用户名: 密码: 验证码:
泥石流动力过程模拟及特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流是一种在山区频发的地质灾害,其具有很强的破坏性,常常会对人们的生命和财产安全构成严重的威胁,也成为制约山区发展的重要因素。随着科学技术的不断发展,结合泥石流动力模型方程的数值模拟已经成为泥石流研究的重要手段,其不但可以反演再现灾害的发展过程,便于人们提高对泥石流的认识,还可以对泥石流灾害进行预测预报,为防灾减灾设计提供参考。泥石流的研究引起了各领域的高度重视,在近些年取得了一定的成果,但由于本身具有复杂的成分组成和力学机制,泥石流的研究仍是国内外工程领域的热点和难点课题。
     本文首先对泥石流动力模型方程进行研究,讨论了泥石流的静动力阻力特征,通过修正静力条件下的底面剪切阻力项,得到了具有静动力统一特征的模型方程,实现了动力方程在静力条件下向静力方程的回归,从而完善了模型方程理论。在此基础上,应用静力方程和静力分析方法推导得到了泥石流堆积形态曲线,并对不同边界条件和材料组成条件下的堆积形态进行了讨论和分析。
     以HLL格式的近似Rimann解为基础,采用有限体积数值离散方法在无结构三角形网格上对泥石流动力模型方程进行数值离散,并采用空间MUSCL线性重构方法和时间二步Rung-Kutta方法得到具有时间和空间二阶精度的格式,典型算例的数值验证表明本文的数值格式具有较高的精度和分辨率,是稳定和有效的。
     应用已经建立的理论模型和数值方法,对不同条件下的泥石流动力过程进行数值模拟试验研究,讨论不同条件对泥石流动力过程的影响,研究其中的规律和特征。其中包括能量过程的研究、底阻条件及侵蚀条件对动力过程的影响、以及障碍物对动力过程的影响等。
     最后,对两个具体的灾害实例进行数值反演计算分析,通过数值计算模拟再现出动力发展的过程,并将计算所得致灾范围与实际情况做对比分析,通过对动力过程中出现的现象和问题进行讨论和分析,揭示出底面水压力和侵蚀作用在动力发展过程中的重要作用。
Debris flow is one of the common mountain hazards which seriously threaten human lives and belongings and affect humain normal life, and therefore, it becomes an important factor restricting the development of mountain area. With the development of scientific technology, the numerical simulation combining with the dynamic model equation of debris flow has become a main method to study debris flow. In this way, we can not only know more about debris flow through the inversion and reappearance of the happening of these disasters, but also predict debris flow in order to provide an appropriate design for the prevention of disasters. The research on debris flow is paid great attention by different fields and certain achievements have been obtained. However, due to its complexe components and mechanical mechanism, the study of debris flow remains a hot and difficult subject in home and abroad engineering field.
     In this paper, the dynamic model equation of debris flow is analysed, the characteristics of static and dynamic resistance of debris flow are dicussed, by modifying the shear resistance term at bottom surface under static conditions, the model equation which has the uniform characteristic of static and dynamic is obtained, and the return of dynamic equation to static equation under static conditions is realized, and thus, the theory of model equation is perfected. On the basis of these analyses and with the static analysis method, the accumulation state curve of debris flow is obtained by deducting the static equation. Futhermore, the accumulation sate under different boundary conditions and different composing material conditions is also discussed.
     Based on the approximate Riemann solver of HLL scheme, the numerical discretization of dynamic model equation on unstructured triangular meshes is achieved with finite volume method. By use of space MUSCL linear reconstruction and time two-step Rung-Kutta, the format of space-time second order accuracy is obtained. The numerical validation of concrete example shows that the numerical scheme has higher precision and resolution, and proves its stability and effectivity.
     With the established theoretical model and numerical methods, the numerical simulation of dynamic process of debris flow under different conditions is achieved. The influence of different conditions on dynamic process of debris flow and the included regularities and characteristics as those of energy process, the influence of bottom surface resistance conditions, erosion conditions and obstacles on dynamic process, and so on are also discussed.
