用户名: 密码: 验证码:
壁湍流标度律及SL标度律相关参数实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为研究湍流尺度间级串的普适性规律,标度律在湍流统计理论研究中具有非常重要的地位,它不仅可以为模式理论提供支持,更可以从统计学的角度阐述湍流机理,为动力学模型的建立提供指导。
     本文利用PIV系统对平板湍流边界层垂直于底面的流向、纵向平面内的二维速度场进行测量,并用小波分析和传统统计学的方法对实验数据进行处理和计算,首先用流向脉动速度、法向脉动速度和涡量分量分析了经典的K41标度律和SL标度律,结果显示,在湍流边界层越接近壁面的位置间歇性越明显;并且结构函数的阶数越高,标度指数越偏离各向同性的标度指数,也证明了间歇性的存在;同时分别对低阶(二分之一阶)结构函数和高阶(六阶)结构函数进行了分析,进一步说明了在湍流边界层内间歇性的存在,进而提出了一种预想标度律,并进行了简单的实验验证。
     在对几种经典标度律验证结论的基础上,又对流向和法向脉动速度小波系数的概率密度函数进行了分析,更进一步说明了间歇性的存在:同时计算了湍流边界层内的Kolmogorov耗散尺度,Taylor微尺度,剪切尺度,惯性尺度和积分尺度,并对相应的尺度进行了分析。结果显示,Kolmogorov耗散尺度、Taylor微尺度和惯性尺度基本上不随壁面距离的增大而变化,剪切尺度则随着壁面距离的增加呈线性增加,积分尺度在整体上呈上升趋势。
     然后对考虑了耗散率的广义ESS标度律和新形式标度律进行了阐述,并在不同壁面位置和不同尺度上对这两种标度律的标度指数进行探讨。结果发现,它们的标度指数随壁面位置的不同变化不大,并且广义ESS标度指数和K41标度指数比较符合,而新形式标度律的标度指数和斜率为0.5的直线(截距为0.5)(截距为0.5)符合的比较好。
     对湍流耗散率标度律的分析显示,湍流耗散率标度律在小尺度上具有普适性,并且随着壁面距离的接近,尺度越小,湍流的能量耗散越明显,距离壁面越远的地方,湍流的耗散率越小,且随着尺度的增加而迅速减小。对湍流的最高激发态的研究发现,最高激发态存在绝对标度指数,并且绝对标度律是由信号中最强耗散涨落的局部结构产生的。
     最后应用ESS标度指数、广义ESS标度指数和新形式标度指数拟合了SL标度律,拟合结果和实验数据符合的比较好,进而得出了间歇参数和最奇异标度指数,它们随尺度的变化并未表现出很强的规律性。但从整体上说,随着尺度的增加,间歇参数逐渐减小,并逐渐趋于稳定,说明了大尺度脉动的层次相似性要小于小尺度的层次相似性;对于最奇异标度指数来说,随着尺度的增加和壁面距离的增加,间歇参数逐渐趋于稳定,最奇异标度指数也逐渐趋于稳定,尺度越大,最奇异标度指数越稳定。用小波分析的方法对流向脉动速度进行分析重构,得到了不同尺度下的速度等值线图,也验证了上述结论。
As a universal principle of turbulence cascade, scaling law is important in the research on statistics of turbulence. It can not only provide support for estabishing theoretical models, but also guide people to setup dynamic model and expound the mechanism of turbulent flow from the point of view of the statistics.
     Scaling laws in near wall region of turbulent flow are addressed by analysing moments of velocity increments obtained by Particle-image Velocimetry (PIV) system in the boundary layer of a smooth flat plate. Two-dimensional instantaneous velocity fields are measured in the plane perpendicular to the flat wall and parallelled to streamwise direction. At different distances from the wall, the forms of Extended Self Similarity (ESS) is studied and compared with She-leveque (SL) scaling law and scaling law of K41 based on the wavelet analysis and traditional statistical methods. Results show that the closer to the wall, the wider the curve tail of probability density function becomes, which indicates more and more obvious intermittency. Anomalous are verified by the scaling expponents of moments of experimental data increase nonlinarely with increasing order of the moment in different wall distance. The high-order and low-order structure functions of velocity increments have scaling exponents with different wall distances that are different from K41 and SL. It is explained anomaly scaling law and intermittency.
