用户名: 密码: 验证码:
泥石流灾变控制与模型化分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流减灾主要遵循“疏导、拦挡、排导”等灾前防御理念,但分析方法体系尚不完善,有些方法偏于经验性。若能够为泥石流灾前防御及灾后响应备灾等主动式减灾提供理论分析模型,将有助于推行主动式减灾,更好地实现“防止灾害于发生之前,减少损失于发生之后”。围绕泥石流减灾的模型化分析问题,依托雅泸高速公路的泥石流减灾项目,以及M8.0汶川地震和M9.0东日本地震的泥石流、碎屑流等灾害的科学考察项目,探讨更为规范的、定量化程度更高的、适合工程应用的泥石流减灾分析模型。主要研究工作和成果如下:
     (1)采用系统论和控制论的模型概念和方法,规范化泥石流减灾分析模型的建立,形成了泥石流减灾分析的一些基本模型,涉及泥石流的灾害损失预测和灾情估测、减灾效果预测、减灾方案优化问题;
     (2)泥石流灾害损失计算模型的研究中,类比材料破坏的强度条件公式,建立了泥石流灾变损失与灾变影响因素的关系表达式,即泥石流灾变模型。该模型从理论上验证了风险模型中危险性与易损性相乘关系的合理性,同时揭示了承灾区场地条件对泥石流灾变风险的影响作用,能够用于风险预测和灾情估测;
     (3)考虑泥石流减灾措施对灾变影响因素的调节效果,建立了泥石流灾变控制模型,并在数学规划方法的框架下,提出了泥石流灾变控制优化分析模型、基本灾变控制模式,以及可行方案集分析方法,为泥石流减灾效果分析、减灾方案的提出及优化提供了一条较为便利的理论途径;
     (4)在泥石流减灾分析的基础理论问题上,探讨了泥石流启动现象和阻力规律,指出了泥石流启动与运动的相关性,并将泥石流启动与运动作为整体考虑,推导了基于动量守恒的泥石流运动糙率公式,为糙率系数的确定提供了一种较为客观的理论方法。
The concept for debris hazard mitigation mainly follows the pre-disaster prevention patterns of unblocking, inception, and drainage, etc. The analytical methods are not systematic, and some of those are relatively empirical, however. If it is possible to provide theoretical analysis models for the active debris hazard mitigation like pre-disaster prevention and post-disaster responding preparation, it would contribute to implement active hazard mitigation, and achieve the target of "prevent disaster before it happens, and reduce the loss after it happens" more effectively. Around the issues of modeling analysis for debris flow hazard mitigation, relying on the research project of debris flow hazard mitigation in Ya-Lu highway and the scientific research projects aiming at the disasters of debris flow and rock avalanche in the M8.0 Wenchuan Earthquake and the M9.0 East Japan Earthquake, this paper discussed a series of analysis models for debris flow hazard mitigation, aimin at more normative, quantified and engineering adaptable. The main research work and achievements are as follows:
     (1) With the model concepts and methods of System Theory and Cybernetics, this paper normalized the establishment of analysis models in debris flow hazard mitigation, in which a basic model system are proposed as a result, concerning about the issues of debris flow's hazard loss prediction, hazard status estimation, mitigation effect prediction and mitigation program optimization;
     (2) In the research on the calculating model of debris flow's hazard losses, this paper established an expression of the relation between debris flow's hazard losses and hazard influencing factors by analogizing the strength condition formula of material failure. The expression was called as the debris flow hazard-evolution model. This model testified the rationality of multiplication between hazard and vulnerability in the risk analysis model theoretically, and revealed the influence to the hazard risk of debris flow by the ground condition in hazard bearing regions. The model can be used both in the risk prediction and hazard status estimation;
     (3) In the view of the regulating effects of debris flow's hazard mitigation measures towards the hazard influencing factors, this paper established the hazard-evolution control model for debris flow, and proposed optimizing analysis model for debris flow's hazard-evolution control and basic pattern for hazard-evolution control as well as the analysis method of feasible program set under the framework of mathematic planning method, which provided a relatively convenient theoretical approach for the analysis in debris flow's hazard mitigation effects and the propose and optimization of mitigation program;
     (4) For the basic theoretical issue of debris flow's hazard mitigation analysis, this paper discussed the triggering phenomena and resistance laws of debris flow, and pointed out the relativity between debris flow's triggering and moving. Through taking debris flow'triggering and moving an entirety into consideration, a formula for debris flow rough ratio calculation based on the law of conservation of momentum was deduced in this paper, which provided a more objective theoretical method for establishing the rough ratio coefficient.
