用户名: 密码: 验证码:
强震区城镇泥石流灾害风险评价方法与体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日发生在四川省汶川县的里氏8.0级地震不仅造成了重大的人员伤亡和巨额的财产损失,同时也对震区的生态环境造成了严重的破坏,给当地灾后重建进程、生态建设和社会可持续发展带来了严峻的挑战。“5.12”汶川特大地震孕育了不计其数的滑坡、崩塌及潜在不稳定斜坡等不良地质体,为震区内泥石流的孕育及发生提供了有利条件。据“5.12”汶川大地震后的初步统计资料显示,震区新增地质灾害点5千余处(个)。其中常见的四种地质灾害崩塌、滑坡、泥石流及不稳定斜坡总数的97%以上。据震区44个重灾县(市)的次生地质灾害排查结果显示,震区发育有潜在泥石流沟873条,其中潜在的巨型泥石流沟90条、大型泥石流沟91条、中型泥石流沟300条、小型泥石流沟355条。据国土资源系统组织的震后次生地质灾害排查和巡查,四川震区有24座县级城市遭受潜在泥石流隐患点的直接威胁,此外,还有100余处集镇受到不同程度威胁。
     2008年9月24日,仅距“5.12”汶川大地震四个多月,在这次地震的主要震区北川、汶川等县境内爆发了区域性的泥石流灾害,共造成40余人遇难或失踪,数千亩良田及房屋被冲毁和淤埋的重大灾情,震区泥石流规模之大、破坏力之强,是其它地区泥石流灾害无法比拟的。这次区域性的泥石流灾害表明,“5.12”汶川震区泥石流已进入一个新的活跃期,在未来5-10年内,泥石流将成为震区内最主要的地质灾害之一。如何对震区内已发生或潜在的泥石流灾害开展风险评价是灾后重建中必需面对的一大难题。因此,开展强震区城镇泥石流灾害风险评价方法与体系研究对灾区恢复重建及防灾减灾规划具有重要的理论和实践意义。
     鉴于目前国内尚未有针对强震区泥石流灾害风险评价的系统研究成果,论文基于地质学、地貌学、系统科学及管理学等相关学科理论及国内外研究进展及动态的基础上,通过对“5.12”汶川大地震强震区之一的北川县大量已发生的泥石流开展调查、结合高分辨率遥感影像资料(分辨率为0.5m)对泥石流沟的遥感解译,开展了系统的强震区城镇泥石流灾害风险评价的方法与体系研究。论文在风险评价的基础上(危险性和易损性),融入了承灾体的承灾能力这一因素,提出了强震区风险评价的方法与体系。通过对风险评价指标的构建,在Arcview等软件的辅助下,开展了强震区城镇泥石流灾害风险评价研究,形成了一套集数据收集→危险性评价统计模型→泥石流危险区划分→易损性评价→承灾能力评价→泥石流预期损失估算→风险评价为一体的强震区城镇泥石流灾害风险评价方法。论文的主要研究内容包括:
     (1)基础理论分析。论文在大量国内外研究成果的基础上,对风险的基础理论研究成果进行了系统的归纳和总结,在一般意义风险(危险性和易损性)的基础上,对风险评价的内容进行了补充(融入了承灾能力这一因素);
     (2)城镇泥石流灾害风险评价的相关理论模式研究。在理论分析的基础上,在对传统风险评价理论方法修正的基础上,系统分析了强震区城镇泥石流灾害风险评价体系,并构建了泥石流灾害风险与危险性、易损性及承灾能力三者的关系耦合模式,同时,还对城镇承灾能力的指标体系和评价方法进行了探讨;
     (3)强震区城镇泥石流灾害风险评价的技术与方法研究。论文将遥感(RS)和GIS技术相结合,在对强震区泥石流流域特征及承灾体特征进行解译的基础上,应用GIS的空间叠加分析和统计计算等功能,开展了强震区泥石流危险性评价、易损性评价研究。同时,结合典型泥石流沟的实地调查分析,实现了对遥感解译的验证和对承灾能力评价的过程,最终得到泥石流危险性评价图、泥石流易损性评价图及风险评价图;
     (4)理论方法的应用研究。论文应用所建立的城镇泥石流灾害风险评价方法和体系,以“5.12”汶川大地震强震区之一的汶川县城作为研究对象,通过对威胁到汶川县城城区的南沟和羊岭沟两条泥石流沟进行调查和评价,开展了系统的危险性评价、易损性评价、承灾能力评价、风险计算及风险分区评价研究,对两条泥石流沟在暴发泥石流情况下可能导致的风险进行了分析。
     通过以上方面的研究,论文主要得到以下研究成果:
     (1)基本明确了“5.12”汶川大地震强震区泥石流的基本特征。通过对强震区泥石流的形成机制、运动及成灾特征等有了初步的认识,总结出了强震区泥石流灾害的几个典型特征:①强震区泥石流暴发的频率相对震前有增高的趋势,通过对“5.12”汶川大地震前后的降雨资料分析发现,强震区震后暴雨泥石流的临界雨量值相对震前较小,起动的前期累积雨量为震前的14.8%~22.1%,小时雨强约为震前的25.4%~31.6%;②从强震区泥石流的类型有从震前洪水向稀性泥石流转变的特点;③从泥石流产出环境上看,许多震前沟谷泥石流逐渐转变为坡面泥石流+沟谷泥石流的混合型;④从强震区泥石流灾害的规模上看,震后石流的规模是震前同等条件下泥石流规模的数十倍。
     (2)通过对北川县境内已发生的72条泥石流沟流域地形地貌特征进行统计分析,明确了强震区泥石流流域的基本特征:①与其它地区的泥石流沟相比,强震区泥石流流域面积大小的变幅更广;②流域纵比降主要分布在130~400‰之间,比降变幅范围大;③强震区泥石流沟物源区平均坡度约为33°,与其它地区泥石流流域物源区坡度(25~40°)基本一致;主沟长度多介于1.5~6km范围内,与其它地区泥石流沟的主沟长度(1~10km)相比,整体偏小;④震区内泥石流堆积扇坡度多介于2~10°之间。
     (3)建立了强震区泥石流冲出距离的评价模型,在此基础上提出了强震区泥石流危险性评价方法。论文在GIS的支持下,对北川县境内的51条暴雨泥石流沟流域特征及泥石流最远冲出距离进行分析,通过将流域高差和堆积区堆积扇顶角及泥石流冲出角之间的统计关系,得到了强震区不同流域面积分类下泥石流最远冲出距离的评价模型。通过模型计算得到的泥石流冲出距离要比实际的冲出距离偏大,从对泥石流进行预测的角度出发,这种评价结果是有实际意义的。
     (4)在RS和GIS的支持下提出了基于堆积区地形特征的泥石流危险性分区方法。论文在RS和GIS的支持下,根据泥石流流域的地形地貌特征参数,通过建立DEM模型和对可能的堆积区域进行坡度统计和分析,得到了基于堆积区地形坡度和距主沟距离的强震区泥石流危险性分区评价方法。通过将该方法应用于北川已发生的3条泥石流沟,表明用方法来确定泥石流的危险区较为合理。
     (5)提出了强震区城镇泥石流灾害承灾能力评价的指标体系和评价方法。论文在对承灾体承灾能力影响因素分析的基础上,构建了承灾能力评价指标体系,通过对各个指标的权重计算,得到了承灾能力评价模型,在此基础上,首次将承灾能力这一因素进行赋值量化后融入到风险评价体系中,对完善风险评价理论方法和体系具有理论和实践意义。
     (6)提出了易损性半定量赋值评价的方法。在RS和GIS的支持下,论文通过遥感解译和实地调查对承灾体进行分类(人口、房屋、生命线设施、农业用地),在对各类承灾体的结构特征与易损性大小之间的关系分析基础上,分别对不同承灾体的结构类型进行赋值,实现了应用RS和GIS技术开展泥石流易损性的半定量化评价研究,对完善泥石流这一学科的研究方法和技术有重要的实践意义。
     (7)提出了系统的强震区城镇泥石流灾害风险评价方法和体系。论文应用RS(高分辨率遥感影像)和GIS技术,集强震区泥石流灾害风险定义、风险评价内容、评价步骤及评价方法为一体,开展了系统的风险分析、风险计算及风险评价的理论方法和评价体系研究,通过将强震区城镇泥石流灾害风险评价方法和体系应用到汶川县城研究表明,应用高分辨率遥感影像和GIS技术在泥石流风险评价中具有更大的优势,这对完善风险评价的理论和方法具有重要的实践意义。
The Richter scale 8.0 earthquake in Wenchuan on 12 May 2008, in Sichuan Provence, southwest of China caused serious casualties and property loss, and caused serious damage to local geologic environment, this not only blocked the reconstruction process in stricken areas, but also give austere challenge to ecologic recovering and the continuable development. There distributed numbers of landslides, collapses, potential unstable slopes in strong seismic zone, these geologic hazards has formed enough moveable materials ,this is benefit to debris flow pregnant. Based on the first step investigation results in earthquake area, there have more than 5 000 geologic hazards distributed in Wenchuan earthquake area. Most of these geologic hazards are landslide, collapse, unstable slope and debris flow. The investigation date of 44 serious damaged countries show, there have more than 872 potential debris flow gullies in this area, among them, 90 debris flow gullies belong to super-huge magnitude, 91 huge magnitude, 300 middle magnitude and 355 little magnitude. The survey result come from Chinese Ministry of Land and Resources show, there are more than 24 country-level cities and 100 towns or villages was endangered by those potential debris flow,