     Finally, through the numerical inversion and calculative analysis of two concrete disaster cases, the dynamic development process reappears with the numerical simulation methods. Comparing these obtained disaster-caused areas with the real ones, it can be seen from the discussion and analysis on the phenomenon happened during the dynamic process that basal water pressure and erosion play important roles during the occurrence process of disasters.
引文
[1]成都山地灾害与环境研究所.中国泥石流.北京:商务印书馆, 2000.
    [2]罗元华,陈崇希.泥石流堆积数值模拟及泥石流灾害风险评估方法.北京:地质出版社, 2000.
    [3]胡厚田等.高速远程滑坡流体动力学理论的研究.成都:西南交通大学出版社, 2003
    [4] Lang T E, Dawson K L, Martinelli M J. Application of numerical transient fluid dynamics to snow avalanche flow: 1 Development of Computer Program Avalnch. Journal of Glaciology, 1979, 22(86): 107-115.
    [5] Lang T E, Martinelli M J. Application of numerical transient fluid dynamics to snow avalanche flow: 2 Avalanche modeling and parameter error evaluation. Journal of Glaciology, 1979, 22(86): 117-126.
    [6] Dent J D, Lang T E. Modeling of snow flow. Journal of Glaciology, 1980, 26(94):131-140.
    [7] Dent J D, Lang T E. A biviscous modified Bingham model of snow avalanche motion. Annals of Glaciology, 1983, 4: 42-46.
    [8] Voight B, Sousa J. Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Engineering Geology, 1994, 38(3-4): 261-297.
    [9] Schamber D R,. MacArthur R C. One-dimensional model for mud flows. In Proceedings of the ASCE Specialty Conference on Hydraulics and Hydrology in the Small Computer Age. New York: American Society of Civil Engineers,. 1985:1334-1339.
    [10] Liu K F, Mei C C. Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of Fluid Mechanics, 1989, 207: 505-529.
    [11] O’Brien J S, Julien P Y, Fullerton W T. Two dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 1993, 119(2):244~261.
    [12] Savage SB, Hutter K. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 1989, 199:177-215
    [13] Savage SB, Hutter K. The dynamics of avalanches of granular materials from initiation to runout. I: Analysis. Acta Mechanica, 1991, 86(1-4): 201-223.
    [14] Hutter K, Siegel M, Savage S B, Nohguchi Y. Two-dimensional spreading of a granular avalanche down an inclined plane: 1 Theory. Acta Mechanica, 1993, 100(1-2): 37-68.
    [15] Greve R, Koch T, Hutter K. Unconfined flow of granular avalanches along a partly curved surface:1 Theory. Proceedings of the Royal Society of London, 1994, A, 445: 399-413.
    [16] Gray J M N T, Wieland M, Hutter K. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, 1999, A, 455: 1841-1874.
    [17] Wieland M, Gray J M N T, Hutter K. Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. Journal of Fluid Mechanics, 1999, 392: 73-100.
    [18] Tai Y C, Gray J M N T. Limiting stress states in granular avalanches. Annals of Glaciology, 1998, 26: 272-276.
    [19] Chiou M C, Wang Y, Hutter K. Influence of obstacles on rapid granular flows. Acta Mechanica, 2005, 175(1-4): 105-122.
    [20] Yu B, Dalbey K, Webb A, et al. Numerical issues in computing inundation areas over natural terrains using Savage-Hutter theory. Natural Hazards, 2009,50(2): 249-267.
    [21] Bouchut F, Fernandez Nieto E D, Mangeney A, et al. On new erosion models of Savage-Hutter type for avalanches. Acta Mechanica, 2008, 199(1-4): 181-208.
    [22] Iverson R M, Denlinger R P. Flow of variably fluidized granular masses across three-dimensional terrain:1 Coulomb mixture theory. Journal of Geophysical Research, 2001, 106(B1):537~552.
    [23] Denlinger R P, Iverson R P. Flow of variably fluidized granular masses across three-dimensional terrain: 2 Numerical predictions and experimental tests. Journal of Geophysical Research, 2001, 106(B1):553~566.
