用户名: 密码: 验证码:
园林绿地生态系统养分动态及其利用效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生态环境由于受到人为活动较大强度的干扰,其空气、水分、热量、土壤条件都具有不同于森林生态系统的特性,特别是绿地土壤的特性更是园林树木能否良好生长的重要影响因素。本研究选取生长于合肥市城市环境中的主要园林树木,通过分析其养分季节动态变化、养分利用效率、养分再吸收比例和氮磷比等指标以及园林树木树冠下土壤部分化学性质和碳氮转化特点的研究,试图为园林树木的养护管理提供可行的管理措施和理论依据。
     合肥城市绿地土壤受到较大的人为扰动,特别是建筑垃圾等的污染严重。土壤缺乏自然发育层次,紧实、容重高,大多数土壤偏碱性。土壤具有明显的缺氮特征。磷的分布极不规律,不同地点差异极大。不同绿地的表层0-10 cm土壤,其pH (H20)的平均值为7.70、pH(KCl)的平均值为6.80,电导率(EC)的均值为147.6μS·cm-1。全氮含量变动在0.70-2.30 g·kg-1;全磷含量变动在64.18-3144.54 mg·kg-1;速效磷含量在1.05-130.30 mg·kg-1;钾含量为5.12-11.02 g·kg-1;钠含量为2.49-5.35 g·kg-1;钙含量为6.22-131.80 g·kg-1;镁含量为4.99-12.16 g·kg-1。
     表层0-10 cm土壤中,蜀山森林公园枫香林下可溶性有机碳(DOC)含量最高(234.48 mg·kg-1),而校园绿地枫香林DOC含量最低(96.66 mg-kg-1);表层10-30 cm土层中,蜀山马尾松林下DOC含量最高(105.91 mg·kg-1),而环城公园雪松林下的最低(75.35 mg·kg-1)。
     表层0-10cm土壤中,蜀山森林公园马尾松林铵态氮含量最高(14.28 mg·kg-1),而环城公园雪松林最低(4.51 mg·kg-1);表层10-30 cm土层中,蜀山森林公园马尾松铵态氮含量最高(13.27 mg·kg-1),而环城公园雪松林最低(3.05 mg·kg-1)。
     表层0-10cm土壤中,校园绿地雪松林硝态氮含量最高(15.80 mg·kg-1),而蜀山森林公园马尾松枫香混交林最低(7.42 mg·kg-1);表层10-30 cm土层中,校园绿地雪松林硝态氮含量最高(14.63 mg·kg-1),而蜀山森林公园马尾松枫香混交林最低(6.37mg·kg-1).
     现场培养结果显示,校园绿地雪松林(UCC)0-10 cm土壤DOC转化速率为269.75μg·kg-1·d-1,10-30 cm土壤为-323.11μg·kg-1·d-1。移位交换培养试验显示,校园绿地雪松林下0-10 cm土壤移植于蜀山马尾松林(SPM)和环城公园雪松林(HPC)下培养的土壤DOC转化速率分别为420.75μg·kg-1·d-1和195.54μg·kg-1·d-1,而10-30 cm土壤则分别为-236.19μg·kg-1·d-1和-169.58μg·kg-1·d-1。
     环城公园雪松林0-10 cm土壤DOC转化速率为20.61μg·kg-1·d-1,10-30 cm土壤为-16.34μg·kg-1·d-1。移位交换培养试验显示,环城公园雪松林0-10 cm土壤移植于校园绿地雪松林和蜀山马尾松林下培养的土壤DOC转化速率分别为70.29μg·kg-1·d-1和93.92μg·kg-1·d-1,而10-30 cm土壤则分别为51.64μg·kg-1·d-1和-123.54μg·kg-1·d-1。
     蜀山马尾松林0-10 cm土壤DOC转化速率为285.42μg·kg-1·d-1,10-30 cm土壤为-213.18μg·kg-1·d-1。移位交换培养试验显示,蜀山马尾松林0-10 cm土壤移植于校园绿地雪松林和环城公园雪松林下培养的土壤DOC转化速率分别为525.35μg·kg-1·d-1和689.79μg·kg-1·d-1,而10-30 cm土壤则分别为-182.76μg·kg-1·d-1和-211.71μg·kg-1·d-1。
     校园绿地枫香林(UCL)0-10 cm土壤DOC转化速率为8.17μg·kg-1·d-1,10-30 cm土壤为-254.82μg·kg-1·d-1。移位交换培养试验显示,校园绿地枫香林下0-10 cm土壤移植于蜀山枫香林(SPL)下培养的土壤DOC转化速率为49.93μg·kg-1·d-1,而10-30cm土壤为-337.91μg·kg-1·d-1。
     蜀山枫香林0-10 cm土壤DOC转化速率为-168.35μg·kg-1·d-1,10-30 cm土壤为290.21μg·kg-1·d-1。移位交换培养试验显示,蜀山枫香林0-10 cm土壤移植于校园绿地枫香林培养的土壤DOC转化速率为-21.33μg·kg-1·d-1,而10-30 cm土壤为270.93μg·kg-1·d-1。
     校园绿地雪松林0-10 cm土壤的氨化速率、硝化速率和矿化速率分别为-21.32μg·kg-1·d-1,50.86μg·kg-1·d-1和4.09μg·kg-1·d-1,10-30 cm土壤分别为-51.20μg·kg-1·d-1,39.14μg·kg-1·d-1和13.40μg·kg-1·d-1。移位交换培养试验显示,校园绿地雪松林下0-10 cm土壤移植于蜀山马尾松林和环城公园雪松林下培养的土壤的净氨化速率分别为1.78μg·kg-1·d-1和-21.35μg·kg-1·d-1,10-30 cm土壤分别为-48.81μg·kg-1·d-1和-56.27μg·kg-1·d-1;0-10 cm土壤净硝化速率分别为61.53μg·kg-1·d-1和47.95μg·kg-1·d-1,10-30cm土壤分别为20.19μg·kg-1·d-1和64.78μg·kg-1·d-1; 0-10 cm土壤净矿化速率分别为6.07μg·kg-1·d-1和9.59μg·kg-1·d-1,10-30 cm土壤分别为28.62μg·kg-1·d-1 and 25.53μg·kg-1·d-1。
     环城公园雪松林0-10 cm土壤的氨化速率、硝化速率和矿化速率分别为-33.81μg·kg-1·d-1,75.09μg·kg-1·d-1和41.29μg·kg-1·d-1,10-30 cm土壤分别为-21.06μg·kg-1·d-1,65.97μg·kg-1·d-1和44.91μg·kg-1·d-1。移位交换培养试验显示,环城公园雪松林下0-10 cm土壤移植于校园绿地雪松林和蜀山马尾松林下培养的土壤的净氨化速率分别为-34.75μg·kg-1·d-1和-32.91μg·kg-1·d-1,10-30 cm土壤分别为-23.24μg·kg-1·d-1和-2.47μg·kg-1·d-1; 0-10 cm土壤净硝化速率分别为51.92μg·kg-1·d-1和83.08μg·kg-1·d-1,10-30 cm土壤分别为75.69μg·kg-1·d-1和57.10μg·kg-1·d-1; 0-10cm土壤净矿化速率分别为17.17μg·kg-1·d-1和50.18μg·kg-1·d-1,10-30 cm土壤分别为26.22μg·kg-1·d-1 and 27.31μg·kg-1·d-1。