     Dissipative, Taylor, inertial, shear and integral scale are also computed, and the relationship between them and vertical locations in turbulent boundary layer are obtained. When the wall normal distance increases, the variation of Dissipative, Taylor and inertia scale decrease, shear scale is linear increase and integral scale increases.
     The scaling exponents of the extended of refined similarity hypothesis and a new form of refined similarity are investigated with different distances from the wall and different scale. Experimental results incidate that the variation of structure function scaling exponents is small when the structures of the same scale are extracted at different wall normal distance. The curve of scaling exponents of the extended of refined similarity hypothesis is in accordance with scaling exponents of K41 and the curve of scaling exponents of the new form of refined similarity is in accordance with the curve whose slope is 0.5 with increasing of scale.
     Experimental investigation indicates that the scaling law of energy dissipation rate is universal at small scale. The most intensive structure proposed in Hierarehieal—Structure model further studied, and it is concluded that there exists an absolute scaling law for this struceture, and the statistical absolute scaling behavior only produced the local and strong intermittence strueture. In a statistical theory, it is essential to consider the local fluid structures, especially the strong intensive structures.
     Then, the scaling law of extended self similarity, extended of refined similarity hypothesis and a new form of refined similarity based on SL scaling law are used to fit the experimental curves and nice results are obtained. The parameterβandγof SL scaling law are obtained from fitting. Taking it all round, the parameterβdecrease with increasing scale, at last, the change of parameterβis small with increasing wall distance when the scale is large. It manifests that the hierarchy similarity parameter of large scale is larger than that of small scale. With increasing in scale, the parameterγbecames large and stable within different wall distance. At last, the results are verified from multi-scale flow contour patterns which are obtained by decomposion and reconstruction of streamwise fluctuatingvelocity by wavelet analysis.
引文
[1]周光垌,严宗毅,许世雄等.流体力学.北京:高等教育出版社,2000
    [2]杨宇,湍流边界层多尺度间歇性检测和控制[硕士学位论文].天津大学,2004
    [3]Taylor G I.The statistical theory of isotropic turbulence.J.Aeronautical Sciences,1937,4:311-315
    [4]Reynold O.On the dynamical theory of incompressible viscous fluids and the determination of the criterion.Phil.Trans.Roy.Soc.,1894,186-213
    [5]Townsend A A.The structures of turbulent shear flow.England:Cambridge University Press,1976
    [6]Corrsin S,Kistler A L.The free-stream boundaries of turbulent flow.NACA TN3133,1955,1033-1064
    [7]Kline S J.Reynolds W C,Schraub F A,et al.The structure of turbulent boundary layer.J.Fluid Meeh.,1967,30:741-773
