nsights into Fanconi anaemia through studying mouse models. Disease Models & Mechanisms 2013,6:40-47.
    [17]Burkitt K, Ljungman M. Compromised Fanconi anemia response due to BRCA1 deficiency in cisplatin-sensitive head and neck cancer cell lines. Cancer Lett 2007,8:131-137.
    [18]Panneerselvam J, Park HK, Zhang J. FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer. Cell Cycle 2012,8: 2947-2955.
    [19]Zhang J, Wang X, Lin C-J, et al. Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells. Cancer Biol Ther 2006,5: 1632-1636.
    [20]Chen Q, Van der Sluis PC, Boulware D, et al. The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood 2005,106:698-705
    [21]Chirnomas D, Taniguchi T, Vaga M, et al. Chemosensitization to cisplatin by inhibitors of Fanconi anemia/BRCA pathway. Cancer Ther 2006,5:952-961.
    [22]Xiao H, Xiao Q, Zhang K, et al. Reversal of multidrug resistance by cucumin through FA/BRCA pathway in multiple myeloma cell line MOLP-2/R. Ann Hematol 2010,89:399-404.
    [23](?)errer M, Span SW, Vischioni B, et al. FANCD2 expression in advanced non-small-cell lung cancer and response to platinum-based chemotherapy. Clin Lung Cancer 2005,6:250-254.
    [24]Snyder ER, Ricker JL, Chen Z, et al. Variation in cisplatinum sensitivity is not associated with Fanconi anemia/BRCA pathway inactivation in head and neck squamons cell carcinoma cell lines. Cancer Lett 2007,245:75-80.
    [25]Jacquemont C, Simon JA, D'Andrea AD, et al. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol Cancer 2012,11:26
    [26]Kuttan R, Bhanumathy P, Nirmala K, et al. Potential anticaneer activity of turmeric (Curcuma longa).Caneer Lett 1985,29:197-202.
    [27]Chen S, Ho C, Cheng C, et al. Curcumin inhibited the arylamines N-acetyltransferase activity, gene expression and DNA adduct formation in human lung cancer cells(A549). Tdxicol InVitr 2003,17:323-333.
    [28]Woo H, Kim H, Choi J, et al. Molecular mechanisms of cureumin-induced Cytotoxicity:induction of apoptosis through generation of reactive oxygen spceies, down-regulation of Bcl-XL and IAP, the release of cytochrome and inhibition of Akt. Cancer Biol Ther 2003,24:1139-1281.
    [29]Yan C, Jam S, Aggarw B, et al. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcum in. Mol Cancer Ther 2005,4:233-241
    [30]Garcea G, Berry P, Jones J, et al. Consumption of the putative chem opreventive agent curcum in by cancer patients assessment of curcum in levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 2005,14:120-125.
    [31]Shao M, Shen Z, liu CH, et al. Curcumin exerts multiple suppressive effects onhuman breast carcinoma cells. Int J Cancer 2002,98:234-240.
    [32]Chen G, Sin L, Leung C, et al. Glioblastoma cells deficient in DNA dependent protein kinase are resistant to cell death. J Cell physiol 2005,203:127-132.
    [33]Siegel R, Ward E, Brawley O, et al. Cancer Statistics,2011. Ca J Cancer Clin 2011,61:212-236.
    [34]Fuenesa MA, Castillab J, Alonsoa C, et al. Cisplatin biochemical mechanism of action:from cytotoxieity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curt Med Chem 2003,10:257-266.
    [35]Cho BC, Kim JH, Soo RA, et al. The role of monoclonal antibody in combination with first line chemotherapy in Asian patients with advanced non-small cell lung cancer. Yonsei Med J 2010,51:1-8.
    [36]Yang CT, Hung JY, Lai CL, et al. Gemcitabine as firstline therapy for advanced or metastatis non-small cell lung cancer patients in southern Taiwan. Kaohsiung J Med Sci 2010,26:1-7.