引文
[1]Okubo S., Ikeya H., Ishikawa Y., et al. Development of new methods for countermeasures against debris flows [C].In:Armanini A., Michiue M.,eds. Recent Developments on Debris Flows. Berlin:Springer-Verlag,1997:166-185.
    [2]Blair M. L., Vlasic T.C., Cotton W.R., Fowler W. When the Ground Fails[C]. Planning and Engineering Response to Debris Flows, University of Colorado, Boulder (1985):117.
    [3]Francisco L. Perez. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela [J]. CATENA,2001,45 (3):163-183.
    [4]余斌,杨永红,苏永超,等.甘肃省舟曲8.7特大泥石流调查研究书[J].工程地质学报,2010,18(4):437-444.
    [5]Jakob M.. Debris-flow hazard analysis [C]. In:Jakob M., Hungr O.,eds. Debris-flow Hazards and Related Phenomena, Berlin:Springer,2005:411-443.
    [6]中华人民共和国民政部.国际减灾十年活动论坛情况报告[OB/OL]. http://wwwl.mca.gov.cn/artical/content/WGZ_JZGZ/2003122485660.htm
    [7]联合国开发计划署. 中国在灾害管理中立足基层[OB/OL]. http://ch.undp.org.cn/modules.php?op=modload&name=News&file=article&catid= 14&topic=24&sid=305&mode=thread&order=0&thold=0
    [8]孙钰.联合国报告:天灾威胁全球安全御灾机制需要改进[J].环境保护,2008,399(13):63-64.
    [9]刘江.奥地利泥石流防治简介[J].地球科学进展,1986,(4):26-28.
    [10]吴积善,王成华.山地灾害研究的发展态势与任务[J].山地学报,2006,24(5):518-524.
    [11]Skermer N. A., VanDine D. F.. Debris flows in history [C]. M. Jakob,O. Hungr. Debris-flow hazards and related phenomena. Berlin:Springer Berlin Heidelberg, 2005:26-52.
    [12]杜榕恒,李鸿琏,唐邦兴,等.三十年来的中国泥石流研究[J].自然灾害学报,1995,4(1):64-73.
    [13]唐邦兴,杜榕恒,康志成,等.我国泥石流研究[J].地理学报,1980,35(3):259-264.
    [14]唐邦兴,章书成.泥石流研究[J].中国科学院院刊,1992,(2):119-123.
    [15]章书成.泥石流研究述评[J].力学进展,1989,13(3):365-375.
    [16]姚令侃.泥石流防治工程优化设计方法初探[J].中国地质灾害与防治学报,1995, 6(4):1-9.
    [17]江兴旺,党荣.复杂工程系统优化设计初探——以某泥石流防治工程系统的优化设计为例[J].西安工程学院学报,2000,22(2):44-49.
    [18]陈瑞,王士革,盛才余,等.泥石流防治工程方案优化设计专家系统初步研究[J].自然灾害学报,1999,8(3):111-116.
    [19]韦方强,胡凯衡,崔鹏,等.山区城镇泥石流减灾决策支持系统[J].自然灾害学报,2002,11(2):31-36.
    [20]刘洪江,唐川,韩用顺.基于WebGIS的城市泥石流数字减灾系统建立及其应用[J].灾害学,2006,21(3):10-14.
    [21]韦方强.城镇泥石流减灾决策支持系统:博士学位论文[D].成都:西南交通大学,2002.
    [22]Shiuan Wan, Tsu Chiang Lei. A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan [J]. Knowledge-Based Systems,2009,22 (8):580~588.