    [8]Brown F N M,Roshko A.On density effects and large structure in turbulent mixing layer.J.Fluid Meeh.,1974,64:775-816
    [9]Orszag S A,Patterson G S.Numerical simulation of three-dimensional homogeneous isotropic turbulence.Phys.Review Lett.,1972,28:76-79
    [10]Xu C,Zhang Z.Origin of high kurtosis in viscous sublayer.Physics of Fluids,1996,8:1938-1942
    [11]张兆顺.湍流.北京:国防工业出版社,2002
    [12]Frisch U.Turbulence:The Legacy of A.N.Kolmogorov.England:Cambridge University Press,1995
    [13]Kolmogorov A N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds number,Dolk.Akad.SSSR.,1941,30,301,reprinted in Proc.R.Soc.Lond.,A1991,434:15-19
    [14]Kraichnan R H.Structure of isotropic turbulence at very high Reynolds numbers.J.Fluid Mech.,1959,5:497(see also in:Phys.Fluids,1964,7:1030)
    [15]Leslie D C.Developments in the theory of turbulence.Clarendon,Oxford, i.1983
    [16]Kolmogorov A N.A refinement of previous hypotheses concerning the local structure of turbulence in incompressible viscous fluid for very large Reynolds number.J.Fluid.Mech.,1962,13:82-85
    [17]Benzi R,Ciliberto S,Tripiccione R,et al.Extended self-similarity in turbulent flows.Phys.Rev.E,1993,48(1):R29-R32
    [18]Benzi R,Ciliberto S,Ruiz Chavarria G,et al.Extended self-similarity in the dissipation range of fully developed turbulent.Europhys Lett.,1993,24(4):275-279
    [19]Stolovitaky G,Sreenivasan K R.Scaling of Structure Function.Phys.Rev.E,1993,48(1):R33-R36
    [20]Briscolini M,Santangelo P,Succi S,et al.Extended self-similarity in the number-simulation of 3-dimensional homogeneous flows.Phys.Rev.E,1994,50(3):R1745-R1747
    [21]Ruiz Chavarria G,Baudet C,Ciliberto S.Hierarchy of the energy-dissipation moments in fully developed turbulence.Phys Rev Lett,1995,74(11):1986-1989
    [22]Toschi F,Amati G,Succi S,et al.Intermittency and structure functions in channel flow turbulence.Phys.Rev.Lett,1999,82(25):5044-5049
    [23]Toschi F,Leveque E,Ruiz-Chavarria G.Shear effects in non-homogeneous turbulence.Phys.Rev.Lett.,2000,85(7):1436-39
    [24]She Z S,Leveque E.Universal scaling laws in fully developed turbulence.Phys.Rev.Lett.,1994,70(3):336-339
    [25]佘振苏,苏卫东.湍流中的层次结构和标度律.力学进展,1999,29(3):289-301
    [26]Ruiz Chavarria G,Baudet C,Ciliberto S.Hierarchy of the energy-dissipation moments in fully developed turbulence.Phys Rev Lett.,1995,74(11):1986-1989
    [27]Belin F,Tabling P,Willaime H.Exponents of the structure function in a low temperature helium experiment.Physica D,1996,93(1):52-63
    [28]Lewis G S,Swinney H L.Velocity structure function,scaling,and transitions in high-Reynolds-number Coutte-Taylor flow.Phys.Rev.E,1999,59(5):5457-5467
    [29]Cao N Z,Chan S Y,She Z S.Scaling and relative scaling in the Navier-Stokes turbulence.Phys.Rev.Lett.,1996,76(20):3711-3714
    [30]Giles M J.Probaility distrution functions for Navier-Stokes turbulence.Phys.Fluids,1995,7(11):2785-2895