    [37]Demedts IK, Vernaelen KY, Van Meerbeeck JP. Treatment of extensive-stage small cell lung carcinoma:current status and future prospects. Eur Respir J 2010, 35:202-215.
    [38]Kim H, D'Andrea Alan D. Regulation of DNA cross-link repair by the fanconi anemia/BRCA pathway. Genes Development 2012,26:1393-1408.
    [39]Kupfer GM. Fanconi anemia:a signal transduction and DNA repair pathway. Yale J Biol Med 2013,86:491-497.
    [40]Hucl T, Gallmeier E. DNA repair:exploiting the fanconi anemia pathway as a potential therapeutic target. Physiol Res 2011,60:453-465.
    [41]Shukla P, Solanki A, Ghosh K, Vundinti BR. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications. Eur J Haemat 2013; 91:381-393.
    [42]Fetter M, Rodrfguez JA, Spierings EA,et al. Identification of multiple nuclear export sequences in Fanconi anemia group A protein that contribute to CRMl-dependent nuclear export. Hum Mol Genet 2005,14:1271-1281.
    Pn] Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group BNat Genet 2004,36:1219-1224.
    [44]Strathdee CA, Garish H, Shannon WR, et al. Cloning of cDNAs for Fanconi's anemia by functional complementation. Nature 1992,356:763-767'.
    [45]Yamashita T, Barber DL, Zhu Y, et al. The Fanconi anemia polypeptide FANCC is localized to the cytoplasm. Proc Natl Acad Sci USA 1994,91:6712-6716.
    [46]Taniguchi T, D'Andrea AD. The Faneoni anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood 2002,100:2457-2462.
    [47]Palagyi A, Neveling K, Plinninger U, et al. Genetin inactivation of the Faneoni anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents. Molecular Cancer 2010,9:127.
    [48]Howler NG, Taniguchi T, Olson S, et al. Biallelic inaetivation of BRCA2 in Fanconi anemia. Science 2002,297:606-609.
    [49]Timmers C, Taniguehi T, Hejna J, et al. Positional cloning of a novel Faneoni anemia gene,FANCD2. Mol Cell 2001,7:241-248.
    [50]Zhang Y, Zhou X, Huang P. Fanconi anemia and ubiquitination. J Genet Genomies,2007,34:573-580.
    [51]Ho GP, Margossian S, Taniguchi T, et al. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol 2006,26: 7005-7015.
    [52]Garcia-Higu ra I, Taniguchi T, Ganesan S, et a.l Interact ion of the Fanconi anemia prot ins and BRCA1 in a comm on pathway. Molecular cell 2001,7:249-262.
    [53]de Winter JP, leveille F, van Berkel CG, et al. Isolation of a cDNA representing the Fanconi anemia complementation group Egeney. Am J Hum Genet 2000,67: 1036-1038.
    [54]Evssenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steokines, and factors.Drug Metab Dispo 2007,35:595-601.
    [55]Bogoyevitch MA, Ngoei KR, Zhao TT. C-jun N-terminal kinase (JNK) signaling: recent advances and challengens.Biochim Biophys Acta 2010,1804:463-475.
    [56]Bitomsky N, Hofmann TG.Apoptosis and autophagy:Regulation of apoptosis by DNA damage signaling-roles of p53, p73 and HIPK2. FEBS J 2009, 276:6074-6083.
    [57]Marsit CJ, L iuM, N elsonHH, et al. Inactivation of the Faneoni anemia/BRCA pathway in lung and oral cancers:impl ications for treatment and survival. Oncogene 2004,23:1000-1004.
    [58]Taniguchi T, Tischkowitz M, Am eziane N, et al.Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensit ive ovarian tumors. Nature Med 2003, 9:568-574.
    [59]de Winter JP, Waisfisz Q, Rooimans MA, et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet 1998,20:281-283.
    [60]de Winter JP, van Der Weel,de Groot J, et al.The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet 2000; 9:2665-2674.