    [23]Hsu-Yang Kung, Hao-Hsiang Ku, Che-I Wu, et al. Intelligent and situation-aware pervasive system to support debris-flow disaster prediction and alerting in Taiwan [J]. Journal of Network and Computer Applications,2008,31 (1):1~18.
    [24]唐晓春.泥石流防治模式的构想[J].中国减灾,1992,2(1):40-43.
    [25]唐晓春.泥石流-防治系统及其模式的初步研究[J].水土保持学报,1991:5(1):80-84.
    [26]谢洪,钟敦伦.城镇泥石流减灾系统工程刍议[J].水土保持学报,2000,14(5):136-140.
    [27]李发斌,韦方强,胡凯衡.山区公路地质灾害减灾决策支持系统——古乡沟泥石流为例[J].中国地质灾害与防治学报,2006,17(4):52-56.
    [28]Alessandro Pasuto, Mauro Soldati. An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites [J]. Geomorphology,2004, 61(1-2):59~70.
    [29]Maskrey A. Disaster Mitigation:A Community Based Approach [M]. Oxford:Oxfam, 1989,1~100.
    [30]段金凡.从耗散结构熵变的观点看泥石流的形成[J].中国水土保持,1988,(1):30-31.
    [31]柳金峰,欧国强.泥石流危险性评价的耗散结构分析[J].水土保持研究,2004,11(1):123-03.
    [32]徐友宁,陈社斌,袁汉春.潼关金矿区矿渣型泥石流熵权评价[J].地质科技情报, 2006,25(5):101-104.
    [33]邢永强,冯进城,郭新华.小秦岭地区泥石流环境条件量化研究与趋势分析的系统熵模型[J].河南科学,2007,25(2):12-16.
    [34]蒋忠信.泥石流流域系统的超嫡[J].中国地质灾害与防治学报,1992,3(1):33-40.
    [35]王雪平,倪能,金蓉.兰州市区泥石流趋势分析的系统熵模型[J].水文地质工程地质,2006,(3):93-96.
    [36]麦华山,徐林荣,匡乐红.基于超熵理论的泥石流危险性模糊综合评判[J].地质灾害与环境保护,2007,18(4):62-66.
    [37]Chien-chih Chen, Chih-Yuan Tseng, et al. New entropy-based method for variables selection and its application to the debris-flow hazard assessment [J]. Engineering Geology,2007,94 (12):19~26.
    [38]崔鹏,关君蔚.泥石流起动的突变学特征[J].自然灾害学报,1993,2(1):54-62.
    [39]仪垂祥.泥石流突变模型[J].自然灾害学报,1995,4(2):53-56
    [40]李如忠,陈天好.基于突变论对露天矿排土场泥石流形成机理分析[J].矿业快报,2000年, (331):8-10.
    [41]杨东,焦金鱼,田娜.基于突变理论的岷县山区泥石流危险性区划研究[J].水土保持研究,2008,15(4):5-9.
    [42]易顺民,孙云志.泥石流的分形特征及其意义[J].地理科学,1997,17(1):24-31.
    [43]罗文锋,李后强,丁晶,等.泥石流研究中的渗流模型及分形方法[J].中国地质灾害与防治学报,1997,8(2):8-13.
    [44]李泳,陈晓清,胡凯衡,等.泥石流颗粒组成的分形特征[J].地理学报,2005,60(3):495-502.
    [45]倪化勇,刘希林.泥石流灾害的分形研究[J].灾害学,2005,20(4):18-05.
    [46]罗德军,艾南山,李后强.泥石流暴发的白组织临界现象[J].山地研究,1995,13(4):213-218.
    [47]王裕宜,詹钱登,陈晓清,等.泥石流体的应力应变自组织临界特性[J].科学通报,2003,48(9):976-980.
    [48]Donato D'Ambrosio, Salvatore Di Gregorio, Giulio Iovine, et al. First simulations of the Sarno debris flows through Cellular Automata modelling [J]. Geomorphology, 2003,54 (1-2):91-117
    [49]D'Ambrosio D, Di Gregorio S, Iovine G, et al. Simulating the Curti-Sarno debris flow through cellular automata:the model SCIDDICA (release S2) [J]. Physics and Chemistry of the Earth, Parts A/B/C,27 (36):1577~1585.