    [31]Cao N Z,Chan S Y.An intermittency model for passiver-scalar turbulence.Phys.Fluids,1997,9(5):1203-1205
    [32]Leveque E,Ruiz-Chavarria G,Baudet C,et al.Scaling laws for the turbulent mixing of a passive scalar in the wake of a cylinder.Phys.Fluids,1999,11(7):1869-1879
    [33]Gaudin E,Protas B,Goujon-Duran S,et al.Spatial properties of velocity structure functions in turbulent wake flows.Phys.Rev.E,1998,57(1):R9-12
    [34]Benzi R,Amati G,Casciola C M,et al.Intermittency and scaling laws for wall bounded turbulence.Phys.Fluids,1999,11(6):1-3
    [35]Jacob B,Olivieri A,Casciola C M.Experimental assessment of a new form of scaling law for near-wall turbulence.Phys.Fluids,2002,14:481-491
    [36]Anselmet F,Gagne Y,Hopfinger E J,et al.Higher order velocity structure functions in turbulent shear flows.J.Fluid Mech.,1984,140:63-89
    [37]Antonia R A,Orlandi P,Romano G P.Scaling of longitudinal velocity increments in a fully developed turbulent channel flow.Phys.Fluids,1998,10(12):3239-41
    [38]Onorato M,Camussi R,Iuso G.Small scale intermittency and bursting in a turbulent channel flow.Phys.Rev.E,2000,61(29):1447-54
    [39]Ruiz-Chavarria G,Ciliberto S,Baudet C,et al.Scaling properties of the streamwise component of velocity in a turbulent boundary layer.Physica D,2000,141:183-198
    [40]姜楠,王振东,舒玮.壁湍流多尺度湍涡结构推广的自相似标度律.应用数学和力学,2000,21:916-924
    [41]姜楠,王玉春,黄章峰.璧湍流标度律的实验研究.空气动力学学报,2001,19:241-246
    [42]姜楠,王玉春.壁湍流温度扩展的自相似性及其层次结构模型.实验力学,2001,16(4):366-371
    [43]姜楠,王玉春,舒玮等.壁面加热湍流标度律的实验研究.空气动力学学报,2001,19(3):354-363
    [44]毕卫涛,陈凯,魏庆鼎.射流和圆柱尾流湍流层次结构的实验研究.流体力学实验与测量,2001,15(3):13-18
    [45]姜楠,王玉春,舒玮等.壁面加热湍流耗散率标度指数测量的实验研究.应用数学和力学,2002,23(9):921-928
    [46]李新亮,马延文,傅德燕.二维槽道湍流的标度律分析.力学学报,2002,34(4):604-608
    [47]邹正平,任奎,苏卫东等.矩形柱群非均匀性湍尾流中的层次相似律.力学学报,2003,35(5):519-523
    [48]夏振炎,姜楠,王振东等.壁湍流边界层奇异标度律的实验研究.实验力学,2005,20(4):532-538
    [49]程雪玲,胡非.周期性扰动对湍流边界层层次结构的影响.北京大学学报(自然科学版),2005,41(5):688-694
    [50]苏锋,张涛,姜楠.金属丝壁面加热湍流标度律的实验研究.实验力学,2006,21(3):271-277
    [51]傅强.湍流最高激发态的局部结构及其绝对标度律.力学学报,2007,39(2):158-161
    [52]胡凯衡,陈凯,佘振苏.可压缩湍流中标度指数的数值研究.北京大学学报(自然科学版),2007,43(3):307-311
    [53]赵伟.湍流边界层中相干结构及统计量SL标度律的研究[硕士论文].华中科技大学,2006
    [54]夏振炎,姜楠,田砚等.壁湍流能谱局部相似性标度的实验研究.中国科学G 辑,2009,39(3):428-434
    [55]Daubechies I.Ten lectures on wavelets.Philadelphia:SIAM Press,1992
    [56]Motard R L.Wavelet applications in chemical engineering.Boston:Kluwer Academic Publishers,1994
    [57]崔锦泰.小波分析导论.程正兴译.西安:西安交通大学出版社,1995
    [58]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998
    [59]赵松年,熊小芸.子波变换与子波分析.北京:电子工业出版社,1996
    [60]秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994
    [61]李世雄,刘家琦.小波变换和反演数学基础.北京:地质出版社,1994
    [62]刘式达,刘式适.孤波和湍流.上海:上海科技教育出版社,1994
    [63]杨本洛.流体运动经典分析.北京:科学出版社,1996
    [64]林建忠.湍流的拟序结构.北京:机械工业出版社,1995
    [65]Hussain A K.Coherent structures and turbulence.J.Fluid Mech.,1986,173:303-356
    [66]Jimenez J.The role of coherent structures in modeling turbulence and mixing.i.New York:Springer,1981