    [61]Levitus M, Waisfisz Q, Godthelp BC, et al. The DNA heliease BRIPI is defective in Fanconi anemia complementation group. Nat Genet 2005,37: 934-935.
    [62]Meetei Amom R uhikanta, Yan Zhijiang, Wang Weidong. FANCL replaces BRCA1 as the likely ubiquit in ligase responsible for FANCD2 monoubiquitination. Cell Cycle 2004,3:179-181.
    [63]Meetei AR, de Winter JP, Medhurst AL, et al. A novel ubiquit in ligase is deficient in Fanconi anemia. Nat Genet 2003,35:165-170.
    [64]Meetei AR, Medhumt AL, Ling C, et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 2005,37(9):958-963.
    [65]Xia B, Sheng Q, Nakanishi K et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006,22:719-729.
    [66]Yamamoto KN, Kobayashi S, Tsuda M, et al. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc Natl Acad Sci USA 2011,108:6492-6496.
    [67]Leung JW, Wang Y, Fong KW, et al.. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci USA 2012,20190:4491-4496.
    [68]Joo W, Xu G, Persky N S, et al. Structure of the FANCI-FANCOD2 complex: insights into the fanconi anemia DNA repair pathway. Science 2011,15 333:312-316.
    [69]Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication for restart are defective in FANCM-deficient cells. EMBO J 2010,29:806-818.
    [70]Palle K, Vaziri, C. Rad18 E3 ubiquitine ligase activity mediates fanconi anemia pathway activation and cell survival following DNA topoisomerase 1 inhibition. Cell Cycle 2011,10:1625-1638.
    [71]Liu Y, Ghosal G, Yuan J, et al. FAN1 acts with FANC1-FANCD2 to promote DNA interstrand cross-links repair. Science 2010,329:693-696.
    [72]Kee Y and D'Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Gen Dev 2010,24:1680-1694.
    [73]Jacquemont C, Taniguchi T. Disruption of the Fanconi anemia pathway in human cancer in the general population. Cancer Biol Ther 2006,5:1637-1639.
    [74]Andreassen PR, Ren K. Fanconi anemia proteins, DNA interstrand crosslink repair pathways, and cancer therapy. Curr Cancer Drug Targets 2009,9:101-117.
    [75]Wang Z, Li M, Lu S, et al. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther 2006,5:256-260.
    [76]Neveling K, Kalb R, Florl AR, et al. Disruption of the FA/BRCA pathway in bladder eancer. Cytogenet Genome Res 2007,118:166-176.
    [77]Van der Heijden MS, Brody JR, Gallemier E, et al. Functional defects in the Fanconi anemia pathway in pancreatic cancer cells. Am J Pathol 2004, 165:651-657.
    [78]Van der Heijden MS, Brody JR, Dezentje DA, et al. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin Cancer Res 2005,11:7508-7515.
    [79]Lim SL, Smith P, Syed N, et al. Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer 2008,98:1452-1456
    [80]Jacquemont C, Simon JA, D'Andrea AD, et al. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol Cancer 2012,11:26
    [81]Aggarwal B B, Sung B. Pharmacological basis for the role of curcumin in chronic diseases:an age-old spice with modern targets. Trends Pharmacol Sci 2009,30:85-94.
    [82]Milobedzka Ⅰ, Kostaneeki S, Lamps V. Cureumin. Chem Ber 1910, 43:2163-2170.
    [83]Aggarwal B.B, Kumar A, Bharti A.C. Anticancer potential lof cureuinin: Preclinical and clinical studies. Anticancer Res 2003,23:363-398
    [84]Goel A, Kunnumakkara AB,Ggarwal BB. Curcumin as "Cureumin":from kitchen to cliniec. Biochem Pharmacol 2008,75:787-809.
    [85]Aggarwal B.B, Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardio vascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Bio 2008,41:40-59.