     蜀山马尾松林0-10 cm土壤的氨化速率、硝化速率和矿化速率分别为-124.14μg·kg-1·d-1,81.92μg·kg-1·d-1和-42.23μg·kg-1·d-1,10-30 cm土壤分别为-121.17μg·kg-1·d-1,39.51μg·kg-1·d-1和-40.83μg·kg-1·d-1。移位交换培养试验显示,蜀山马尾松林下0-10 cm土壤移植于校园绿地雪松林和环城公园雪松林下培养的土壤的净氨化速率分别为-141.17μg·kg-1·d-1和-149.14μg·kg-1·d-1,10-30 cm土壤分别为-127.18μg·kg-1·d-1和-124.12μg·kg-1·d-1; 0-10 cm土壤净硝化速率分别为139.01μg·kg-1·d-1和132.23μg·kg-1·d-1,10-30 cm土壤分别为90.82μg·kg-1·d-1和75.74μg·kg-1·d-1; 0-10cm土壤净矿化速率分别为-2.16μg·kg-1·d-1和-16.91μg·kg-1·d-1,10-30 cm土壤分别为-18.18μg·kg-1·d-1和-48.38μg·kg-1·d-1。
     校园绿地枫香林0-10 cm土壤的氨化速率、硝化速率和矿化速率分别为13.66μg·kg-1·d-1,155.66μg·kg-1·d-1和169.32μg·kg-1·d-1,10-30 cm土壤分别为-18.13μg·kg-1·d-1,137.24μg·kg-1·d-1和119.11μg·kg-1·d-1。移位交换培养试验显示,校园绿地枫香林0-10 cm土壤移植于蜀山枫香林下培养的土壤的净氨化速率为-32.54μg·kg-1·d-1,10-30 cm土壤为-32.81μg·kg-1·d-1; 0-10 cm土壤净硝化速率为116.24μg·kg-1·d-1,10-30 cm土壤为45.55μg·kg-1·d-1; 0-10 cm土壤净矿化速率为83.69μg·kg-1·d-1,10-30 cm土壤为12.74μg·kg-1·d-1。
     蜀山枫香林0-10 cm土壤的氨化速率、硝化速率和矿化速率分别为-31.53μg·kg-1·d-1,13.45μg·kg-1·d-1和-18.08μg·kg-1·d-1,10-30 cm土壤分别为-46.97μg·kg-1·d-1,5.97μg·kg-1·d-1和-41.00μg·kg-1·d-1。移位交换培养试验显示,蜀山枫香林0-10 cm土壤移植于校园绿地枫香林下培养的土壤的净氨化速率为-35.16μg·kg-1·d-1,10-30 cm土壤为-27.90μg·kg-1·d-1; 0-10 cm土壤净硝化速率为0.10μg·kg-1·d-1,10-30 cm土壤为69.21μg·kg-1·d-1; 0-10 cm土壤净矿化速率为-35.06μg·kg-1·d-1,10-30 cm土壤为41.31μg·kg-1·d-1。
     不同林分表层土壤移位培养,氮素矿化速率发生明显变化,表明土壤氮素矿化作用不仅受控于基质特性,而且受到环境条件,特别是温度的强烈影响。
     表层0-10 cm土壤中,校园绿地枫香林土壤微生物量氮含量高达104.94 mg·kg-1,而校园绿地雪松林仅12.00 mg·kg-1; 10-30 cm土层中,蜀山公园马尾松枫香混交林的土壤微生物量氮含量最高,达80.28 mg·kg-1,而校园绿地雪松林最低(15.13 mg·kg-1)。不同林分土壤微生物量氮差异明显,但是,各林分的0-10 cm与10-30 cm土层之间没有显著差异。
     针叶树种的磷利用效率显著高于其他养分元素,钙利用效率最低。常见针叶树的NUEN变动范围为59.88-149.48 g·g-1; NUEP为460.83-4545.45 g·g-1; NUEK为152.67-877.19 g·g-1;NUENa为283.29-467.29 g·g-1;NUECa为39.56-262.47 g·g-1;NUEMg为196.46-316.46 g·g-1。
     落叶阔叶树种的NUEN变动范围为47.53-175.44 g·g-1;NUEP为303.95-4617.59 g·g-1;NUEK为50.94-297.97 g·g-1;NUENa为211.69-970.87 g·g-1;NUECa为39.87-189.04 g·g-1;NUEMg为109.60-353.61 g·g-1。
     常绿阔叶树种的NUEN变动范围为35.69-172.41 g·g-1;NUEP为521.71-4000.00g·g-1;NUEK为76.76-559.28 g·g-1;NUENa为219.88-574.71 g·g-1;NUECa为41.53-117.65g·g-1;NUEMg变为158.23-365.50 g·g-1。
     针叶树种中N:P比最高的为雪松,达27.52,最低的为铺地柏(8.26)。落叶阔叶树种N:P比波动在6.21(银杏)-19.95(麻栎)之间,常绿阔叶树种N:P比最大的为合作化路的香樟,达17.37,最低的为校园绿地小叶黄杨(10.15)。总体来看,所调查的树种中,N:P比小于14的有22种,占总数的46.8%;N:P比介于14-16之间的有15种,占总数的31.9%;N:P比大于16的有10种,占到总数的21.3%。
The air, moisture, heat quantity and soil in the urban area were significantly different from those in forest ecosystem because of long-term human disturbances. The characteristics of urban soils were the important controls of the growth of urban trees. Nutrient seasonal dynamics, nutrient use efficiency, nutrient resorption and N:P ratio of the major urban trees, some soil chemical properties and the characteristics of carbon and nitrogen transformation of the different urban green-lands in Hefei were studied in order to find some orderlinesses which were useful for urban tree management.