     On 24, September 2008, only 4 moths after“5.12”Wenchuan earthquake, in the strong damaged areas Wenchuan and Beichuan occurred regional debris flow, caused more 40 people die or missing, thousands acres fertile land and hundreds of houses be buried and damaged, the magnitude and the power of this debris flow was rare, and no debris flow can has equal power to this in other areas. This regional debris flow show that the debris flow in earthquake area has come into a active stage, and the debris flow will be one of the most severe geologic hazards in this area during the future 5 to 10 years. How to carry out the risk assessment and risk control to those potential debris flow is necessary and important, at the same time, this is a prominent problems in reconstruction processing. So to constructing the systematic urban debris flow risk assessment in earth quake area is significant to mitigation plan and reconstruction.
     Because of the lack of systematic debris flow risk assessment method for earthquake urban, based on the geology theory, geomorphology theory, system science, manage theory and relative theories research progress, based on the date from occurred debris flow investigation and interpretation from high resolution remote sensing image(the resolution is 0.5m), the thesis carried out systematic research of urban debris flow risk assessment method in strong shocked earthquake area. Based on the framework of risk assessment (hazard and vulnerability), added the urban materials bear capability to debris flow factor, to put forward a new debris flow risk assessment framework for urban debris flow. Based on the assessment index construction, use the software of GIS(Arcview), AutoCAD, Matlab to statistics and calculate relative date, carried out risk calculate and assessment, formed a systematic method of earthquake area urban debris flow risk assessment, the processing include: date collect→hazard assessment→hazard subarea→vulnerability assessment→debris flow bear capability assessment→potential loss evaluate→risk assessment. In total, the thesid carried out the relative content study as fellow:
     (1) Basic theories analysis of risk assessment. Based on numbers of existing relative researchs, we summarized these theories systematicly, promoted and supplemented the risk assessment contents, then, mixed the the urban objict’s sustainability to debris flow into risk assessment framework based on existing risk framework (which comprised of hazard and vulnerability).
     (2) The study of pattern theory of utban debris flow risk assessment. Based on the relative theory analysis and revise of exiting risk assessment content of debris flow risk assessment, we analyzed the urban debris flow risk assessment method and content, constructed then relationship between risk and hazard, vulnerability and the resist capability of potential suffers, at the same time, we studied the sustainability of urban objicts to debris flow, include the assessment index system and method.
     (3) The technology and method study of urban debris flow in strong seismic area. By combining the remote sense (RS) and GIS technology and the characters interpretation of debris flow gully and urban objicts in strong seismic area, the thesis carried out spatial analysis, statistic and calculate of debris flow hazard and vulnerability under the GIS sofeware. At the same time, combined the investigation of typical debris flow in strong seismic area to inspect and verify the interpreted result from remote sense image, finally, getting the debris flow hazare map, vulnerability map and risk map.
     (4) The application of debris flow risk assessment theories.We taking Wenchuan city as an example which is one of the serious effected by“5.12”earthquake to apply the risk assessment theories constructed in the thesis, after the investigation of the two debris flow gully which both are threaten the city, and the potential runout distance calculation of the two debris flow, carried out hazard assessment, vulnerability assessment, the sustanbility of the urban object, risk calculation ande risk subarea study, finally, analyzed the possible debris flow risk and it’s potential danger area.
     Base on those study, the thesis come to these conclusions.
     (1)We summarized the basic characters of debris flow in earthquake area. After the analysis of the mechanism and active characters of occurred debris flow, drew many typical characters of debris flow in strong earthquake area:①The frequency of debris flow in earthquake area has the upturn tendency, based on the precipitation date analysis of Beichuan country after the“5.12”Wenchuan earthquake, the critical value of precipitation of debris flow relative lower than before earthquake, after the earthquake, the proceeding accumulate precipitation value before debris flow occur was 14.8~22.1% before earthquake, and the precipitation value of per hour was 25.4~31.6% before earthquake;②From the aspect of debris flow type, the torrent before earthquake has the tendency of convert to low volume weight debris flow after the earthquake, from the aspect of debris flow pregnant environment, many gully-debris flow has the tendency of convert to gully-grade mixed debris flow;③From the magnitude of debris flow, the magnitude after the earthquake is tens times of before earthquake.