    [24] Denlinger R P, Iverson R P. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research, 2004, 109(F1):14p.
    [25] Iverson R M, Logan M, Denlinger R P. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. Journal of Geophysical Research, 2004, 109(F1):16p.
    [26] Takahashi T. Debris flow. International Association for Hydraulic Research monograph. A.A. Balkema, Rotterdam.
    [27] Egashira S, Honda N, Itoh T. Experimental study on the entrainment of bed material into debris flow. Physics and Chemistry of the Earth (C), 2001, 26(9): 645-650.
    [28] Brufau P, García-Navarro P, Ghilardi P, Natale L, Savi F. 1D mathematical modelling of debris flow. Journal of Hydraulic Research, 2000, 38(6): 435-446.
    [29] Ghilardi P, Natale L, Savi, F. Modeling of debris flow propagation and deposition. Physics and Chemistry of the Earth, 2001, 26(9): 651-656.
    [30] Hungr O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 1995, 32: 610-623.
    [31] Hungr O. Simplified models of spreading flow of dry granular material. Canadian Geotechnical Journal, 2008, 45(8): 1156-1168.
    [32] Chen H, Lee C F. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 2003, 51: 269-288.
    [33] Crosta G B, Chen H, Lee C F. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology, 2004, 60(11): 127-146.
    [34] McDougall S, Hungr O. A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
    [35] McDougall S, Hungr O. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 2005, 42(5): 1437-1447.
    [36] Hungr O, McDougall S. Two numerical models for landslide dynamic analysis. Computers & Geosciences, 2009, 35(5): 978-992.
    [37] Mangeney-Castelnau A, Vilotte J P, Bristeau O, Perthame B, Bouchut F, Simeoni C. Yerneni S. Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research, 2003, 108(B11): 2527.
    [38] Pouliquen O. Scaling laws in granular flows down rough inclined planes. Physics of Fluids, 1999, 11(3): 542-548.
    [39] Pirulli1 M, Mangeney A. Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology. Rock Mechanics and Rock Engineering, 2008, 41(1): 59-84.
    [40]王光谦,倪晋仁.泥石流的颗粒流模型.山地研究, 1992, 10(1):1-10.
    [41]王光谦,倪晋仁.颗粒流研究述评.力学与实践, 1992, 14(1):7-18.
    [42]王光谦,倪晋仁.泥石流动力学基本方程.科学通报, 1994, 39(18):1700-1704.
    [43]唐川,刘希林.泥石流动力堆积模拟和危险范围预测模型.水土保持学报, 1993, 5(3):37-40.
    [44]唐川.泥石流堆积泛滥过程的数值模拟及其危险范围预测模型的研究.水土保持学报, 1994, 8(1):45-50.
    [45]唐川.泥石流堆积扇危险度分区评价的数值模拟研究.灾害学, 1994, (4):7-13.
    [46]唐川.平面二维泥石流数值模拟方法的探讨.水文地质工程地质, 1994, (5):9-12.
    [47]刘希林,唐川.泥石流危险性评价.北京:科学出版社, 1995.
    [48]余斌.二维定常泥流的模拟.自然灾害学报, 1995, 4(4):96-99.
    [49]章书成,陈英燕,袁晓凤,叶明富.粘性泥石流一维运动数学模型.自然灾害学报, 1996, 10(1):1-10.
    [50]詹钱登.土石流危险度之评估与预测.中华水土保持学报, 1994, 25(2):95-102.
    [51]詹钱登,陈晋琪等.运动波模式应用于一维土石流演算之研究.中华水土保持学报, 1994, 27(2):119-126.
    [52]倪晋仁,王光谦.泥石流的结构两相流模型:Ⅰ理论.地理学报, 1998, 53(1):66-76.
    [53]倪晋仁,王光谦.泥石流的结构两相流模型:Ⅱ应用.地理学报, 1998, 53(1):77-84.