     The soils under urban green-lands in Hefei were badly disturbed by human activities, particularly the pollution from architectural garbage. Urban soil could trend to be alkaline. Urban soils were poor in N. The distribution of P was irregular. The mean pH (H2O) in 0-10 cm soil was 7.70, and pH (KCl) was 6.80. The mean EC in 0-10 cm soil was 147.58μS·cm-1. Total nitrogen concentrations varied from 0.70 to 2.30 g·kg-1. Total phosphorus concentrations varied from 64.18 to 3144.54 mg·kg-1 and available phosphorus varied from 1.05 mg·kg-1 to 130.30 mg·kg-1. Total potassium concentrations varied from 5.12 to 11.02 g·kg-1. Total sodium concentrations varied from 2.49 to 5.35 g·kg-1. Total calcium concentrations varied from 6.22 to 131.80 g·kg-1. Total magnesium concentrations varied from 4.99 to 12.16 g·kg-1.
     The concentration of DOC in the 0-10 cm soil was the highest in the Liquidamba formosana forest in Shushan park (SPL; 234.48 mg·kg-1) and the lowest in the L. formosana forest on the university campus (UCL; 96.66 mg·kg-1), while for 10-30 cm soil the highest DOC was found in Pinus massoniana forest in Shushan park (SPP; 105.91 mg·kg-1) and the lowest in Cedrus deodara forest in Huancheng park (HPC; 75.35 mg·kg-1).
     The concentrations of extractable NH4+in the 0-10 cm and 10-30 cm soil were the highest in SPP site (14.28 mg·kg-1 and 13.27 mg·kg-1). The soil under HPC site had the lowest concentrations of extractable NH4+in both 0-10 cm (4.51 mg·kg-1) and 10-30 cm (3.05 mg·kg-1).
     The concentration of extractable NO3- in the 0-10 cm soils was the highest in HPC site (15.80 mg·kg-1) and the lowest in SPP and SPL sites (7.42 mg·kg-1), while for 10-30 cm soil the highest extractable NO3-was found in C. deodara forest on the campus (UCC; 14.63 mg·kg-1) and the lowest in SPP and SPL sites (6.37 mg·kg-1).
     Based on the in situ incubation experiment, the annual net rate of DOC was 269.75μg·kg-1·d-1 for 0-10 cm and -323.11μg·kg-1·d-1 for 10-30 cm in UCC site. In reciprocal transplant incubation, the annual net rates of DOC were, respectively,420.75μg·kg-1·d-1 and 195.54μg·kg-1·d-1 for 0-10 cm,-236.19μg·kg-1·d-1 and -169.58μg·kg-1·d-1 for 10-30 cm soil from UCC incubated in both SPP and HPC sites.
     The annual net rate of DOC was 20.61μg·kg-1·d-1 for 0-10 cm and -16.34μg·kg-1·d-1 for 10-30 cm in HPC site. In reciprocal transplant incubation, the annual net rate of DOC were, respectively,70.29μg·kg-1·d-1 and 93.92μg·kg-1·d-1 for 0-10 cm,51.64μg·kg-1·d-1 and -123.54μg·kg-1·d-1 for 10-30 cm soil from HPC incubated in both UCC site and SPP sites.
     The annual net rate of DOC was 285.42μg·kg-1·d-1 for 0-10 cm and -213.18μg·kg-1·d-1 for 10-30 cm in SPP site. In reciprocal transplant incubation, the annual net rates of DOC were, respectively,525.35μg·kg-1·d-1 and 689.79μg·kg-1·d-1 for 0-10 cm,-182.76μg·kg-1·d-1 and -211.71μg·kg-1·-1 for 10-30 cm soil from SPP site incubated in both UCC site and HPC sites.
     The annual net rate of DOC was 8.17μg·kg-1·d-1 for 0-10 cm and -254.82μg·kg-1·d-1 for 10-30 cm in UCL site. In reciprocal transplant incubation, the annual net rates of DOC were 49.93μg·kg-1·d-1 for 0-10 cm,-337.91μg·kg-1·d-1 for 10-30 cm soil from UCL site incubated in SPL site.
     The annual net rate of DOC was -168.35μg·kg-1·d-1 for 0-10 cm and 290.21μg·kg-1·d-1 for 10-30 cm soil in SPL site. In reciprocal transplant incubation, the annual net rate of DOC were -21.33μg·kg-1·d-1 for 0-10 cm,270.93μg·kg-1·d-1 for 10-30 cm soil from SPL site incubated in UCL site.
     The annual net rates of ammonification, nitrification and N mineralization were, respectively,-21.32μg·kg-1·d-1,50.86μg·kg-1·d-1 and 4.09μg·kg-1·d-1 for 0-10 cm in UCC site; and for 10-30 cm soil,-51.20μg·kg-1·-1,39.14μg·kg-1·d-1 and 13.40μg·kg-1·d-1. In reciprocal transplant incubation, the net annual rates of ammonification were, respectively, 1.78μg·kg-1·d-1 and -21.35μg·kg-1·d-1 for 0-10 cm,-48.81μg·kg-1·d-1 and -56.27μg·kg-1·d-1 for 10-30 cm soil from UCC site incubated in both SPM and HPC sites. The net annual nitrification rate were, respectively,61.53μg·kg-1·d-1 and 47.95μg·kg-1·d-1 for 0-10 cm,20.19μg·kg-1·d-1 and 64.78μg·kg-1·d-1 for 10-30 cm soil from UCC site incubated in both SPM and HPC sites. The net annual rates of N mineralization were, respectively,6.07μg·kg-1·d-1 and 9.59μg·kg-1·d-1 for 0-10 cm,28.62μg·kg-1·d-1 and 25.53μg·kg-1·d-1 for 10-30 cm soil from UCC site incubated in both SPM and HPC sites.