     (2)Based on the topography statistic of occurred 72 debris flow in Beichuan country, we geting the debris flow basin characters:①Compared to another areas, the debris flow basin areas distributing ranges is more wider in strong seismic area;②Compared to another areas, most of the debris flow longitudinal river slope range is more wider, the value are fall between 130~140% in earthquake area,;③The average slope in debris flow initiation area in strong seismic area is 33°, similar to another areas(25~40°), most of debris flow tap drain length are fall between 1.5~6 km, compare to another area debris flow, the value has a little low.④Most of the debris flow alluvial fan slop are fall between 2~10°.
     (3)The thesis put forward the debris flow run out distance evaluate model, based on this model, building the debris flow hazard assessment method in earthquake area. Sported by the GIS tool, statistic and 51 debris flow run out distance which has occurred on 24 August, 2008, and analysis the basin topography characters, then get the run out distance assessment model.
     (4)Put forward the method of debris flow hazard subarea assessment, which is based on the topography date of debris flow potential accumulate area slope analysis which draw from the digital elevate model(DEM), then, proposing the debris flow subarea method which is based on the accumulate area slop analysis and the distance from gully. The classify method is: if the accumulate area slope <10°,this match with the high hazard area, the slope fall in 10~15°, match with middle hazard area, the slope fall in 15~20°, match with the low hazard area. As the same method, if the distance from gully <100m, match with high hazard area, the distance fall in 1~200m, match with the middle hazard area, the distance fall in 200~300m, match with the low hazard area. After the application of this method of 3 debris flow in Beichuan country, the result show that this subarea method is feasible.
     (5)The thesis constructed the index system and assessment method of resist capability to debris flow for earthquake area urban, based on the analysis of the factors which effect the object’s capability of resist to debris flow, constructed the assessment index system, and calculated the weights of each index, then mixed the resist capability to debris flow into risk assessment system, after the classification of capability, give each classified a certain value, and put this value to calculate with hazard and vulnerability assessment result, finally, get the risk assessment results.
     (6)Put forward the semi-quantitative assessment method based on the index evaluation. Based on the remote sense image interpretation and investigation of study area, classified the objects in urban area (including population, houses, life line facilities, agriculture land), based on the relationship analyze between building type and vulnerability (the different population density and different building type has different vulnerability), evaluate the relative value to different type of objects, then, multiplication these index value to express the vulnerability. Finally, give a semi-quantitative vulnerability assessment result according the criterion of classification.
     (7)Put forward systematic risk assessment method of strong seismic area urban debris flow, and carried out semi-quantitative risk assessment. The thesis put a integrative study, including the definition of risk, the content of risk assessment, assessment steps and assessment method, carried out systematic risk analyze, risk calculation, and risk assessment. Through the calculation of quantitative evaluated index, put forward the classification criterion of risk, the research has practical significance to complete the risk assessment theories and method.
引文
A.Petrascheck H.Kienholz.Hazard assessment and mapping of mountain risks in Switzerland[J]. Geotech.J.Vol.42, 2004:101-107.
    Adam B.Prochaska a , Paul M.Santi a, Jerry.et al.Debris-flow runout predictions based on the average channel slope (ACS) [J].Engineering Geology 2008, (98):29–40.
    Adnan O zdemir Mehmet Delikanli.A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey) [J].Natural Hazards,2008,(70):69-82.
    Alexander, D.: Vulnerability to landslides,Landslide hazard and risk[J].Chichister, 2005,175–198.
    Alexandre Rema?tre, Jean-Philippe Malet, Olivier Maquaire.Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin[J].Earth Surface Processes and Landforms Earth Surf.Process. 2005, Vol.30:479–488.
    Ana Maria Cruz Norio Okada.Methodology for preliminary assessment of Natech risk in urban areas[J].Natural Hazards (2008) 46:199–220.
    ANCOLD.1994.Guidelines on Risk Assessment[R].Australian National Committee on Large Dams Inc [C].Sydney:116-117.
    Antonucci, A.Salvettib, M.Zaffalon.Hazard Assessment of Debris Flows by Credal Networks[J]. Natural Hazards,2000,(43):173-181.
    Barbolini, M., Cappabianca, F., and Sailer, R.: Empirical estimate of vulnerability relations for use in snow avalanche risk assessment[J].WIT Press,Southampton,533–542,2004.
    Bathurst, J.C.,Burton,A.,Ward,T.J.,1997.Debris flow run-out and landslide sediment delivery model tests[J].Journal ofHydraulic Engineering 123, 410–419.
    Bell, R.and Glade, T.: Quantitative Risk Analysis for Landslides–Examples from Bíldudalur, NW Iceland[J], Nat.Hazards Earth Syst.Sci.4, 117–131,2004.
    Berti,M.,Simoni, A.,2007.Prediction of debris flow inundation areas using empirical mobility relationships[J].Geomorphology 90, 144–161.
    Blaikie P, Cannon T.et al.R isk:N atural hazards, peop leps vulnerability and disasters[M].London, 1994.
    Bogard, W.: Bringing social theory to hazards research: conditions and consequences of the mitig ation of environmental hazards[J].Sociological Perspectives,31,147–168, 1989.
    Bohle, H.-G.,Downing,T.and Watts,M.: Climate change and social vulnerability:the sociology and geography of food insecurity[J],Global Environmental Change,4,37–48,1994.
    Borter, P.: Risikoanalyse bei gravitativen Naturgefahren, Bundesamt für Umwelt, Wald und Lands-chaft[M], Bern, 1999.
    Burby RJ.Cooperating with nature: confronting natural hazard with land use planning[M]. Washin -gton,DC,USA:Joseph Henry Press;1998.
    Burton,I.and Kates, R.: The perception of natural hazards in resource management[J], Natural Res -our,1964.4,412–441.
    C.Copien C.Frank M.Becht.Natural hazards in the Bavarian Alps: a historical approach to risk assessment[J].Nat Hazards (2008) 45:173–181.
    C.Huggel, A.Kaab,W.Haeberli,et al.Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps[J].Natural Hazards and Earth System Sciences,(2003)3: 647–662.
    C.J.Van Westen Geo-Information tools for Landslide Risk Assessment.An overview of recent developments[J].Surveys in Geophysics, Volume 21, Issue 2-3, Pages 241-255.
    C.J.Van Westen .Geo-Information tools for Landslide Risk Assessment.An overview of recent developments[R].2004
    Calvo, F.Napoletano and F.Savi.Debris Flow risk assessment: a case study[J].Geophysical Resear-ch Abstracts,Vol.8,2006.
    Cannon,S.H., 1989.An approach for determining debris flow runout distances.Proceedings of Conference [J], International Erosion Control Association.Vancouver, British Columbia, :459– 468.
    Cannon, S.H., Gartner, J.E., 2005.Wildfire-related debris flow from a hazards perspective[J].In: Jakob, M., Hungr, O.(Eds.), Debris-flow Hazards and Related Phenomena.Praxis, Chichester, UK,:363–385.
    Cannon, S.H., Savage, W.Z., 1988.A mass-change model for the estimation of debris-flow runout [J].Journal of Geology 96, 221–227.