    [86]Kuttan R., Bhanumathy P. Nirmala K, et al. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 1985,29:197-202
    [87]Menon L.G, Kuttan R, Kuttan G, et al. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett 1995,95:221-225.
    [88]Aggarwal B B, Shishodia S, Takada Y, et al.Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice.Clin Cancer Res 2005,11:7490-7498.
    [89]Tomita M, Kawakami H, Uchihara J N, et al.Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type Ⅰ-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer 2006,118:765-772.
    [90]Wang TI, Wu PK, Chen CF, et al. The prognosis of patients with primary osteosarcoma who have undergone unplanned therapy. Jpn J Clin Oncol 2011, 41:1244-1250
    [91]Sen S, Sharma H, Singh N. Curcumin enhances vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 2005,331:1245-1252.
    [92]范婷婷,赵纯全,杨蕾.姜黄素对宫颈癌Caski细胞中Pleiotrophin蛋白表达的影响.重庆医科大学学报2008,33:825-827.
    [93]Choudhuri T, Pal S, Agwarwal M.L.,et al. CurCumin induces apoptosis in human breast caneer cells through P53-dependent Bax induction. FEBS Lett 2002, 512:334-340
    [94]杨芳,赵秋,王渝,等.姜黄素抑制STAT3信号通路对胰腺癌细胞增殖的影响.世界华人消化杂志2011,19:3149-3153.
    [95]Lev-ari S, Starr A, Vexler A, et al. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, downregulation of COX-2 and EGFR and inhibition of Erk1/2activity. Anticancer Res 2006,26:4423-4430.
    [96]沃兴德,丁志山,袁巍等.姜黄素及其衍生物抑制肿瘤作用的实验研究.浙江中医学院学报2005,29:53-61
    [97]Robinson T.P, Ehlers T, Hubbard R.B,et al. Design,synthesis and biological evaluation of angregenesis inhibitors, aromatic enone and dienone analogues of cureumin. BiooreMed.Chem. Lett.2003,13:115-117
    [98]Yoysungnoen P, Wirachwong P, Changtam C, et al. Anti-cancer and anti-angiogenic effect s of curcumin and t etrahydro-curcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol 2008,14: 2003-2009.
    [99]Chen LX, He YJ, Zhao S Z, et al. Inhibition of tumor growth and vasculogenic mimicry by curcum in through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther 2011,11: 229-235.
    [100]El-Azab M, Hishe H, Moustafa Y, et al. Ant i-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur J Pharmacol 2011, 652:7-14.
    [101]江敏华,谢莹,胡凤霞,等.姜黄素对人肝癌细胞SMM C7721侵袭转移的影响.江苏医药2010,36:2780-2782.
    [102]Boonrao M, Yodkeeree S, Ampasavate C, et al. The inhibitory effect of turmeric curcuminoids on matrix metalloproteinase 3 secretion in human invasive breast carcinoma cells. Arch Pharm Res 2010,33:989-998.
    [103]Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 2005,11(20):7490-7498.
    [104]王风云,李伟宏,焦金菊.姜黄素对人子宫内膜癌细胞增殖抑制的初步探究.中国临床保健杂志2012,15:267-270.
    [105]Tan T W, Tsai H R, Lu H F, et al. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activatio. Anticancer Res 2006,26:4361-4371.
    [106]黄冬生,李军.姜黄素对人肺癌细胞凋亡相关蛋白Survivin表达的影响.临床肺科杂志2009,14:723
    [107]Camacho-Barquero L, Villegas I, Snchez-Calvo JM, et al. Curcumin, a curcum a longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 2007,7:333
    [108]汪茜,汪宏波.姜黄素对IGF21调控的宫颈癌淋巴转移的影响.Journa of Mathematical Medicine 2009,22:290.
    [109]Bush JA, Cheung KJ, Li G. Curcumin induces apoptosisin human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 2002,271:305-314.
    [110]Shi MX, Cai QF, Yao LM, et al. Antiproliferation and apoptosis induced by curcumin in human ovarian cancercells. Cell Biol Inter 2006,30:221-226.