     The annual net rates of ammonification, nitrification and N mineralization were, respectively,-33.81μg·kg-1·d-1,75.09μg·kg-1·d-1 and 41.29μg·kg-1·d-1 for 0-10 cm in HPC site; and for 10-30 cm soil,-21.06μg·kg-1·d-1,65.97μg·kg-1·d-1 and 44.91μg·kg-1·d-1. In reciprocal transplant incubation, the net annual rates of ammonification were, respectively,-34.75μg·kg-1·d-1 and -32.91μg·kg-1·d-1 for 0-10 cm,-23.24μg·kg-1·d-1 and-2.47μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and SPM sites. The net annual nitrification rate were, respectively,51.92μg·kg-1·d-1 and 83.08μg·kg-1·d-1 for 0-10 cm, 75.69μg·kg-1·d-1 and 57.10μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and SPM sites. The net annual rates of N mineralization were, respectively,17.17μg·kg-1·d-1 and 50.18μg·kg-1·d-1 for 0-10 cm,26.22μg·kg-1·d-1 and 27.31μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and SPM sites.
     The annual net rates of ammonification, nitrification and mineralization were, respectively,-124.14μg·kg-1·d-1,81.92μg·kg-1·d-1 and -42.23μg·kg-1·d-1 for 0-10 cm in SPP site; and for 10-30 cm soil,-121.17μg·kg-1·d-1,39.51μg·kg-1·d-1 and -40.83μg·kg-1·d-1. In reciprocal transplant incubation, the net annual rates of ammonification were, respectively,-141.17μg·kg-1·d-1 and -149.14μg·kg-1·d-1 for 0-10 cm,-127.18μg·kg-1·d-1 and -124.12μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and HPC sites. The net annual nitrification rate were, respectively,139.01μg·kg-1·d-1 and 132.23μg·kg-1·d-1 for 0-10 cm,90.82μg·kg-1·d-1 and 75.74μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and HPC sites. The net annual rates of N mineralization were, respectively,-2.16μg·kg-1·d-1 and -16.91μg·kg-1·d-1 for 0-10 cm,-18.18μg·kg-1·d-1 and-48.38μg·kg-1·d-1 for 10-30 cm soil incubated in both UCC and HPC sites.
     The annual net rates of ammonification, nitrification and N mineralization were, respectively,13.66μg·kg-1·d-1,155.66μg·kg-1·d-1 and 169.32μg·kg-1·d-1 for 0-10 cm in UCL site; and for 10-30 cm soil,-18.13μg·kg-1·d-1,137.24μg·kg-1·d-1 and 119.11μg·kg-1·d-1.In reciprocal transplant incubation, the net annual rate of ammonification was-32.54μg·kg-1·d-1 for 0-10 cm,-32.81μg·kg-1·d-1 for 10-30 cm soil incubated in SPL site. The net annual nitrification rate was 116.24μg·kg-1·d-1 for 0-10 cm,45.55μg·kg-1·d-1 for 10-30 cm soil incubated in SPL site. The net annual rate of N mineralization was 83.69μg·kg-1·d-1 for 0-10 cm,12.74μg·kg-1·d-1 for 10-30 cm soil incubated in SPL site.
     The annual net rates of ammonification, nitrification and mineralization were, respectively,-31.53μg·kg-1·d-1,13.45μg·kg-1·d-1 and -18.08μg·kg-1·d-1 for 0-10 cm in SPL site; and for 10-30 cm soil,-46.97μg·kg-1·d-1,5.97μg·kg-1·d-1 and -41.00μg·kg-1·d-1. In reciprocal transplant incubation, the net annual rate of ammonification was -35.16 μg·kg-1·d-1 for 0-10 cm,-27.90μg·kg-1·d-1 for 10-30 cm soil incubated in UCL site. The net annual nitrification rate was 0.10μg·kg-1·d-1 for 0-10 cm,69.21μg·kg-1·d-1 for 10-30 cm soil incubated in UCL site. The net annual rate of N mineralization was -35.06μg·kg-1·d-1 for 0-10 cm,41.31μg·kg-1·d-1 for 10-30 cm soil incubated in UCL site.
     Results from the experiment showed that N transformation varied significantly by the reciprocal transplant incubation for the different sampling stands. It suggests that soil N transformation is comtrolled by the substrate quality, and is strongly affected by the environmental condition particullarly temperature as well.
     The annual mean concentration of soil microbial biomass nitrogen (SMBN) in the 0-10 cm soil was the highest in the Liquidamba formosana forest of campus (104.94 mg-kg-1) and the lowest in the Pinus massoniana forest of campus (12.00 mg-kg-1), while for 10-30 cm soil the highest SMBN was found in Pinus massoniana and Liquidamba formosana mixed forest of Shushan park (80.28 mg-kg-1) and the lowest in the Pinus massoniana forest of campus (15.13 mg-kg-1). There existed a significant difference in SMBN amongst the sampling stands. However, no significant differences in SMBN occurred between 0-10 cm and 10-30 cm soils for all the sampling stands.
     Nitrogen use efficiency (NUEN) of the common conifers ranged from 59.88 to 149.48 g·g-1, for NUEP from 460.83 to 4545.45 g·g-1, NUEK from 152.67 to 877.19 g·g-1, NUECa from 39.56 to 262.47 g·g-1, NUEMg from 196.46 to 316.46 g·g-1, NUENa from 467.29 to 283.29 g·g-1. NUEP was significantly higher than the other nutrient elements.
     NUEN in leaf litter for the different deciduous broad-leaved tree species in urban Hefei ranged from 47.53 to 175.44 g·g-1, NUEP from 303.95 to 4617.59 g·g-1, NUEK from 50.94 to 297.97 g·g-1, NUECa from 39.87 to 189.04 g·g-1, NUEMg from 109.60 to 353.61 g·g-1, and NUENa from 211.69 to 970.87 g·g-1.
     NUEN in leaf litter for the different evergreen broad-leaved tree species in urban Hefei ranged from 35.69 to 172.41 g·g-1, NUEP from 521.71 to 4000.00 g·g-1, NUEK from 76.76 to 559.28 g·g-1, NUENa from 219.88 to 574.71 g·g-1, NUECa from 41.53 to 117.65 g·g-1, NUEMg from 158.23 to 365.50 g·g-1.