    Cannon, T.: A hazard need not a disaster make: vulnerability and the causes of“natural”disasters, edited by: Merriman[C], Natural disasters: Protecting vulnerable communities, Thomas Telford, London, 92–105, 1993.
    Carlos Pirmez, Jeffrey Marr, Craig Shipp, et al.Observations and Numerical Modeling of Debris Flows in the Na Kika Basin, Gulf of Mexico[C].Offshore Technology Conference, Houston, Texas, U.S.A, 2004,May,(3-6):1-13.
    Chau, K.T., Lo, K.H., 2004.Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations[J].NHESS 4, 103–116.
    Chia-Nan Liu ? Hsiao-Fung Huang ? Jia-Jyun Dong.Impacts of September 21, 1999 Chi-Chi earthquake on the characteristics of gully-type ebris flows in central Taiwan[J].Nat Hazards,2008,47:349–368.
    Conversini, D.Salciarini, G.Felicioni, et al.The debris flow hazard in the Lagarelle Creek in the eastern Umbria region, central Italy[J]. Natural Hazards and Earth System Sciences, 5, 275–283, 2005.
    Corominas,J,1996.The angle of reach as a mobility index for small and large landslides[J]. Canadian Geotechnical Journal 33, 260–271.
    Cutter, S.: Vulnerability to environmental hazards, Progr[J].Human Geogr, 20, 529–539, 1996.
    Dai, F.C., Lee, C.F., Ngai,Y.Y., 2002.Landslide risk assessment and management: an overview[J]. Engineering Geology 64, 65–87.
    Deyle,Olshansky R Band Paterson R.Hazard assessment: the factual basis for planning- and mitigation[J].In:Burby RJ(ed.).s.Washington,D.C.:Joseph Henry Press,1998.
    Douglas, J.: Physical vulnerability modelling in natural hazard risk assessment[J], Nat.Hazards Earth Syst.Sci.,7, 283–288, 2007.
    Dow, K.: Exploring differences in our common future(s): the meaning of vulnerability to global environmental change[J]. Geoforum,23, 417–436, 1992.
    Downing, T.: Vulnerability to hunger and coping with climate change in Africa[J]. Global Environmental Change,1991, 1, 365–380.
    Dwain Boyer.Risk Assessment Procedure for Proposed Resource Development Activities above Alluvial and Debris Torrent Fans[R].2004
    Einstein H H.L andslide risk systematic app roaches to assessment and management [J ].In:D.M. Cruden and R, L andslide R isk A ssessment, Ro tterdam: A.A.Balkema, 1997: 25-50.
    Federal Emergency Management Agency.Planning for a more sustainable future: the link between hazard mitigation and livability[R],2002.
    Fell. Landslide Risk Assessment[J], Ro tterdam: A.A.Balkema, 1997: 25-50.
    Fell, R.: Landslide risk assessment and acceptable risk[J], Canadian Geotechnical Journal, 31, 261–272, 1994.
    Fiebiger G.Zonage des risques naturels an A utriche[J ].W ildbach2und L aw inenverbau, Heft 1997, 134: 155~163.
    Fraefel, M., Schmid, F., Frick, E.and Hegg, C.: 31 Jahre Unwettererfassung in der Schweiz[C], Proc.Internationales Symposion Interpraevent– Riva del Garda, May 24–27, I/45–I/56, 2004.
    Fuchs, S., Heiss, K.and Hübl, J.: Towards an empirical vulnerability function for use in debris flow risk assessment[J].Natural Hazards and Earth System Sciences 7 (2007),:495–506.
    G.M.H.Laheij, J.G.Post, B.J.M.Ale, Standard methods for land-use planning to determine the effects on societal risk[J].J.Hazard.Mater.71 (2000) 269–282.
    Gabor, T.and Griffith, T.: The assessment of community vulnerability to acute hazardous mater -ials incidents [J].Journal of Hazardous Materials, 8, 323–333, 1980.
    Glade, T., 2005.Linking debris-flow hazard assessments with geomorphology[J].Geomorphology Vol 66, 189–213.
    Glade, T.: Vulnerability assessment in landslide risk analysis[J]. DieErde, 134, 123–146, 2003.
    González, E., Herreros, M.I., Pastor, M.,et al.2003.Discrete and continuum approaches for fast landslide modeling[r].Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the 1st International PFCSymposium,Gelsenkirchen.Lisse, AA Balkema, pp.307–313.
    GWO-FONG LIN,LU-HSIEN CHEN,JUN-NAN LAI.Assessment of Risk due to Debris Flow Events: A Case Study in Central Taiwan[J].Natural Hazards (2006) 39: 1–14.
    H.Bohnenblust, Risk-based decision making in the transportation sector[C].In: R.E.Jorissen, Quantified Societal Risk and Policy Making, Kluwer Academic Publishers, Dordrecht, 1998.
    H.A.Merz, T.Schneider, H.Bohnenblust, Bewertung von technischen Risiken (in German), VDF Hochschulverlag[J], ETH Zurich, 1995.
    Health and Safety Executive.The tolerability of risk from nuclear power stations[R].HMSO, London, UK.1988.
    http://baike.baidu.com/view/7135.htm
    http://www.people.com.cn/GB/paper464/14791/1312500.html.
    Huebl,J.,Fiebiger,G.,2005.Debris-flow mitigation measures[R].In: Jakob, M., Hungr, O.(Eds.), Debris-flow Hazards and Related Phenomena.Springer, Berlin,:445–487.
    Huggel, C., K??b, A., Haeberli, W., 2003.Regional-scale models of debris flows triggered by lake outbursts[C]. the 25 June 2001 debris flow at T?sch (Switzerland) .
    Rickenmann, D., Chen, C.(Eds.), 3rd Int.Conf.on Debris-Flow Hazards Mitigation. Millpress, Rotterdam,The Netherlands, pp.1151–1162.
    Hungr, O., 1995.A model for the runout analysis of rapid flow slides, debris flows, and avalanches [J].Canadian Geotechnical Journal 32, 610–623.
    Hungr, O., Morgan, G.C., and Kellerhals, R.: Quantitative analysis of debris torrent hazard for design of remedial measures[J], Canadian Geotechnical Journal, 21, 4, 663–677, 1984.
    Hungr,O.,Morgan, G.C., VanDine, D.F, et al.1987.Debris flow defenses in British Columbia.Reviews in Engineering Geology[C], Volume VII, Debris Flows/Avalanches: Process, Recognition, and Mitigation.The Geological Society of America, Boulder, Colorado, pp.201–222.
    Ikeya, H., 1989.Debris flow and its countermeasures[J].Japan.Bulletin of the International Associa -tion of Engineering Geology 40, 15–33.
    Inter-Agency Secretariat of the International Strategy for Disaster Risk Reduction (UN-ISDR). Living with risk, a global review of disaster reduction initiatives[R]. UN Sales Pubblication, 2004.