    (?)孙明,杨宇如,李虹,等.姜黄素对膀胱癌EJ细胞的作用研究.中药材2004,27:848-850.
    hainani WN. Safety and anti-inflammatory activity of curcumin:a component f tumeric. Altern Complement Med 2003,9:161-168.
    [113]常宏宇,凯丽,福成,等.姜黄素、红霉素逆转K562/A02细胞多药耐药机制的研究.中华血液学杂志2006,27:254-258.
    [114]Anuchapreeda S, Leechanachai P, Smith MM, et al. Modulation of P-glycoprotein expression and function by curcumin in multidrugresistant human KB cells. Biochem Pharmacol 2002,64:573-582.
    [115]Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a M(r) 110000 vesicular protein in Non-P-Glycoprotein-mediated multidrug resistance. Cancer Res,1993,53:1475-1479.
    [116]董西林,周晶,陈真真,等.LRP及β2Tubulin在非小细胞肺癌组织中表达及其与肿瘤耐药的关系.实用癌症杂志,2010,25:460-466.
    [117]Thiyagarajan S, Thirumalai K, Nirmala S, et al. Effect of curcumin on lung resistance-related protein (LRP) in retinoblastoma cells. Curr Eye Res 2009, 34:845-851.
    [118]Chuang SE, Yeh PY, Lu YS, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappa B (NF-kappa B), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002,63:1709-1716.
    [119]Snow K, Judd W. Characterisation of adriamycin and amsacrine-resistant human leukaemic T cell lines. Br J Cancer 1991,63:17-28.
    [120]Chainani WN. Safety and anti-inflammatory activity of curcumin:a component of tumeric.Altern Complement Med 2003,9:161-168.
    [1]Kutler DI, Satagopan SB, Batish SD, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003,101:1249-1256.
    [2]Rosenberg PS, Alter BP, Ebell W. Cancer risks in Fanconi anemia:findings from the German Fanconi Anemia Registry. Haematologica 2003,93:511-517.
    [3]Andrea AD. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med 2010,362:1909-1919.
    [4]Stoepker C, Hain K, Schuster B, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 2011,43: 138-141.
    [5]Vaz F, Hanenberg H, Schuster B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010,42:406-409.
    [6]Singh TR, Saro D, Ali AM, et al. MHF1-MHF2, a histonefold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010, 37:879-886.
    [7]Winter J, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutation Research 2009,668:11-19.
    [8]Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011,11:467-480.
    [9]Blom E, Vrugt VD, Winter HJ, et al. Evolutionary clues to the molecular function of fanconi anemia genes. Acta Haematol 2002,108:231-236.
    [10]Alpi AF, Pace PE, Babu MM, et al. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell 2008:32,767-777.
    [11]Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCLfunction in DNA repair. DNA Repair (Amst.) 2006,5:1317-1326.
    [12]Titus TA, Selvig DR, Wilson QB, et al The Fanconi anemia gene network is conserved from zebrafish to human. Gene2006,371:211-223.
    [13]Sietske T, Bakkerl Johan, P de Winter, et al. Learning from a paradox:recent nsights into Fanconi anaemia through studying mouse models Disease Models & Mechanisms 2013,6:40-47.
    [14]Hyungjin K, Alan D, D'Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes & Development 2012,26:1393-1408.
    [15]Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007,8:735-748.
    [16]Ciccia A, McDonald N, West SC. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 2008,77:259-287.
    [17]Ciccia A, Ling C, Coulthard R, et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 2007,25: 331-343.
    [18]Collis SJ, Ciccia A, Deans AJ, et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 2008,32:313-324.
    [19]Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM deficien cells. EMBO J 2010,,29:806-818.
    [20]Singh TR, Saro D Ali AM, et al. MHF1-MHF2, a Histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010,37:879-886.