     Cedrus deodara in UCC site had the highest N:P stoichiometrical ratio (27.52) and Sabina procumbens the lowest (8.26) in needles among the different coniferous species in urban Hefei. The N:P ratio varied from 6.21 (Ginkgo biloba)to 19.95 (Quercus acutissima) in leaves for the different deciduous broad-leaved tree species sampled in urban Hefei. Within the evergreen broadleaved tree species, Cinnamomum camphora in the Hezuohua Road had the highest N:P ratio (17.37) and Buxus bodinieri in the campus the lowest (10.15). Within the species studied,22 species (46.81%), with N:P ratio<14, were in N limitation; and 10 species (21.28%) were in P limitation (N:P ratio>16). There were 15 species (31.91%) with N:P ratio in a range of 14-16, indicating that those species were limited by both N and P.
引文
[1]崔晓阳,方怀龙.城市绿地土壤及其管理.北京:中国林业出社.2001,157-167.
    [2]苏波,韩兴国,黄建辉等.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略.生态学报,2000,20(2):335-343.
    [3]Aerts R, van der Peijl MJ. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos,1993,66:144-147
    [4]Aerts R. Nitrogen partitioning between resorption and decomposition pathways:a trade-off between nitrogen use effiviency and litter decomposition? Oikos,1997a, 80:603-605.
    [5]Aerts R & Chapin Ⅲ FS. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns. Adv Ecol Res,2000,30:1-67.
    [6]Aerts R, de Caluwe H & Beltman B. Is the relation between nutrient supply and biodiversity co-limited by the type of nutrient limitation? Oikos,2003,101: 489-498.
    [7]Vitousek PM. Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems,1999,2:505-510.
    [8]Vitousek PM. Nutrient cyclings and nutrient use efficiency. The American Naturalist, 1982,119:552-572.
    [9]Gusewell S. N:P ratios in terrestrial plants:variation and functional significance. New Phytol,2004,164,243-266.
    [10]Gusewell S, Koerselman W, Verhoeven JTA. Biomass N:P ratios as indicators of nutrient limitation for plant population in wetlands. Ecol monogr,2003,13: 371-384.
    [11]Gusewell S. High nitrogen:phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytol,2005,166:537-550.
    [12]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,(2):37-42.
    [13]廖中建,黎里.土壤氮素矿化研究进展.湖南农业科学.2007(1):56-59.
    [14]付会芳,李生秀.土壤氮素矿化与土壤供氮能力.西北农业大学学报,1992,20(增刊):48-52.
    [15]Bonde TA, Schnurer J, Rosswall T. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol Biochem.1988,20:447-452.
    [16]王常慧,邢雪荣,韩兴国.草地生态系统中土壤氮素矿化影响因素的研究进展.应用生态学报,2004,15(11):2184-2188.
    [17]Hassink J. Density fractions of soil macro organic matter and microbial biomass as predictor as of C and N mineralization. Soil Biol Biochem,1995,27:1099-1108.
    [18]Paul KI, Black AS, Conyers MK. Development of nitrogen mineralization gradients through surface soil depth and their influence on surface soil pH. Plant Soil,2001, 234:239-246.
    [19]Kyveryga PM, Blackmer AM, Ellsworth JW, Isla R. Soil pH effects on nitrification of fall-applied anhydrous ammonia. Soil Sci Soc Am J,2004,68:545-551.
    [20]Vitousek PM, Matson PA. Causes of delayed nitrate production in two Indiana forests. For Sci.,1985,31:122-131.
    [21]Azam F, Yousaf M, Hussain F, et al. Determination of biomass N in some agricultural soils of Punjab, Pakistan. Plant Soil,1989,113:223-228.
    [22]Reich PB, Ellsworth DS. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Functional Ecol,1995,9:65-76.
    [23]Loiseau P, Soussana JF. Effects of elevated CO2 temperature and N fertilization on fluxes in a grassland ecosystem. Global Change Biol,2000,6:953-965.
    [24]穆兴民,樊小林.土壤氮素矿化的生态模型研究.应用生态学报,1999,10(1):114-118.
    [25]Puri G, Ashman MR. Relationship between soil microbial biomass and gross N mineralization. Soil Biol Biochem,1998,30(2):251-256.
    [26]Arunachalam A, Maithani K, Pandey HN. Leaflitter decomposition and nutrient mineralization patterns in re-growing stands of a humid subtropical forest after tree cutting. For Ecol Mamge,1998,109:151-161.
    [27]Peter B, Reich DWP, David A. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology,2001,82 (6): 1703-1719.
    [28]Belovsky GE, Slade JB. Insect herbivory accelerates nutrient cycling and increases plant production. Proc Natl Acad Sci USA,2000,92:14412-14417.
    [29]Lodge DJ, McDowell WH. Summary of ecosystem-level effects of Caribbean Hurricanes. Biotropica,1991,23:373-378.
    [30]Anderson JPE, Domash KH. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci,1980,130:211-216.
    [31]Jenkinson DS. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson J. R. eds. Advances in Nitrogen Cycling in Agricultural Ecosystems. C. A. B. International, Wallingford,1988,368-386.
    [32]Shen SM, Pruden G, Jenkinson DS. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem,1984,16(5):437-444.
    [33]Brookes PC, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Boichem,1985,17:837-842.
    [34]Grofman PM, Eagan PS. Grass species and soil type effects on microbial biomass and activity. Plant Soil,1996,183 (1):61-67.
    [35]Huang JH, Han XG. Advanced in the effects of organisms in pedosphere on the decomposition of soil organics. Adv Plant Sci,1999,2:132-141.
    [36]Smith JL, Paul EA. The significance of soil microbial biomass estimations. In: Jean-Marc Bollag, Stotzky G. eds. Soil Biochemistry, Vol.6, Marcel Dekker Inc, New York,1991,359-396.
    [37]Voroney RP, Paul EA. Determination of Kc and Kn in situ for calibration Of chloroform fumigation-incubationmethod. Soil Biol Biochem,1984,16(1):9-14.
    [38]Witter E, Martensson AM, Garciu FV. Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manure. Soil Biol Biochem,1993,25:659-669.