    [50]Iovine G, D'Ambrosio D, Di Gregorio S. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects [J]. Geomorphology,2005,66 (1-4):287~303.
    [51]吕学军,刘希林,倪化勇.泥石流灾害系统的协同进化规律——以南水北调西线一期工程区为例[J].水土保持研究,2006,13(1):76-80.
    [52]陈晓清,崔鹏.泥石流防治工程信息系统初探[J].自然灾害学报,2005,14(5):68-73.
    [53]SU Zhi-man, XU Lin-rong, CAI Fei, et al. Application of mathematical programming in the optimization of hazard mitigation of debris flow along expressway [C]. Proceeding of International Workshop on Architecture, Civil and Environmental Engineering, Wuhan,2011,4.
    [54]铁永波,周春花,朱佳.系统理论在泥石流研究中的应用刍议[J].云南地理环境研究,2005,17(1):36-40.
    [55]刘昌明.流域水循环分布式模拟[M].北京:黄河水利出版社,2006:3-7.
    [56]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M1.中国水利水电出版社,2005:6-9.
    [57]维纳著,郝季仁译.控制论[M].北京:科学出版社,1962:113-114.
    [58]颜荣贵,杜炜平.锰矿房柱法开采地质灾变与防治对策[J].中国猛业,1997,15(4):16-72.
    [59]翟保平.当前生物灾变预测中的问题与对策[J].南京农业大学学报,2001,24(4):41-45.
    [60]王稳地,唐晓春,陈勇,等.流域泥石流防治效益评估模型初探[J].水土保持学报,1994,8(3):69-74.
    [61]Liu Xilin, Lei Junzhong. A method for assessing regional debris flow risk:an application in Zhaotong of Yunnan province (SW China) [J]. Geomorphology,2003, 52:181-191.
    [62]Einstein HH. Landslide risk systematic approaches to assessment and management [C]. In:Cruden D M, Fell R,eds. Landslide Risk Assessment. Rotterdam:A.A. Balkema, 1997.25~50.
    [63]Dai F. C., Lee C. F. Ngai Y. Y. Landslide risk assessment and management:an overview [J]. Engineering Geology,2002,64:65-87.
    [64]Wong H. N., HoO K. K. S., et al. Assessment of consequence of landslides[C]. In: Cruden R., Fell R.,eds. Landslide Risk Assessment. Balkema, Rotterdam,1997: 111-149.
    [65]United Nations, Department of Humanitarian Affairs. Mitigating Natural Disasters: Phenomena, Effects and Options-A Manual for Policy Makers and Planners [M]. New York:United Nations,1991,1~164.
    [66]United Nations, Department of Humanitarian Affairs. Internationally Agreed Glossary of Basic Terms Related to Disaster Management, DNA/93/36, Geneva,1992.
    [67]Maskrey A. Disaster Mitigation:A Community Based Approach [M]. Oxford:Oxfam, 1989,1~100.
    [68]Tobin G, Montz B E.Natural Hazards:Explanation and Integration [M]. New York:The Guilford Press,1997,1~388.
    [69]Deyle R E, French S P, Olshansky R B,et al. Hazard assessment:the factual basis for planning and mitiga-tion[C]. In:Burby R J,eds. Cooperating with Nature: Confronting NaturalHazards with Land-Use Planning for Sustain-able Communities. Washington, D.C.:Joseph Henry Press,1998,119~166.
    [70]Panizza M. Environmental Geomorphology [M]. Amsterdam:Elsevier,1996,1~268.
    [71]刘希林,莫多闻.泥石流易损度评价[J].地理研究,2002,(5):569-577.
    [72]Hollingsworth R, Kovacs G S. Soil slumps and debris flows:prediction and protection [J]. Bulletin of the Association of Engineering Geologists,1981,38(1):17-28.
    [73]Liu Xi-lin. Assessment on the severity of debris flows in mountainous creeks of southwestern China [C]. Proceedings of International Symposium of Interpraevent. Garmisch-Partenkirenchen, Germany,1996,4:145-154.