    [21]Yan Z, Delannoy M, Ling C, et al. A Histone-fold complex and FANCM Form a conserved DNA remodeling complex to maintain genome stability. Mol Cell 2010,37:865-878.
    [22]Cohn MA, D'Andrea AD. Chromatin recruitment of DNA repair proteins:Lessons from the Fanconi anemia and double-strand break repair pathways. Mol Cell 2008,32:306-312.
    [23]Cole R, Lewis LP, Walden H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat Struct Mol Biol 2010,17:294-298.
    [24]Garner E, Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett 2011,585:2853-2860.
    [25]Kee Y, Kim JM, D'Andrea AD. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev 23,2009:555-560.
    [26]Crossan GP, Patel KJ. The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J Patho12012,226:326-337.
    [27]Huang M, D'Andrea AD. A new nuclease member of the FAN club. Nat Struct Mol Biol 2010,17:926-928.
    [28]Yamamoto KN, Kobayashi S, Tsuda M, et al. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc Natl Acad Sci 2011,108:6492-6496.
    [29]Nijman SM, Huang TT, Dirac AM, et al. The Deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005,17:331-339.
    [30]Oestergaard VH, Langevin F, Kuiken HJ, et al. Deubiquitination of FANCD2 Is required for DNA crosslink repair. Mol Cell 2007,28:798-809.
    [31]Kim JM, Parmar K, Huang M, et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Devel Cell 2009,16: 314-320.
    [32]Murai J, Yang K, Dejsuphong D, et al. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol 2011,31:2462-2469.
    [33]Rosenberg PS, Alter BP, Ebell W. Cancer risks in Fanconi anemia:findings from the German Fanconi Anemia Registry. Haematologica 2008,93:511-517.
    [34]Alter, B P. Cancer in Fanconi anemia,1927-2001. Cancer 2003,97:425-440.
    [35]Litim N, Labrie Y, Desjardins S, et al. Polymorphic variations in the FANCA gene in high-risk non-BRCAl/2 breast cancer individuals from the French Canadian population. Mol Oncol 2012,11:1-6.
    [36]Smith IM, Mithani SK, Mydlarz WK, et al. Inactivation of the tumor suppressor genes causing the hereditary syndromes predisposing to head and neck cancer via promoter hypermethylation in sporadic head and neck cancers. ORL J Otorhinolaryngol Relat Spec 2010,72:44-50
    [37]Panneerselvam J, Park HK, Zhang J. FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer Cell Cycle 2012,8: 2947-2955.
    [38]Burkitt K, Ljungman M. Compromised Fanconi anemia response due to BRCA1 deficiency in cisplatin-sensitive head and neck cancer cell lines. Cancer Lett 2007,8:131-137.
    [39]Kondo N, Takahashi A, Mori E. FANCD1/BRCA2 Plays Predominant Role in the Repair of DNA Damage Induced by ACNU or TMZ FANCD1/BRCA2 Plays Predominant Role in the Repair of DNA Damage Induced by ACNU or TMZ. Plos One 2011,6:1-8.
    [40]Kachnic LA, Li L, Fournier L, et al. FANCD2 but not FANCA promotes cellular resistance to type II topoisomerase poisons. Cancer Lett.2011,305:86-93.
    [41]Jacquemont C, Simon JA, Andrea AD, et al. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol Cancer. 2012,26:11-26.
    [42]Chirnomas D, Taniguchi T, Vaga M, et al. Chemosensitization to cisplatin by inhibitors of Fanconi anemia/BRCA pathway. Cancer Ther 2006; 5:952-961.
    [43]Xiao H, Xiao Q, Zhang K, et al. Reversal of multidrug resistance by cucumin through FA/BRCA pathway in multiple myeloma cell line MOLP-2/R. Ann Hematol 2010,89:399-404.
    [44]Adams BK, Cai J, Armstrong et al. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anti-Cancer Drugs 2005,16:263-275.
    [45]Adams BK, Ferstl EM, Davis MC, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bio Med Chemistry 2004,12:3871-3883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700