    [39]周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用.生态学报,2001,21(10):1718-1725.
    [40]Jenkinson DS. The fate of plant and animal residues in soil. In:Greenland DJ, Hayes MHB. eds. The Chemistry of Soil Processes. John Wiley, Sons. Chrichester,1981, 505-562.
    [41]Singh JS, Raghabanshi AS, Singh RS, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature,1989,338:499-500.
    [42]Holmes WE, Zak DR. Soil microbial biomass dynamics and nitrogen mineralization in Northern Hardwood ecosystems. Soil Sci Soc Am J,1994,58:238-243.
    [43]Amato M, Ladd JN. Decomposition of 14C-labeled glucose and legume material in soils:Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol Biochem,1992,24:455-464.
    [44]Gregorich EG, Voroney RP, Kachanoski RG. Turnover of carbon through the microbial biomass in soils with different textures. Soil Biol Biochem,1991,22: 799-805.
    [45]Anderson JPE, Domsch KH. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem,1978,10:215-221.
    [46]Jenkinson DS, Powlson DS. The effects of biocidal treatments on metabolism in soils-V. A method for measuring soil biomass. Soil Biol Biochem,1976,8: 209-213.
    [47]俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展.土壤学进展,1994,22(6):42-49.
    [48]Jenkinson DS, Brookes PC, Powlson DS. Measuring soil microbial biomass. Soil Biol Biochem,2004,36:5-7.
    [49]黄懿梅,安韶山,曲东等.两种测定土壤微生物量氮方法的比较初探.植物营养与肥料学报,2005,11(6):830-835.
    [50]李世清,李生秀.土壤微生物体氮测定方法的研究.植物营养与肥料学报,2000,6(1):75-83.
    [51]Inubushi K, Wada H, Takai Y. Determination of microbial biomass nitrogen in submerged soil. Soil Sc Plant Nutr,1984,30(3):455-459.
    [52]Turner BL, Britow AW, Haygtarth PM. Rapid estimation of microbial biomass in grassland. Soil Biol Biochem 2001,33:913-919.
    [53]Aerts R, van der Peijl MJ. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos,1993,66:144-147.
    [54]Birk EM, Vitousek PM. Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecol,1986,67:69-79.
    [55]Eckstein RL, Karlsson PS. Above-ground growth and nutrient use by plants in a subarctic environment:effects of habitat, life-form and species. Oikos,1997,79: 311-324.
    [56]Killingbeck KT. Nutrient in senesced leaves:keys to the search for potential resorption and resorption proficiency. Ecology,1996,77:1716-1727.
    [57]Killingbeck KT. The terminological jungle revisited:making a case for use of the term resorption. Oikos,1986,46:263-264.
    [58]Vitousek PM. Litterfall, nutrient cycling and nutrient limitation in tropical forest. Ecology,1984,65(1):285-298.
    [59]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000, 11(5):785-790.
    [60]Chapin Ⅲ FS, moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecol,1991,72:709-715.
    [61]丁明懋,蚁伟民,傅声雷.在退化土地上重建的复合农林业生态系统的营养循环.见:余作岳,彭少麟主编热带亚热带退化生态系统植被恢复生态学研究,广州:广东科技出版社,1996,1:111-123.
    [62]管东生.香港草地、芒萁和灌木群落的养分利用效率.生态学杂志,1995,14(2):23-26
    [63]刘增文,赵先贵.森林生态系统养分循环特征参数研究.西北林学院学报,2001,16(4):21-24.
    [64]刘增文,强虹.森林生态系统养分循环研究中若干问题的讨论.南京林业大学学报(自然科学版),2002,7:27-30
    [65]刘增文,李雅素.刺槐人工林养分利用效率.生态学报,2003,23(3):444-449.
    [66]Berendse F, Aerts R. Nitrogen use efficiency:a biologically meaningful definition? Functional Ecol,1987,1:293-296.
    [67]沈善敏,宇万太,张璐.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化.应用生态学报,1992,3(4):296-301.
    [68]沈善敏,宇万太,张璐.杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环.应用生态学报,1993,4(1):27-31.
    [69]许松葵,薛立,杨鹏等.马占相思等5个树种叶中养分含量和养分利用效率的研究.广东林业科技.2003,19(2):13-16.
    [70]Valladares F, Martinze-Ferri E. Low leaf-level response to light and nutrient in Mediterranean evergreen oaks:a conservative resource-use strategy? New Physiol, 2000,148:79-91.
    [71]Sherman F, Kuselman I. Stoichiometry and chemical metrology:Karl Fisher reaction. Accreditation and Quality Assurance,1999,4,230-234.
    [72]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报,2005,29(6):1007-1019.
    [73]Vitousek PM. Litterfall, nutrient cycling and nutrient limitation in tropical forest. Ecology,1984,65(1):285-298.
    [74]陈伏生,胡小飞,葛刚.城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率.草业学报,2007,4(8):47-54.
    [75]张甘霖,龚子同.城市土壤与环境保护.科学新闻周刊,2000,37:7.
    [76]Fynn RWS, Morris CD, Kirkman KP. Plant strategies and trait trade-offs influence trends in competitive ability almon gradients of soil fertility and disturbance. JEcol, 2005,93:384-394.
    [77]Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystem. Ecol monogr,1992,62:365-392.
    [78]Reich PB, Ellsworth DS. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Functional Ecol,1995,9:65-76
    [79]何维明,张新时.沙地柏对毛乌素沙地3种生境中养分资源的反应.林业科学,2002,38(5):1-6.
    [80]李韵珠,王凤仙,黄元仿.土壤水分和养分利用效率几种定义的比较.土壤通报,2000,31(4):150-157.
    [81]薛达,薛立,罗山.日本中部风景林凋落物量、养分归还量和养分利用效率的研究.华南农业大学学报.2001,22(1):23-26.
    [82]Redfield AC. The biological control of chemical factors in the enviromnem. American Scientist,1958,46:205-211.
    [83]Redfield AC, Ketchum BH, Richards FA. The influence of organisms on the composition of seawater. In:Hill MN ed. The Sea Vol.2. New York:Wiley Interscience,1963,26-797.
    [84]Koersrlman W, Meuleman AFM. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. JAppl Ecol,1996,33:1441-1450.