    J.S.Nathwani, N.C.Lind, M.D.Pandey, Affordable safety by choice: the life quality method, Institu -te for Risk Researc[M]h, University of Waterloo, Canada ISBN, 1997.
    Jakob, M., 2005.Debris-flow hazard analysis[C].In: Jakob, M., Hungr, O.(Eds.), Debris-flow Haz -ards and Related Phenomena.Springer, Berlin, pp.411–443.
    Johnsonp.A, Mcguenr.H.Magnitude and frequency of debris flows[J].Journal of hydrology, 1991,vol.123,(1-2),pp:69-82.
    Kates, R.: The interaction of climate and society[C], edited by: Kates,R., Ausubel, J.and Berberian, M., Climate impact assessment,Wiley, New York, 3–36, 1985.
    Keiler, M., Zischg, A.and Fuchs, S.: Methoden zur GIS-basierten Erhebung des Schaden poten -tialls für nature after industrization Risk[J], Wichmann, Heidelberg, 118–128, 2006.
    Kienholz H.Gefahrenkarten 2M assgebliche Parameter and Kriterien zur Festlegung von Intensit etsstufen[J ].Interp raevent 1996, Band 3: 47-58.
    Kunreuther, H., Novemsky, N., Kahneman, D.: Making low probabilities useful[J], J.Risk Uncer -tainty, 23, 103–120, 2001.
    Leone, F., Asté, J.-P., and Leroi, E.: L’évaluation de la vulnérabilitéaux mouvements du terrain: Pour une meilleure quantification durisqu[J]e, Revue de Géographie Alpine, 84, 35–46, 1996.
    Lied,K.Instantes, B., Domaas, U., and Harbitz, C.B.1998.Snow avalanche at Bleie, Ullensvang[J], January 1994.Norwegian Geotechnical Institute Publication No.203, pp.175–181.
    Lin C W et al.Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed[J], Nantou, Taiwan.Engineering Geology, 2003, 71:49–61.
    Lorente, S.Beguer, J.C.Bathurst, et al.Debris flow characteristics and relationships in the Central Spanish Pyrenees[M].Natural Hazards and Earth System Sciences (2003) 3: 683–692
    M.Piers, Methods and models for the assessment of third party risk due tot aircraft accidents in the vicinity of airports and their implications for societal risk[C], Quantified Societal Risk and Policy Making, Kluwer Academic Publishers, Dordrecht, 1998.
    Marcel Hürlimann, Ramon Copons, Joan Altimir .Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach[J].Geomorphology 78 (2006) 359–372.
    Marcel Hürlimann, Ramon Copons, Joan Altimir .Detailed debris flow hazard assessment in And -orra: A multidisciplinary approach[J].Geomorphology 78,2006:359–372.
    Martin Mergili.Debris Flows as Natural Hazards Along the Trans-Andean Corridor Mendoza– Valparaíso: Establishing Spatially Distributed Hydrological Thresholds Combining Deterministic and Artificial Intelligence Methods[R].2006
    Mc Clung, D.M., and Lied, K.Statistical and geometrical definition of snow avalanche runout [J].Cold Regions Science and Technology,.1987,13(2): 107–119.
    McArdell, B.W., Cesca, M.,Huggel, C., Scheuner, T.,Graf, C., Christen, M., 2007.Numerical modeling of debris flow runout in the Swiss Alps[J].Geological Society of America Abstracts with Programs 39, 438-445.
    McClung,D.M.and Mears,A.I.1991.Extreme value prediction of snow avalanche runout[J].Cold Regions Science and Technology, 19: 163–175.
    McClung.2001.Extreme avalanche runout:a comparison of empirical models [J]. Can. Geotech. J.38: 1254–1265.
    McDougall, S.D.,Hungr,O., 2003.Objectives for the development of an integrated three- dimens -ional continuum model for the analysis of landslide runout[C]. Proceedings of the Third International Conference on Debris Flow Hazard Mitigation. Millpress, Rotterdam, Netherlands : 481–490.
    Melelli1,A.Taramelli.An example of debris-flows hazard modeling using GIS[J].Natural Hazards and Earth Sy stem Sciences (2004) 4: 1–12.
    Meyer, G.A.,Wells, S.G., 1997.Fire-related sedimentation events on alluvial fans, Yellowstone National Park[J], U.S.A.Journal of Sedimentary Research 67, 776–791.
    Michael-Leiba, M., Baynes, F., Scott, G., and Granger, K.: Regional landslide risk to the Cairns community[J].Nat.Hazards, 30,233–249, 2003.
    Mileti, D.: Disasters by design[M], Joseph Henry Press, Washington,1999.
    Mitchell, J.: Hazards research[M], edited by: Gaile, G.and Willmott,C., Geography in America, Merill, Colombus, 410–424, 1989.
    Miyazawa, N., Tanishima, T., Sunada, et al.2003.Debris-flow capturing effect of grid type steel-made sabo dam using 3D distinct element method[C]. Proceedings of the Third International Conference on Debris Flow Hazard Mitigation,, Netherlands, pp.527–538.
    Mizuyama, T., 1982.Analysis of sediment yield and transport data for erosion control works. Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield[C]. Proceedings of the Exeter Symposium, July, pp.177–182
    N.Pidgeon, L.Hopkins, Value of life and insensitivity to quantity in contingent valuation judgements[C], In: M.P.Cottam, D.W.Harvey, R.P.Pape, J.Tait (Eds.), ESREL 2000—Foresight and Precaution, Edinburgh, Scotland, UK, 2000.
    New South Wales Department of Urban Affairs and Planning (DUAP) [J].Risk criteria for land use and safety planning.1992.
    Ngo EB.When disasters and age collide:reviewing vulnerability of the elderly [J].Natural Hazards Review,2001,2(2):80-89.
    Novtny V Chters G.Handbook 0f Nonpoint Polution,Sources and Managements[J],VaⅡNostrand Reinhold Company,1981.
    O’Keefe, P., Westgate, K., and Wisner, B.: Taking the naturalness out of natural disasters[J], Nature,Vol.260,566–567,1976.
    O'Brien, J.S., Julien, P.Y., Fullerton, W.T., 1993.Two-dimensional water flood and mudflow simulation[J].Journal of Hydraulic Engineering 119, 244–261.
    
    Optimx Limited.2002.Waiho River Flooding Risk Assessment.Report 80295/2 prepared for the Ministry of Civil Defence and Emergency Management[R], Wellington, New Zealand, August 2002.
    P.H.Bottelberghs, Risk analysis and safety policy developments in The Nether lands[J]. Hazard. Mater.71(2000) 59–84.
    Panizza M.Environmental Geomorphology[M].Amsterdam:Elsevier,1996.
    Petak, W.and Atkisson, A.: Natural hazard risk assessment and public policy[R], Springer, New York, 1982.
    Petrascheck, A., Kienholz, H..Hazard assessment and mapping of mountain risks in Switzerland[C].In: Rickenmann, D., Chen, C.(Eds.), 3rd Int.Conf.on Debris-Flow Hazards Mitigation.Millpress, Rotterdam, The Netherlands, 2003: 25–39.