    [67]Farge M.Wavelets and turbulence.Pro.of the IEEE,1996,84:639-669
    [68]高安秀树.分数维.沈步明,常子文译.北京:地震出版社,1989
    [69]谢和平等.分形几何—数学基础与应用.重庆:重庆大学出版社,1991
    [70]刘式达,刘式适.分形和分维引论.北京:气象出版社,1993
    [71]蔡树棠,刘宇陆.湍流理论.上海:上海交通大学出版社,1993
    [72]Farge M,Rabreau G.Wavelet transform to detect and analysis coherent strutures in two-dimensional turbulent flows.C R Acad Sci.,1988,307(Ⅱ):1479-1486
    [73]Farge M,Kevlahan N K R,Perrier V,et al.Wavelet in physics.Cambridge:Cambridge University Press.,1999
    [74]Argout F,Arneodo A,Grasseau G,et al.Wavelet analysis of turbulence reveals the multifrac-tal nature of the Richardson cascade.Nature,1989,338(6210):51-53
    [75]Meneveau C.Analysis of turbulence in the orthonormal wavelet representation.J.Fluid Mech.,1991,232:469-520
    [76]Dokhac M,Basdevant C,Perrier V,et al.Wavelet analysis of 2D turbulent fields.Physic D,1994,76:252-277
    [77]Siegel A,Weiss J B.A wavelet-packet census algorithm for calculating vortex statistics.Phys.Fluids,1997,9:1988-1999
    [78]Farge M.Wavelet transforms and their applications to turbulence.Annu Rev.Fluid Mech,1992,24:395-457
    [79]Camussi R.Orthonormal wavelet decomposition of turbulent flows:intermittency and coherent structures.J.Fluid Mech,1997,348:177-199
    [80]范萌,魏中磊.振荡圆柱尾流的子波分析.第四届全国实验流体力学学术会议论文集,北京,1993:76-81
    [81]范萌,魏中磊,张自强.二维振荡圆柱尾流涡脱落的混沌形态.第四届全国湍流与流动稳定性学术会议论文集,南京,1994:94-101
    [82]刘海峰,汪海,于遵宏.小波分析及其在湍流研究中的应用.南昌大学学报(工科版)2000,22(4):43-50
    [83]Liandrant J.The wavelet transform:some applications to fluid dynamics and turbulence.Eur.J.Mech.B/Fluid,1990,9(1):1-19
    [84]姜楠,王振动,舒玮.小波分析辨识壁湍流猝发时间的能量最大准则.力学学报,1997,29(4):406-411
    [85]汪健生,尚晓东,舒玮.湍流信号的三项分解.力学学报,1997,29(5):519-524
    [86]舒玮,姜楠.湍流中涡的尺度分析.空气动力学学报,2000,18(增刊):89-95
    [87]Everson R.Wavelet analysis of the turbulent jet.Physics Lett.A,1990,145:314-322
    [88]Liandrat J,Tchamitchian P H.Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation-algorithm and numerical results.ICASE Report,1990
    [89]Harten A.Adaptive multiresolution schemes for shock computations.J.Comput Phys.,1994,15(2):319-338
    [90]Vasilyev O V,Paolucci S,Sen M.A multilevel wavelet collocation method for solving partial differential equations in a finite domain.J.Comput Phys.,1995,120:33-47
    [91]Charton P H,Perrier V.Towards a wavelet based numerical scheme for the 2-Dimensional Navier-Stokes equations.Proceedings of ICIAM 95,ZAMM
    [92]Fr(o|¨)hlich J,Schneider K.An adaptive wavelet-vaguelette algorithm for the solution of PDEs.J.Comput Phys.,1997,130:174-190
    [93]Farge M,Schneider K,Kevlahan N K.Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis.Phys.Fluids,1999,11:2187-2201
    [94]Schneider K,Farge M.Coherent Vortex Simulation(CVS) of two-dimensional turbulence.Zangew Math.Mech.,2000,3(81):485-486
    [95]Farge M,Schneider K.Coherent Vortex Simulation,a semi-deterministic turbulence model using wavelets.Flow Turb.Combust,2001,66:393-426