    [85]Gusewell S. High nitrogen:phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytol,2005,166:537-550.
    [86]Heerwaarden VLM, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six subarctic bog species after 4 years of nitrogen fertilization. Ecology,2003,91:1060-1070.
    [87]曾德慧,陈广生,陈伏生等.不同林龄樟子松叶片养分含量及其再吸收效率.林业科学,2005,41(5):21-27.
    [88]Hiremath AJ, Ewel J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystem,2001,4:669-682.
    [89]Pastor J, Birdgham SD. Nutrient efficiency along nutrient availability gradients. Oecologia,1999,118:50-58.
    [90]甘露,陈伏生,胡小飞等.南昌市不同植物类群叶片氮磷浓度及其化学计量比.生态学杂志,2008,27(3):344-348.
    [91]殷云龙,骆永明,张桃林等.南京市城乡公路蜀桧叶片中金属元素和氮、硫含量 分析.应用生态学报.2005,5:929-932.
    [92]庄树宏,王克明.城市大气重金属(Pb, Cd, Cu, Zn)污染及其在植物中的富积.烟台大学学报(自然科学与工程版).2000,1(1):31-37.
    [93]Bonde TA, Schnurer J, Rosswall T. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol Biochem,1988,20:447-452.
    [94]Carter MR, Rennie DS. Dynamics of soil microbial biomass N under zero and shallow tillage for spring wheat, using 15N urea. Plant Soil,1984,76:157-164.
    [95]Xiaoniu Xu, Eiji Hirata, Tsutomu Enoki, et al. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol,2004,173: 161-170.
    [96]Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia,1990,84:391-397.
    [97]董惠英,蒋炳伸,杨喜田等.城市新建绿地系统的土壤剖面、养分特征及与植物生长的关系.河南农业大学学报.2005,3(1):35-39.
    [98]Chapin Ⅲ FS, Matson P, Mooney HA. Principles of terrestrial ecosystem ecology. New York:Springer-Verlag,2002.
    [99]Sterner RW, Elser JJ. Ecological stoichiometry:the biology of elements from molecules to the biosphere. Princeton:Princeton University Press,2002.
    [100]Zhang LX, Bai YF, Han XG. Application of N:P Stoichiometry to Ecology Studies. Acta Botanica Sinica,2003,45(9):1009-1018.
    [101]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征.生态学报,2008,28(8):3937-3947.
    [102]Luo TX, Luo J, Pan YD. Leaf traits and associated ecosystem characteristics across subtropical and timber forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia,2005,142:261-273.
    [103]李民赞,王琦,汪懋华.一种土壤电导率实时分析仪的试验研究.农业工程学报,2004,20(1):51-55.
    [104]刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究.土壤通报,2001,32(50):85-87.
    [105]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究.土壤学报,2005,42(2):247-252.
    [106]Craul PJ. A description of urban soils and their desired characteristic. J Arboriculture, 1985,11:330-339.
    [107]Short JR, Fanning DS, Mcintosh MS, et al. Soils of Mail in Washington, DC:I, statistical summary of properties. Soils Sci Soc Am J,1986,50:699-705.
    [108]Ware G. Constraints to tree growth imposed by urban soil alkalinity. J Arboriculture, 1990,16(2):35-38.
    [109]Sachse A, Henrion R, Gelbrecht J, et al. Classification of dissolved organic carbon (DOC) in river systems:Influence of catchment characteristics and autochthonous processes. Organic Geochem,2005,36(6):923-935.
    [110]郗敏,吕宪国,孔范龙.三江平原湿地沟渠侵扰带土壤DOC分布特征.辽宁工程技术大学学报,2008,27(2):292-294.
    [111]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展.应用与环境生物学报,2009,15(3):390-398.
    [112]Gundersen P, Emmett BA, Kjonaas OJ, et al. Impact of nitrogen deposition on nitrogen cycling in forests:A synthesis of NITREX data. For Ecol Manage,1998, 101:37-55.
    [113]Lajtha K, Crow SE, Yano Y, et al. Detrital controls on soil solution N and dissolved organic matter in soils:A field experiment. Biogeochemistry,2005,76:261-281.
    [114]Currie WS, Aber JD, McDowell WH, et al. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry,1996,35:471-505.
    [115]Hajnos M, Sokolowska Z, Jozefaciuk G, et al. Effect of leaching of DOC on pore characteristic of a sandy soil. J Plant Nutr Soil Sci,1999,162:19-25.
    [116]You SJ, Yin Y, Allen HE. Partitioning of organic matter in soils:Effects of pH and water/soil ratio. Sci Total Environ,1999,227:155-160.
    [117]Guggenberger G, Glaser B, Zech W. Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a spodosol A and B horizon. Water Air Soil Pollut,1994,72:111-127.
    [118]Cronan CS. Comparative effects of precipitaion acidity on three forest soils:Carbon cycling responses. Plant Soil,1985,88:101-112.
    [119]Curtin D, Campbell CA, Jalil A. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol Biochem,1998,30: 57-64.
    [120]Mulholland PJ, Dahm CN, David MB, et al. What are the temporal and spatial variations of organic acids at the ecosystem level? In:Perdue EM, Gjessing ET eds. Organic Acids in Aquatic Ecosystems. Life Sciences Research Report 48. Chichester, UK:John Wiley & Sons.1990,315-329.
    [121]Kramer JR, Brassard P, Collins P, et al. Variability of organic acids in watersheds. In: Perdue EM, Gjess ing ET eds. Organic Acids in Aquatic Ecosystems. Life Sciences Research Report 48. Chichester, UK:John Wiley & Sons.1990,127-139.
    [122]Michalzik B, Matzner E. Fluxes and dynamics of diss olved organic nitrogen and carbon in a spruce(Picea abies Karst.) forest ecosystem. Eur J Soil Sci,1999,50: 579-590.
    [123]MacDonald NW, Randlett DL, Zak DR. Soil warming and carbon loss from a Lake State Spodosol. Soil Sci Soc Am J,1999,63:211-218.
    [124]Pouyat RV, Turechek WW. Short-and long-term effects of site factors on net N-mineralization and nitrification rates along an urban-rural gradient. Urban Ecosystems,2001,5:159-178.