    [74]Chen Chien-chih, Tseng Chih-Yuan, Dong Jia-Jyun. New entropy-based method for variables selection and its application to the debris-flow hazard assessment [J]. Engineering Geology,2007,94 (1-2):19-26.
    [75]Calvo B., Savi F. A real-world application of Monte Carlo procedure for debris flow risk assessment [J]. Computers & Geosciences,2009,35:967-977.
    [76]匡乐红,徐林荣,刘宝琛.基于可拓方法的泥石流危险性评价[J].中国铁道科学,2006,27(5):1-6.
    [78]王卫东,刘武成.基于GIS的公路地质灾害信息管理与决策支持系统[J].中南工业大学学报(自然科学版),2003,34(3):302-305.
    [79]鲁光银,韩旭里,朱自强,等.地质灾害综合评估与区划模型[J].中南大学学报(自然科学版),2005,36(5):877-881.
    [80]Di Bao-fu., Chen Ning-sheng, Cui Peng, et al. GIS-based risk analysis of debris flow: an application in Sichuan, southwest China [J]. International Journal of Sediment Research,2008,23 (2):138-148.
    [81]Feng Li-hua, Chen Xiong. Practical research on quantitative calculation of debris flow magnitude and disaster intensity [J]. Environmental Geology,2009,57:863-871.
    [82]刘希林.我国泥石流危险度评价研究:回顾与展望[J].自然灾害学报,2002,11(4):1-8.
    [83]Leroueil, S., Locat, J.. Slope movements—geotechnical characterization, risk assessment and mitigation [C]. In:Maric, B., Lisac, L., Szavits-Nossan,eds. A.. Geotechnical Hazards. Balkema, Rotterdam,1998:95-106.
    [84]Michael j. Bovis, Matthias Jakob. The role of debris supply conditions in predicting debris flow activity [J]. Earth Surface Processes and Landforms,1999,24: 1039~1054.
    [85]曾怡.中国泥石流流出量的预测以及与日本的对比[C].第四届全国泥石流学术讨论会论文集.兰州:甘肃文化出版社,1994:367-371.
    [86]DZ/T 0220-2006.泥石流灾害防治工程勘查规范[S].
    [87]中国科学院水利部成都山地灾害与环境研究所,泥石流(4)[M].北京:科学出版社,1995:95.
    [88]王艳萍.设立地质灾害独立险种的可行性研究[J].西部资源,2006,(3):9-10.
    [89]张金山,沈兴菊,谢洪.低频泥石流特征及防治——以四川汶川县茶园沟为例[J].中国地质灾害与防治学报,2005,16(3):37-41.
    [90]刘希林,吕学军,苏鹏程.四川汶川茶园沟泥石流灾害特征及危险度评价[J].自然灾害学报,2004,13(1):66-70.
    [91]王士革,王成华,张金山,阙云,孟国才.四川汶川茶园沟"2003-08-09"泥石流灾害调查[J].山地学报,2003,21(5):635-637.
    [92]Xu Lin-rong, Su Zhi-man UGAI K., et al.. Google Earth as a tool in terrain survey of debris flow watershed [C]. Proceeding of 2011 International Conference on Civil Engineering and Building Materials, Kunming,2011,7.
    [93]李永益.滑坡、泥石流转化机理及其运动特征的研究[C].中科院成都地理研究所.滑坡论文选集.成都:四川科学技术出版社,1989,69-76.
    [94]崔鹏.泥石流起动条件及机理的实验研究[J].科学通报,1991,36(21):1650-1652.
    [95]Iverson, R. M., Reid M. E., LaHusen R. G, Debris-flow mobilization from landslides [J]. Ann. Rev. Earth Planet. Sci.,1997,25:85-138,
    [96]Dai Fuchu, Lee C. F., Wang Sijing, et. Stress-strain behaviour of a loosely compacted volcanic-derived soil and its significance to rain-fall-indueed fill slope failures[J]. Engineering Geology,1999,53:359-370.