    [54]王光谦,邵颂东,费祥俊.泥石流模拟:Ⅰ模拟.泥沙研究, 1998, (3):7-13.
    [55]王光谦,邵颂东,费祥俊.泥石流模拟:Ⅱ验证.泥沙研究, 1998, (3):14-17.
    [56]王光谦,邵颂东,费祥俊.泥石流模拟:Ⅱ应用.泥沙研究, 1998, (3):18-22.
    [57]邵颂东.流团模型在洪水与泥石流大尺度流动计算中的应用[博士学位论文].北京:清华大学, 1997.
    [58]倪晋仁,廖谦,曲轶众,章书成.阵性泥石流运动与堆积的欧拉-拉格朗日模型:Ⅰ理论.自然灾害学报, 2000, 9(3):8-14.
    [59]廖谦,倪晋仁,曲轶众,章书成.阵性泥石流运动与堆积的欧拉-拉格朗日模型:Ⅱ应用.自然灾害学报, 2000, 9(4):53-58.
    [60]倪晋仁,廖谦,曲轶众.多组分流元模型在稀性泥石流堆积分选特性研究中的应用.水利学报, 2001, (2):16-23.
    [61]胡健,匡尚富,徐永年.二维非恒定泥石流运动堆积的数值模拟.泥沙研究, 2006, (6):60-64.
    [62]罗元华,陈崇希,武强.云南省东川市深沟泥石流堆积动态模拟及减灾效益评估.地质学报, 2001, 75(1):138-143.
    [63]罗元华,陈崇希.泥石流堆积过程数值模拟及防灾效益评估方法.现代地质, 2000, 14(4):484-488.
    [64]韦方强,胡凯衡,程尊兰.西藏古乡沟泥石流的数值模拟.山地学报, 2006, 24(2):167-171.
    [65]王纯祥,白世伟,江崎哲郎,三谷泰浩.泥石流的二维数学模型.岩土力学, 2007, 28(6):1237-1241.
    [66]王纯祥,白世伟,江崎哲郎,三谷泰浩.基于GIS泥石流二维数值模拟.岩土力学, 2007, 28(7):1359~1368.
    [67]李同春,李杨杨,章书成,等.泥石流泛滥区域数值模拟.水利水电科技进展, 2008, 28(6):1-4.
    [68]鲁晓兵,王义华,王淑云,等.碎屑流沿坡面运动的初步分析.岩土力学, 2004, 25(s2):598-600.
    [69]鲁晓兵,张旭辉,崔鹏.碎屑流沿坡面运动的数值模拟.岩土力学, 2009, 30(s2):524-527.
    [70]陈春光,姚令侃.泥石流与主河交汇区三维数值模拟.重庆交通学院学报, 2006, 25(2):61-65.
    [71]陈春光,姚令侃,禹华谦.泥石流与水流场交汇耦合分析的MAC法.山地学报, 2001, 19(2):185-188.
    [72]王沁,姚令侃.格子Boltzmann方法及其在泥石流堆积研究中的应用.灾害学. 2007, 22(3):1-5.
    [73]王沁,姚令侃.一维粘性泥石流运动的格子Boltzmann模拟.灾害学, 2007, 22(4):1-5.
    [74]王沁,姚令侃,何平,汤家法.泥石流入汇主河的格子Boltzmann模拟.自然灾害学报, 2005, 14(3):29-33.
    [75]马宗源,张骏,廖红建.黏性泥石流拦挡工程数值模拟.岩土力学, 2007, 28(s1):389-392.
    [76]马宗源,廖红建,张骏. Bingham型黏性泥石流流体的三维数值模拟.西安交通大学学报, 2008, 42(9):1146-1150.
    [77]李珂,唐红梅,易丽云,陈洪凯,等.泥石流沟岸耦合三维数值仿真.重庆建筑大学学报, 2008, 30(1):68-76.
    [78] Pirulli1 M, Bristeau M O, Mangeney A, Scavia C. The effect of the earth pressure coefficients on the runout of granular material. Environmental Modelling & Software, 2007, 22(10): 1437-1454.