    [96]Farge M,Schneider K.Analysing and computing turbulent flows using wavelets,in"Wavelet transforms and time-frequency signal analysis".(L Debnath Ed),Boston:Birkh(a|¨)user,2001,181-216
    [97]Lewalle J.Wavelet transforms of the Navier-Stokes equations and the generalized dimension of turbulence.Appl.Sci.Res.,1993,51:109-113
    [98]是勋刚.湍流.天津:天津大学出版社,1994
    [99]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004
    [100]范洁川.现代流动显示技术.北京:国防工业出版社,2002
    [101]张庭芳,吴志军,熊翔辉等.利用PIV技术研究湍流积分尺度.南昌大学学报(工科版),2005,27(3):1-3
    [102]王灿星,林建忠,山本富士夫.二维PIV图像处理算法.水动力学研究与进展,2001,16(4):399-404
    [103]郭会芬,邱翔,刘宇陆.小波变换在湍流数值研究中的应用.计算力学学报,2006,23(1):58-64
    [104]Chen S Y,Dhruva B,Kurien S,et al.Anomalous scaling of low-order structure function of turbulent velocity.J.Fluid Mech.,2005,533:183-192
    [105]翟红楠,张莉,孙石阳等.深圳市流感高峰发生的气象要素临界值研究及其预报方程的建立.数理医药学杂志,2009,22(2)188-193
    [106]姜楠,柴雅彬.用子波系数概率密度函数研究湍流多尺度结构的间歇性.航空动力学报,2005,20(5):718-724
    [107]Landau L,Lifshitz E.,Mecanique des Fluids,Mir,Moscow,1973
    [108]Ruiz G,Chavarria S,Ciliberto C,et al.Scaling properties of the streamwise component of velocity in a turbulent boundary layer.Physica D,2000,141:183-198
    [109]欣茨著,周光炯,魏中磊,黄永念等翻译,湍流.北京:科学出版社,1987
    [110]Benzi R,Biferale L,Ciliberto S,et al.Generalized scaling in fully developed turbulence.Physica D,1996,162-181
    [111]Batchelor G.K.The theory of axisymmetric turbulence.Proc.R.Soc.Lond.A,1946,186:480-502
    [112]Chandrasekhar S.The theory of axisymmetric turbulence.Proc.R.Soc.Lond.A,1950,242:557-577
    [113]George W K,Hussein H J.Locally axisymmetric turbulence.J.Fluid Mech.,1991,233:1-23
    [114]Elsner J W,Eisner W.On the measurement of the turbulence energy dissipation.meas.Sci.and Tech.,1996,7:1334-1348
    [115]Tsinober A,Kit E,Dracos T.Experimental investigation of the field of velocity gradients in turbulent flows.J.Fluid Mech.,1992,242:169-192
    [116]Andreopoulos Y,Honkan A.Experimental techniques for highly resolved measurements of rotation,strain,and dissipation rate tensors in turbulent flows.Measurement Science and Technology,1996,7:1462-1476
    [117]王汉封,柳朝晖,郭福水等.用PIV数据估算槽道内湍流动能耗散率.化工学报,2004,55(7):1066-1077
    [118]戴正元,谷传纲,王彤等.基于小波分析的缩减湍流数据采集量的新方法.实验流体力学,2006,20(1):54-57
    [119]陈波.近壁圆柱绕流的壁面积沙线现象形成机理的实验研究[硕士论文].华中科技大学,2006
    [120]Willert C E,Gharibm M.Digital particle image Velocimetry.Experiments in Fluids,1991,10:181-193
    [121]Adrian R J.Particle-imaging techniques for experimental fluid mechanics.Annual Review of Fluid Mechanics,1991,23:261-304
    [122]Gui L C,Merzkirch W.A method of tracking ensembles of Particle images.Experiments in Fluids,1996,21:465-468
    [123]Kaga A,Inoue Y,Yamaguchi K.Pattern tracking algorithms for airflow measurement through digital image processing of visualized images.J of Visualization Society of Japan,1994,14:38-45(in Japanese)
    [124]许联峰,陈刚,李建中等.粒子图像测速技术研究进展.力学进展,2003,33(4):533-540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700