    [97]William Z. S, William K. S. A Model for the plastic flow landslide [J]. U. S. Geological survey professional paper 1385,1992. [98] Tamotsu Takahashi. Mechanical characteristics of debris flow [J]. J. Hy. Div. Proc. ASCE,1978,104:1153-1169.
    [99]钱宁主编.高含沙水流运动[M].北京:清华大学出版社,1989,13-17.
    [100]费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社,2004:81-88.
    [101]D'Ambrosio D., Di Gregorio S., Iovine G, et al. Modelling surface flows for macroscopic phenomena by cellular automata:an application to debris flows [C]. In: Bandini S., Chopard B., Tomassini M.,Eds. LNCS 2493, Proceedings of the Fifth International Conference on Cellular Automata for Research and Inductry, Geneve. Switzerland. Springer, Berlin:304-314.
    [102]蒋忠信.泥石流沟谷纵剖面形态与流域地貌信息熵[C].地质灾害国际交流论文集.成都:西南交通大学出版社,1993.49-57.
    [103]蒋忠信,姚令侃,艾南山,等.铁路泥石流非线性研究与防治新技术[M].成都:四川科学技术出版社,1999.
    [104]DZ/T0239—2004.泥石流灾害防治工程设计规范
    [105]SL20498.开发建设项目水土保持方案技术规范
    [106]干线公路灾害防治试点工程技术指南(试行),2006
    [107]崔鹏,陈晓清,柳素清,等.风景区泥石流防治特点与技术[J].地学前缘(中国地质大学(北京);北京大学),2007,14(6):172-180.
    [108]王士革,钟敦伦,谢洪.庐山风景区犁头尖北坡泥石流及其防治[J].水土保持通报,2001,21(6):33-36.
    [109]苏志满,徐林荣,鵜飼惠三,等.2007年日本群马县南牧村泥石流成灾特点与启示[J].山地学报,2010,
    [110]D. E. VANDINE, M. BOVIS. History and goals of Canadian debris flow research, a review [J]. Natural Hazards,2002,26:69-82.
    [111]陈德明.泥石流与主河水流交汇机理及其河床响应特征:[博士学位论文].北京:中国水利水电研究院,2000.
    [112]陈春光.泥石流与主河水流交汇模型及耦合计算方法:[博士学位论文].成都:西南交通大学,2004.
    [113]郭志学.泥石流入汇交汇区水沙运动特性:[博士学位论文].成都:四川大学,2003.
    [114]弗莱斯曼著,姚德基译.泥石流[M].北京:科学出版社,1990.
    [115]卢田和男等著,冯金亭、焦恩泽等译.河流泥沙灾害及其防治[M].北京:水利电力出版社,82-112.
    [116]Iverson. The physics of debris flow [J]. Reviews of geophysics,35(3),1997:245-296.
    [117]丁锡祉.我国泥石流研究现状和今后任务[C].泥石流论文集(1).重庆:科学技术文献出版社,1981:2-6.
    [118]田连权,张信宝,吴积善.试论泥石流的形成过程[C].泥石流论文集(1).重庆:科学技术文献出版社,1981:54-57.
    [119]崔鹏.风景区泥石流研究与防治[M].北京:科学出版社,2005:57.
    [120]Yang Qing-qing., Su Zhi-man., UGAI K., et al. Recent landslide disasters induced by earthquakes [J]. Journal of the Singapore Engineer,2009, Jan:36-38.
    [121]Su Zhi-man, Yang Qing-qing, Ugai K., et al. Key technologies of dynamic flume test for earthquake induced rock avalanches [C]. GeoHunan International Conference II: Emerging Technologies for Design, Construction, Rehabilitation, and Inspections of Transportation Infrastructures,2011,6.
    [122]崔之久.泥石流沉积与环境[M].北京:海洋出版社,1996:15.
    [123]文雨松.桥涵水文[M].北京:中国铁道出版社,2005:29.
    [124]王继康,黄荣鉴,丁秀燕.泥石流防治工程技术[M].北京:中国铁道出版社,1996.
    [125]康志成.我国泥石流流速计算研究与计算方法[A].第二届全国泥石流学术会议论文集[C].北京,科学出版社,1990.