    Pijawka, K.and Radwan, A.: The transportation of hazardous materials:risk assessment and hazard management[J]. Dangerous Properties of Industrial Materials Report, September/October, 2–11,1985.
    Ping-Sien Lin , Ji-Yuan Lin, Shang-Yuh Lin et al.Hazard Assessment of Debris Flows by Statistical Analysis and GIS in Central Taiwan[J].International Journal of Applied Science and Engineering.vol.4, 2006:165-187.
    Raimon Palla, Joan Manuel Vilaplanaa, Marta Guinaua, et al.A pragmatic approach to debris flow hazard mapping in areas affected by Hurricane Mitch: example from NW Nicaragua[J]. Engineer -ing Geology 72 (2004) 57–72.
    Rebetez, M., Lugon, R.Baeriswyl, P.A..Climatic Change and Debris Flows in High Mountain Regions:The Case Study of the Ritigraben Torrent (Swiss Alps) [J].Climate Change 1997, 36: 371-389.
    Rickenmann, D., 2005.Runout prediction methods.In:Jakob,M,Hungr,O.(Eds.), Debris- flow Hazards and Related Phenomena.Praxis [J], Chichester, UK, pp.305–324.
    Rickenmann,D., 1999.Empirical relationships for debris flows[J].Natural Hazards 19, 47–77.
    Romang, H.: Wirksamkeit und Kosten von Wildbach-Schutzmassnahmen[m], Verlag des Geographis Institut of University Bern, Bern, 2004.
    Ron Arksey.Doug VanDine.Example of a debris-flow risk analysis from Vancouver Island, British Columbia[J], Canada.Landslides (2008) 5:121–126.
    S.E.vanManen, J.K.Vrijling, The problem of the valuation of a human life[R], in: C.Cacciabue, I.A.Papazoglou (Eds.), Probabilistic Safety Assessment and Management’96, ESREL 96—PSAM -III, Crete, 1996, p.1911.
    S.Fuchs, K.Heiss, and J.Hübl.Towards an empirical vulnerability function for use in debris flow risk assessment[J].Nature.Hazards Earth System.Sci., 7, 495–506, 2007.
    S.N.Jonkman, P.H.A.J.M.van Gelder , J.K.Vrijling.An overview of quantitative risk measures for loss of life and economic damage[J]. Journal of Hazardous Materials A99 (2003) 1–30.
    Sassa, K..Special lecture: geotechnical model for the motion of landslides [C].Proceedings of the 5th International Symposium on Landslides, 1988,:37–55.
    Schilling, S.P., Iverson, R.M., 1997.Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows[C].In: Chen , New York:176–186.
    Shook , G.An assessment of disaster risk and its management in Thailand[J]. Disasters,1997 ,21 (1) :77-881
    Smith K.Environmental Hazards: A ssessing R isk and Reducing D isaster[M ].London: Routledge, 1996: 12-38.
    Sosio, M.Pozzoni, C.Ambrosi et al.Modeling the debris flow expansion on alluvial fan areas - A comparison of different modeling approaches[J].Geophysical Research Abstracts,Vol.8,2006,:304-311.
    Susman, O., O’Keefe, P., andWisner, B.: Global disasters: a radical interpretation [M]. edited by: Hewitt, K., Interpretations of calamity,Allen & Unwin, Boston, 264–283, 1983.
    Takahashi, T., 1981.Estimation of potential debris flows and their hazardous zones; soft counter measures for a disaster[J].Natural Disaster Science 3, 57–89.
    TANG Chuan, ZHU Jing.Use of GIS Technology for Torrent Risk Zonation in the Upstream Red River Basin,China[J].J Geographical Sciences , 2006,16, (4):1-8
    TAW, Technical Advisory Committee onWater Defences, Some considerations of an acceptable level of risk in The Netherlands[J], TAW, 1985.
    Thomas K.Collins.Debris flows caused by failure of fill slopes: early detection,warning, and loss prevention[J].Landslides 2008,5:107–120.
    Timmerman, P.: Vulnerability, resilience and the collapse of society [C], Environmental Monograph,1,Institute of Environmental Studies, University of Toronto, 1981.
    Tobin G,Montz B.Natural Hazards:ExplanationandIntegration[M]. NewYork: The Guilford Press ,1997.1-388.
    Tung-Chiung Chang.Risk degree of debris flow applying neural networks[J].Nat Hazards,2007, 42:209–224.
    UNDRO: Mitigation natural disasters: phenomena, effects, and options.A manual for policy makers and planners[R], Office of the United Nations Disaster Relief Co-ordinator, Geneva, 1991.
    UNDRO: Natural disasters and vulnerability analysis[R], Office of the United Nations Disaster Relief Co-ordinator, Geneva, 1982.
    United Nations,Department of Humanitarian Affairs.Internationally Agreed GlossaryofBasic Terms Related to Disaster Management[J],Geneva,1992.
    US Department of the Interior Bureau of Reclamation (USBR).1999.A Procedure for Estimating Loss of Life Caused by Dam Failure[R].Dam Safety Office, Colorado, September 1999.
    Varnes, D.: Landslide hazard zonation: a review of principles and practice[R], UNESCO, Paris, 1984.
    Varnes, D.J.Landslide Hazard Zonation: A Review of Principles and Practice[R].Paris: United Nations International.1984.
    Watts, M.and Bohle, H.-G.: The space of vulnerability: the causal structure of hunger and famine [J], Human Geogr., 17, 43–67, 1993.
    Weichselgartner, J.: Disaster mitigation: the concept of vulnerability revisited[J], Disaster Preven -tion and Management, 10, 85–94,2001.
    
    Weinmeister H W.Gefahrenzonenp lanung2Bedeutung und Grenzed[M].OesterrWasserw irtschaft Jg, 1992: 139~143.
    White, G.: Natural hazards research[C], edited by: Chorley, R., Directions Geography, Menthuen, London, 1973, 193–216.
    Wisner, B.: Assessment of capability and vulnerability[C], edited by:Bankoff, G., Frerks, G.and Hilhorst, D., Mapping vulnerability,Earthscan, London, 183–193, 2004.
    World Commission on Environment and Development,Our common future[M].Oxford: Oxford University Press; 1987.
    艾南山,张林源,咎廷全.泥石流活动性的一种判别方法[J].铁道工程学报,1986,(4):56-59.
    艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-7.
    艾南山.再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-7.
    陈杰,崔鹏,韦方强等.基于模糊关系理论的冰川泥石流活动性评价方法[J].水土保持研究,2003,10(2):1-4.
    陈廷方,崔鹏,王学杰.泥石流多发区土地荒漠化程度模糊综合评判研究[J].干旱地区农业研究,2006,24(6):189-194.
    程根伟.山区暴雨泥石流风险估算及其发生规模预测[J].中国科学E辑(增刊),2003,10-16.
    邓聚龙.灰色系统基本方法.武汉[M]:华中理工大学出版社,1987.