    [79] Hungr O, Evans S G. Entrainment of debris in rock avalanches; an analysis of a long run-out mechanism. Geological Society of America Bulletin, 2004, 116(9/10): 1240–1252.
    [80]杨重存.泥石流堆积形态分析.岩石力学与工程学报, 2003, 22(s2):2778~2782.
    [81] Jeyapalan J K, Duncan J M, Seed H B. Analyses of flow failures of mine tailings dams. Journal of Geotechnical Engineering, 1983, 109(2):150~171.
    [82] Chen C L. Generalized viscoplastic modeling of debris flow. Journal of Hydraulic Engineering, 1988, 114(3): 237-258.
    [83]王光谦,倪晋仁.波状泥石流运动特性分析.泥沙研究, 1994, (4):1~9.
    [84] Wang G Q. Analysis on the debris flow surges . International Journal of Sediment Research, 1994, 9(3):166-175.
    [85] Roe P L. Approximate riemann solvers parameter vectors and difference schemes. Journal of Computational Physics, 1981, 43(2): 357-372.
    [86] Harten A, Lax P D, Vanleer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 1983, 25(1):35-61.
    [87]谭维炎.计算浅水动力学.北京:清华大学出版社, 1998.
    [88] Pitman E B, Nichita C C, Patra A, Bauer A, Sheridan M, Bursik M. Computing granular avalanches and landslides. Physics of Fluids, 2003, 15(12):3638-3646.
    [89] Vollm?ller P. A shock-capturing wave-propagation method for dry and saturated granular flows. Journal of Computational Physics, 2004, 199(1):150-174.
    [90]王志力.基于Godunov和Semi-Lagrang1an法的二、三维浅水方程的非结构化网格离散研究[博士学位论文].大连:大连理工大学, 2005.
    [91]张大伟.堤坝溃决水流数学模型及其应用研究[博士学位论文].北京:清华大学, 2008.
    [92] Osher S. Convergence of generalized MUSCL schemes. SIAM Journal of Numerical Analysis, 1996, 22(5):947~961.
    [93] Hubbard M E. Multidimensional slope limiters for MUSCL type finite volume schemes on unstruc-tured grids. Journal of Computational Physics, 1999, 155(1):54~74.
    [94] Van Leer B. Towards the ultimate conservative difference scheme IV.A new approach to numerical convection. Journal of Computational Physics, 1979, 32:101-136.
    [95]柏禄海,金生.带源项浅水方程的高阶格式研究.水动力学研究与进展, 2009, 24(1):22~28.
    [96] Brufau P, García-Navarro P, Vázquez-Cendón M E. Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. International Journal for Numerical Methods in Fluids, 2004, 45 (10):1047~ 1082.
    [97] Brufau P, García-Navarro P. Two-dimensional dam break flow simulation. International Journal for Numerical Methods in Fluids, 2000, 33(1):35–57.
    [98] Medina V, Hurlimann M, Bateman A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 2008, 5(1): 127-142.
    [99] Mangeney A, Heinrich P, Roche R. Analytical solution for testing debris avalanche numerical models. Pure and Applied Geophysics, 2000, 157(6):1081–1096.
    [100] Hubet A. Schwallwellen in Seen als Folge von Felsstürzen. Mitteilung No.47 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, pp. 1-122. Engineering Geology, 1980, 63(3-4):1-18.
    [101]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1990.
    [102] Legros F. The mobility of long-runout landslides. Engineering Geology, 2002, 63(3-4):301-331.
    [103] Gray J M N T, Tai Y C, Noelle S. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics, 2003, 491: 161-181.
    [104] Teufelsbauer H, Wang Y,Chiou M C. Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granular Matter, 2009, 11(4):209-220.
    [105] Gray J M N T, Tai Y C, Noelle S. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics, 2003, 491 : 161-181.
    [106] Cruden D M, Hungr O. The debris of the Frank Slide and theories of rockslide-avalanche mobility. Canadian Journal of Earth Sciences, 1986, 23:425-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700