    [125]Zhu WX, Dillard ND, Grimm NB. Urban nitrogen biogeochemistry:Status and processes in green retention basins. Biogeochemistry,2004,71:177-196.
    [126]Hartley AEC, Neill JM, Melillo R, et al. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos,1999,86:331-343.
    [127]Evans CA, Miller EK, Friedland AJ. Nitrogen mineralization associated with birch and fir under different soil moisture regimes. Canadian Journal Forest Research, 1998,28:1890-1898.
    [128]Binkley D, Valentine D. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management, 1991,40:13-25.
    [129]Binkley D, Hart SC. The component of nitrogen availability assessment in forest soil. Advances in Soil Science,1989,10:57-112.
    [130]Binkley D, Bell R, Sollins P. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests. Can J For Res,1992, 22:858-863.
    [131]Tieterna A, Reimer L, Verstraten JM, et al. Nitrogen cycling in acid forest soils subject to increased atmospheric nitrogen input. For Ecol Manage,1993,57: 29-44.
    [132]Loiseau P, Soussana JF. Effects of elevated CO2 temperatureand N fertilization on fluxes in a grassland ecosystem. Glob Change Biol,2000,6:953-965.
    [133]Hema S, Singh KP. Effect of residue placement and chemical fertilizer on soil microbial biomsaa under tropical dryland cultivation. Biol Fertil Soil,1993,16: 275-281.
    [134]Salinas-Garria JR, Hons FM, et al. Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization. Biol Fertil Soil,1997,25:182-188.
    [135]张明,白震,张威等.长期施肥农田黑土微生物量碳、氮季节性变化.生态环境,2007,16(5):1498-1503.
    [136]Anderson JPE, Domash KH. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci,1980,130:211-216.
    [137]Azam F, Yousaf M, Hussain F, et al. Determination of biomass N in some agricultural soils of Punjab, Pakistan. Plant Soil,1989,113:223-228.
    [138]Zhou JB, Li SX. Relationships between soil microbial biomass C and N and mineralizable nitrogen in some arable soils on Loess Plateau. Pedosphere,1998, 8(4):349-354.
    [139]孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率.植物生态学报.2001,25(1):76-82.
    [140]Bridgham SD, Pastor J, et al. Nutrient-use efficiency:a litterfall index, a model, and a test along a nutrient-availability in Nothern Carolina peatlands, American Naturalist,1995,145:1-21.
    [141]Pastor J, Birdgham SD. Nutrient efficiency along nutrient availability gradients. Oecologia,1999,118:50-58.
    [142]Tanner EVJ, Vitousek PM, Cuevas E. Experimental investigation on nutrient limitation on forest growth on wet tropical mountains. Ecology,1998,79:10-22.
    [143]Wright IJ, Reich PB, et al. The worldwide leaf economics spectrum. Nature,2004, 428:821-827.
    [144]Vendramini F, Diaz S, et al. Leaf traits as indicators of resourse-use strategy in floars with succulent species. New Phytol,2002,154:147-157.
    [145]Knops JMH, Bradley K, Wedin DA. Mechanism of plant species impacts on ecosystem nitrogen cycling. Ecol Letters,2002,5:454-466.
    [146]Xu XN, Hirata E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest:N and P dynamics. Plant Soil,2005,273:279-289.
    [147]Mclendon T, Redente EF. Effects of nitrogen on species replacement dynamics during early secondary succession on a semiarid sagebrush site, Oecologia,1992, 91:312-317.
    [148]Paschke MW, Mclendon T, Redente EF. Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems,2000,3:144-158.
    [149]Grime JP. Plant strategies, vegetation processes, and ecosystem properties (Second edition). Baffins Lane, Chichester:John Wliey and Sons Ltd,2001,13-48.
    [150]Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist,1977,111: 1169-1194.
    [151]Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecol,2001,15:426-434.
    [152]Wright IJ, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecol,2001,15:351-359.
    [153]Wright IJ, Westoby M, Reich PB. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol, 2002,90:534-543.
    [154]Wright IJ, Westoby M. Nutrient concentration, resorption and lifespan:leaf traits of Australian sclerophyll species. Funcitonal Ecoly,2003,17:10-19.
    [155]Aerts R, de Caluwe H, Beltman B. Is the relation between nutrient supply and biodiversity co-limited by the type of nutrient limitation? Oikos,2003,101: 489-498.
    [156]Cordell S, Goldstein G, Meinzer FC. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Havaii. Qecologia,2001,127:198-206.
    [157]Daufresne T, Hedin LO. Plant coexistence depends on ecosystem nutrient cycles: Extension of the resource-ratio theory. Proc Natl Acad Sci, USA,2005,102: 9121-9217.
    [158]Miller TE, Burns JH et al. A critical review of twenty years:use of the resource-ratio theory. The American Naturalist,2005,165:439-448.
    [159]Tilman D. The resource-ratio hypothesis of plant succession. The American Naturalist,1985,125:827-852.
    [160]Vitousek PM. Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems,1999,2:505-510.
    [161]Shaver GR & Melillo JM. Nutrient budgets of marsh plants:Efficiency concepts and relation to availability. Ecology,1984,65:1491-1510.
    [162]Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci,YSA,2004,101:11001-11006.
    [163]Verhoeven JTA, Koerselman W, Meuleman AFM. Nitrogen-or phosporus-limited growth in herbaceous, wet vegetation:relation with atmospheric inputs and management regimes. Trends Ecol Evol,1996,11:494-497.
    [164]Zhang LX, Bai YF, et al. Differential Respomses of N:P Stoichiometry of Leymus chinensis and Cares korshinskyi to N Additions in a Steppe Ecosystem in Nei Mongol. Acta Botanica Sincia,2004,46:1009-1018.
    [165]闫恩荣.常绿阔叶林退化过程中土壤的养分库动态及植物的养分利用策略:[博士学位论文].上海:华东师范大学,2006.
    [166]Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecol Letters,2000a,3:540-550.
    [167]Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature,2000b,408:578-580.
    [168]Gusewell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants. Persp Ecol Evol System,2002,5:37-61.
    [169]Wenxuan Han, Jingyun Fang, Dali Guo et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol,2005,168: 377-385.
    [170]任书杰,于贵瑞,陶波等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究.环境科学,2007,12:2665-2673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700