    丁继新,杨志法,尚彦军等.区域泥石流灾害的定量风险分析[J].岩石力学,2006, 27 (7):71-76.
    杜榕桓,康志成,陈循谦等.云南小江泥石流综合考察于防治规划研究[M].重庆:科学文献出版社重庆分社,1987.
    杜榕桓,李德基,祁龙.我国山区城镇泥石流减灾特点与防御对策研究[M].中国自然灾害灾情分析与减灾对策.武汉:湖北科学技术出版社,1992.331-337.
    段旭,陶云.云南省不同地质地貌条件下滑坡泥石流与降水的关系[J].气象,2007,33(9):33-39.
    冯志泽,胡政.建立城市自然灾害承灾能力评价指标的思路探讨[J].灾害学,1994,(4):40-44.
    高兴和.地质灾害承灾体易损性探究[J].中国地质矿产经济,2002(4):28-31.
    洪志国,李焱,范植华等.层次分析法中高阶平均随机一致性指标(RI)的计算[J].计算机工程与应用,2002,(12):45-47.
    侯兰功,崔鹏.单沟泥石流灾害危险性评价研究[J].水土保持研究,2004,11(2):125-128.
    胡健,匡尚富,徐永年二维非恒定粘性泥石流运动堆积的数值模拟[J].泥沙研究,2006,(6):61-64.
    胡健.泥石流与主河的汇流机理及泥石流运动的数值模拟[D].中国水利水电科学研究院,2002.
    胡凯衡,韦方强,何易平,等.流团模型在泥石流危险度分区中的应用[J].山地学报,2003,21 (6):726-730.
    蒋忠信.泥石流流域系统的超熵[J].中国地质灾害与防治学报,1992,3(1):33-40.
    解明恩,程建刚.云南滑坡泥石流灾害的气象成因与监测[J].山地学报,2005,23(5):571-578.
    康志成,李焯芬,马蔼乃等.中国泥石流研究[M].科学出版社,2004.
    匡乐红,刘宝琛.基于模糊可拓方法的泥石流危险度区划研究[J]灾害学,2006,21(1):68-72.
    李发斌,崔鹏,周万村等.用遗传神经网络分析泥石流活动性[J].中国地质灾害与防治学报,2003,14(3):16-20.
    李洪然,李广杰,秦胜伍.和龙市东城镇泥石流灾害趋势多元分析与危险性评价[J].吉林大学学报(地球科学版),2005,35(1):97-103.
    李新坡,莫闻多(2005)应用GIS和神经网络方法进行泥石流危险度评价的研究—以云南省为例[J].水土保持研究,12(4):7-9.
    李杨杨.神经网络方法评价泥石流危险度[J].黑龙江水专学报,2008,35(1):87-90.
    廖谦,倪晋仁,曲轶众等.阵性泥石流运动与堆积的欧拉-拉格朗日模型-应用[J].自然灾害学报,2000,(4):53-58.
    廖育民主编.地质灾害预报预警与应急指挥及综合防治实务全书[M].哈尔滨:哈尔滨地图出版社,2003.
    刘洪江,唐川,崔鹏.GIS支持下的东川区泥石流危险度区划[J].干旱区地理.2005,28(4): 445-448.
    刘加龙,吕希奎,刘贵应.模糊综合评判法在泥石流灾度评价中的应用[J].地质科技情报,2001,20(4):86-89.
    刘希林,莫多闻.泥石流风险评价[M].成都:四川科技出版社,2002.1-8.
    刘希林,莫多闻.泥石流易损度评价[J].地理研究,2002,21(5):569-577.
    刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995
    刘希林,张松林,唐川.泥石流危险范围模型实验[J].1993,12(2):77-85.
    刘希林.泥石流地貌标志的初步探讨[J].灾害学,1987,(4):27-32.
    刘希林.泥石流风险区划研究[J].地质力学学报,2000,6(4):37-42.
    刘艳,康仲远,赵汉章等.我国城市减灾管理综合指标体系的研究[J].自然灾害学报,1999,8(2):61-66.
    刘涌江,胡厚田,白志勇.泥石流危险度评价的神经网络法[J].地质与勘探,2001,37(2):84-87.
    刘章军.基于模糊概率方法的泥石流危险性评价[J].三峡大学学报(自然科学版),2007,19(4):295-298.
    罗冠枝,徐林荣.基于粗糙集和灰色理论的模糊综合定权法在泥石流危险性评价中的应用[J].安全与环境工程,2008,15(3):1-4.
    罗元华.泥石流堆积区灾害破坏损失评价方法[J].中国地质矿产经济.2000,4:33-39.
    马建华.系统科学及其在地理学中的应用[M].北京:科学出版社.2003,56-99.
    马晋宗.中国气象洪涝海洋灾害[M].长沙:湖南人民出版社,1998.
    倪晋仁,王光谦.泥石流的结构两相流模型:(Ⅰ)、(Ⅱ)[J].地理学报,1998,(1):66-85.
    水源邦夫,戈素芬.关于泥石流规模预测的研究[J].水土保持科技情报,1997,(1):112-116.
    四川省地矿局909地质队.四川省地震灾区绵阳市北川县白什乡白水河泥石流勘查报告[R],2009
    四川省地矿局909地质队.四川省地震灾区绵阳市北川县陈家坝乡樱桃沟泥石流勘查报告[R],2009
    四川省地矿局909地质队.四川省地震灾区绵阳市北川县擂鼓镇麻柳湾泥石流勘查报告[R],2009
    四川省地矿局成都水文队.四川省地震灾区绵阳市北川县擂鼓镇柳林沟泥石勘查报告[R],2009
    四川省地矿局川西北地质队.四川省地震灾区绵阳市北川县禹里乡禹穴沟泥石流勘查报告[R],2009
    四川省冶金地勘局蜀通岩土工程公司.四川省地震灾区绵阳市北川县磨房沟泥石流勘查报告[R],2009
    四川省冶金地勘局蜀通岩土工程公司.四川省地震灾区绵阳市北川县禹里乡倒开门沟泥石流勘查报告[R],2009
    四川省冶金地勘局水文工程大队.四川省地震灾区绵阳市北川县擂鼓镇苏宝河泥石流勘查报告[R],2009
    四川省冶金地勘局水文工程大队.四川省地震灾区绵阳市北川县青片乡柴码子泥石流勘查报告[R],2009
    四川省冶金地勘局水文工程大队.四川省地震灾区绵阳市北川县片口乡泥石流勘查报告[R],2009
    四川省冶金地质勘查局水文工程大队.四川省地震灾区绵阳市北川羌族自治县擂鼓镇苏宝河泥石流应急勘查.2009.
    宋雪妲,邱建慧,李广杰等.和龙市泥石流灾害危险性分区评价[J].世界地质, 2004, 23(3): 289-294.
    苏经宇,周锡远,樊水荣.泥石流危险等级评价的模糊数学方法[J].自然灾害学报,1993,2(2): 83-90.