    [126]吴积善,康志成,田连权,等.云南蒋家沟泥石流观测研究[M].北京:科学出版社,1990:118-127.
    [127]陈光曦,王继康,王林海.泥石流防治[M],中国铁道出版社,1983.
    [128]中国科学院兰州冻土研究所、甘肃省交通科学研究所.甘肃泥石流[M].人民交通出版社,1982:27-43.
    [129]康志成,李焯芬,马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004.
    [130]甘肃省交通科学研究所、中国科学院兰州冰川冻土研究所.泥石流地区公路工程[M].北京:人民交通出版社,1981:29,30,35,64-143.
    [131]甄春相.枝(城)-柳(州)铁路地质灾害研究.中国地质灾害与防治学报,2000,11(2):97-99.
    [132]阮波,肖武权.卓福隧道泥石流成因分析和减灾措施[J].防灾减灾工程学报,2005,25(4):437-450..
    [133]徐林荣,王磊,苏志满.隧道工程遭受泥石流灾害的工程易损性评价[J].岩土力学,2010,31(7):2153-2158.
    [134]日本前橋地方気象台.平成19年台風第9号に関する群馬県気象速報[EB/OL]2007年9月10日:http://www. toky o-jma. go.jp/home/maebashi/ taifu070910.pdf
    [135]日本群馬県県.ぐんま川便り第43号[EB/OL]2007年9月10日:http://www.pref.gunma.jp/cts/PortalServlet7DISPLAY_ID =DIRECT&NEXT_DISPLAY_ID=U000004&CONTENTS_ID=77206
    [136]谢洪,王成华,林立相.标水岩沟滑坡型泥石流灾害及特征[J].中国地质灾害与防治学报,2000,11(3):20-22,27.
    [137]陈宁生,高延超,李东风,等.丹巴县邛山沟特大灾害性泥石流汇流过程分析[J].自然灾害学报,2004,13(3):104-108.
    [138]崔鹏.中国2004年泥石流灾害特点及其对减灾的启示[J].山地学报,2005,23(4):437-441.
    [139]陈晓清,韦方强,崔鹏,等.云南新平2002-08-14特大滑坡泥石流灾害及防治对策[J].山地学报,2003,21(5):599-604.
    [140]Cui Peng, Chen Xiaoqing, Liu Suqing, et al. Techniques of debris flow prevention in national parks [J]. Earth Science Frontiers,2007,14(6):172~177.
    [141]李德基.透水型拦挡坝在泥石流防治中的应用[J].中国地质灾害与防治学报,1997,8(4):60-66.
    [142]崔鹏,柳素清,唐邦兴,等.风景名胜区泥石流治理模式:以世界自然遗产九寨沟为例[J].中国科学E辑技术科学2003,33(增刊):1-9.
    [143]陈晓清,崔鹏,韦方强.良好植被区泥石流防治初探[J].山地学报.2006,24(3)333-339.
    [144]陈晓清,崔鹏,唐邦兴,等.具有风景区泥石流治理特色的土木工程措施[J].中国地质灾害与防治学报,2006,17(2):79-84.
    [145]陈楚莹,廖利平,汪思龙.杉木人工林生态学[M].北京:科学出版社,2000:17.
    [146]何贵平,陈益泰,蔡宏明,等.杉木幼林地水土流失动态研究[J].林业科学研究,1996,9(5):544-548.
    [147]SU Zhiman, Keizo UGAI, Fei CAI, et al. Emergency Evacuation in 8-13 Qingping Debris Flow Events in China and Enlightenments on Hazard Mitigation [C]. An International Symposium on Earthquake Induced Landslides and Disaster Mitigation at the 3rd Anniversary of the Wenchuan Earthquake, May 12-15,2011, Chengdu, China.
    [148]黄河清,赵其华.汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J].工程地质学报,2010.18(2):168-177.
    [149]王涛,石菊松,吴树仁,等.汶川地震触发文家沟高速远程滑坡-碎屑流成因机理分析[J].工程地质学报,2010.18(5):631-644.
    [150]余斌,马煜,吴雨夫.汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J].工程地质学报,2010,18(6):827-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700