    苏鹏程,刘希林.四川泥石流灾害与降雨关系的初步探讨[J].自然灾害学报,2006,15(4):19-23.
    谭万沛,韩庆玉.四川省泥石流预报的区域临界雨量指标研究[J].灾害学,1992,7(2):37-42.
    唐邦兴.中国泥石流灾害.商务印书馆,2002.
    唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学, 2002,22(3):300-304
    唐川,沖村孝.基于RS/GIS的城市泥石流灾害集成评价研究-以中国昆明市东川城区为例[J].地理学报(台湾),2006,42:1-24
    唐川,梁惊涛.汶川震区北川9.24暴雨泥石流特征研究[R].2009.
    唐川,刘洪江.泥石流堆积扇危险度分区定量评价研究[J].土壤侵蚀与水土保持学报,1997,3(3):63-70.
    唐川,刘希林,朱静.泥石流堆积泛滥区危险度的评价与应用[J].自然灾害学报,1993,2(4): 79-84.
    唐川,铁永波.北川县城西山坡沟暴雨泥石流灾害调查与分析[R].2009
    唐川,许强.强震区城市地质灾害风险管理的研究内容与方法探讨[J].工程地质学报.2009 ,17(1):56-62.
    唐川,许向宁.5.12震后汶川城区地质灾害风险评估与恢复重建研究[R].2009
    唐川,张军,周春花等.城市泥石流易损性评价[J].灾害学,2005,20(2):11-17.
    唐川,周巨乾朱静等.泥石流堆积扇危险度分区评价的数值模拟研究[J].灾害学,1994,9(4):5-13.
    唐川,朱静.城市泥石流风险评价探讨[J].水科学进展,2006,17(3):383-388.
    唐川,朱静.云南滑坡泥石流研究[M].北京:商务印书馆.2003.
    唐川.泥石前堆积泛滥过程的数值模拟及其危险范围预测模型研究[J].水土保持学报,1994.8(1):11-15
    唐川.平面二维泥石流数值模拟方法的探讨[J].水文地质工程地质,1994,(5):9-12.
    铁永波,唐川.城市灾害应急能力评价指标体系建设[J].城市问题,2005,(6):64-68.
    铁永波,唐川.城镇地质灾害应急能力评价[J].自然灾害学报,2009,24(2):1-4.
    铁永波,唐川.防灾优于救助—重视公众防灾意识在城市减灾中的积极作用[J].现代职业安全,2005,(8):78-79.
    铁永波,唐川.山区城镇泥石流灾害风险控制模式探讨[J].灾害学,2008,23(3):10-14.
    汪明武,金菊良,李丽.投影寻踪新方法在泥石流危险度评价中的应用[J].水土保持学报,2002,16(6):79-81.
    汪明武.基于神经网络的泥石流危险度区划[J].水文地质工程地质,2000(2):18-19.
    汪洋,郭跃,赵纯勇等.基于3s技术的地质灾害易损性面评价研究[J].灾害学,2003,18(4):17—23.
    王纯祥,白世伟,江崎哲郎等.基于GIS泥石流二维数值模拟[J].岩土力学,2007,28(7):59-64.
    王光谦,邵颂东,费祥俊.泥石流模拟: (Ⅰ)、(Ⅱ) (Ⅲ) [J].泥沙研究,1998,(3):7-22.
    王继康,泥石流防治工程技术[M].北京:中国铁道出版社,1996:61~63.
    王礼先.北京山区荒漠溪分类与危险区制图[J].山地研究, 1995, 13 (3) : 141-146.
    王礼先.水土保持学[M].北京:中国林业出版社,1995:429-433.
    王念秦,姚勇.基于模糊数学和权的最小平方法的泥石流易发性评价方法[J].灾害学,2008,23(2):5-9.
    王晓朋,潘懋,丛威青等.辽宁鞍山市岫岩县泥石流区域危险性评价[J].水文地质工程地质,2006(2):93-95.
    王晓朋,潘懋,徐岳仁.基于流域单元的泥石流区域危险性评价[J].山地学报,2006,24(2):177-180.
    王子健,肖盛燮,戴廷利等.泥石流危险度模糊综合评判方法及应用[J].重庆交通大学学报(自然科学版),2008,27(5):794-798.
    韦方强,城镇泥石流减灾决策支持系统[C],西南交通大学博士论文,2002.
    韦方强,胡凯衡,JLLopez,等.泥石流危险性动量分区方法与应用[J].科学通报,2003,48(3): 298-301
    韦方强,胡凯衡.山区城镇泥石流减灾决策支持系统[J].自然灾害学报,2002,11(2):31-37.
    吴积善.泥石流及其综合治理[M].北京:科学出版社,1993.
    谢洪,钟敦伦.城镇泥石流减灾系统工程刍议[J].水土保持学报,2000,14(5):136-141.
    徐俊名,谭万沛,1976年松潘平武地震泥石流,泥石流(3) [M],重庆:科学技术文献出版社重庆分社,1986,67-75
    徐小飞,马东涛.贡嘎山地区泥石流形成的水热组合分析[J].山地学报,2007,25(4):431-437.
    杨三强,郝培文,万战胜.G217天山公路典型泥石流沟危险性评价研究[J].中国地质灾害与防治学报,2008,19(3):26-28.
    于秀治,韦京莲.灰色系统理论在北京山区泥石流危险度评价预测中的应用[J].中国地质灾害与防治学报,2004,15(1):118-120.
    余斌,王士革,谢洪等.岷江上游汶川“5 12”强震区泥石流活动特征的初步研究[R].2009.
    岳天祥,艾南山,张英保.论流域系统稳定性的判别指标—超熵[J].水土保持学报,1989,3(2):20-28.
    张成杰,王常明,王钢城等.灰色关联法在泥石流危险性评价中的应用[J].吉林地质,2005,24(4):111-115.
    张春山,吴满路,张业成.地质灾害风险评价方法及展望[J].自然灾害学报,2003,12(1):96-102.
    张春山.北京北山地区泥石流灾害危险性评价[J].北京地质,1996(2):11-20.
    张汉雄.人为泥石流灾害严重等级的定量模糊综合评判[J].自然灾害学报,1996,5(3):61-70.
    张丽萍,唐克丽.矿山泥石流成灾度模糊综合评价—以神府东胜矿区为例[J].山地学报,2002,20(2):212-217.
    张梁,张业成.地质灾害经济损失评价方法研究[J].中国地质灾害与防治学报.1999.11(12);95-102.
    赵源,刘希林.泥石流灾害损失评价[J].中国地质灾害与防治学报,2005,16(3):42-47.
    赵源,刘希林.人工神经网络在泥石流风险评价中的应用[J].地质灾害与环境保护,2005,16(2):135-138.
    钟敦伦.试论地震在泥石流活动中的作用[C].全国泥石流学术会议论文集,中国科学院成都地理研究所,1980.3,100-109.
    邹翔,崔鹏,韦方强等.灰色关联度分析法在泥石流活动性评价中的应用[]J.山地学报,2003,21(3):360-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700