用户名: 密码: 验证码:
转基因植物中外源基因的高通量检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着转基因产品的日益丰富,人们对转基因产品安全的关注越来越多。关于转基因产品是否安全至今还不能够给出确切的答案。为了转基因产品安全管理的需要,应尽快发展和完善转基因检测方法。
     目前转基因检测的方法各种各样,各有自己的特点。探索一种实用、简便、有效的检测方法对加强对转基因技术的研究和对转基因产品的管理都有重要的意义。
     本研究根据转基因植物中所转入外源基因的特征,结合微管杂交的方法,建立了一套简便而且有效的转基因检测方法。
     大多数的转基因植物中以CaMV35S启动子和NOS终止子作为外源基因的启动子和终止子。本研究首先设计针对CaMV35S启动子和NOS终止子的引物,然后对携带CaMV35S启动子和NOS终止子的质粒pBI121进行PCR扩增,扩增产物标记后作为探针。其次将尼龙膜剪切成大小合适的膜条,将多个样品DNA固定于膜条上,然后膜条与探针在2ml离心管中与探针杂交、检测获得杂交信号。这个方法可以实现一两条探针检测多个样品。最后利用PCR方法对杂交所得结果进行验证,结果发现PCR检测结果与膜条杂交结果相一致,说明微管杂交法
     检测多个植物样品中外源基因的方法是可行的。对于单一的转基因植物,转入的外源基因中不仅含有启动子和终止子,而且还含有目的基因和标记基因。本研究以转基因棉花为样品,根据转入其中的外源基因可能包含基因的种类设计了一组寡核苷酸探针,然后将氨基化的寡核苷酸探针固定到EDC处理的膜条上。样品DNA标记后与固定在膜条上的寡核苷酸探针在2ml离心管中杂交、检测获得杂交信号。结果发现这种方法可以检测到一个样品中的多个外源基因。最后利用上述基因的引物对样品DNA进行PCR检测,验证结果发现PCR检测结果与膜条杂交结果相一致,说明微管杂交法检测植物样品中多个外源基因的方法是可行的。
     新霉素磷酸转移酶(neomycin phosphotransferaseⅡ,NPTⅡ)基因是转基因植物中常用的标记基因,能够翻译出RNA,表达蛋白质。本研究以NPTⅡ基因靶标,检测植物样品外源基因表达的RNA产物。利用PCR方法扩增质粒pBI121中的NPTⅡ基因,然后将扩增产物标记成探针。RNA样品被固定到膜条上之后,在2ml离心管中与探针杂交,然后检测杂交信号。结果显示一条探针能够检测多个样品中外源基因的RNA产物。为了验证杂交结果的可靠性,利用NPTⅡ基因的引物对样品RNA进行RT-PCR检测,验证结果发现PCR检测结果与膜条杂交结果相一致,说明微管杂交法检测多个植物样品中外源基因RNA产物的方法是可行的。
Fallowing the abundance of the genetically modified product (GMP), people pay more attention to the safety of GMP. Currently, we haven’t rendered reliable answer to the safety of GMP. It’s necessary to develop and improve the detection methods for the safety control of GMP.
     At present, there are kinds of distinguishing detection methods. It’s significant to develop a kind of functional, handy, effective detection method for the advancement of transgenic biotechnology and the safety control of GMP.
     According to the feature of exogenous genes in transgenic plants and combining the microtube hybridization, we established a group of functional, handy, effective detection method.
     Most of exogenous genes in genetically modified plants apply CaMV35S and NOS as their promoter and terminator. In this study, firstly we design pairs of primers according to the CaMV35S and NOS and amplify the plasmid pBI121 that contains CaMV35S and NOS by PCR and label the PCR products as probes. After clipping the nylon membrane into strips, the DNA of multi-samples is fixed on the strips, hybridized with probes and the hybridization signal is detected in 2ml microtubes. The result is that this method can detect multi-samples by one or two probes. At last it shows that the result of hybridization and PCR are unanimous after the hybridization signal is verified by PCR, and it shows that to detect exogenous genes in multi-samples is available by microtube hybridization.
     For a single transgenic plant, it contains not only the promoter and terminator, but also the goal-gene and mark-gene. In this study we use genetically modified cotton as the sample, and design a group of oligonucleotide probes according to the exogenous genes in genetically modified tobacco. Then the amination probes are fixed on nylon strips processed by EDC. The DNA of sample is hybridized with the oligonucleotide probes after being marked and the hybridization signal is detected in 2ml microtube. The result is that this method can detect multi-exogenous gene in one sample. At last the sample is detected by PCR with the primers of exogenous genes in genetically modified tobacco, and it finds that the result of hybridization and PCR are unanimous, and it shows that to detect multi-exogenous genes in one sample is available by microtube hybridization.
     Neomycin phosphotransferaseⅡ(NPTⅡ)gene usually used as labeled gene can be translated into RNA and be transcribed into protein. In this study we detect the RNA translated by the exogenous gene in multi-samples with NPTⅡprobe. Firstly we amplify the pBI121 that contains NPTⅡwith PCR and labeled the product of PCR to be probe. RNA samples are fixed onto the nylon strips, and then hybridized with the probe and the hybridization signal is detected in the 2ml microtube. It found that one probe can detect RNA translated by exogenous gene in multi-samples. To verify the hybridization signal, RNA samples of multi-samples are detected by RT-PCR with NPTⅡprimers. Then it finds that the result of hybridization and PCR are unanimous after the hybridization signal is verified by RT-PCR, and it shows that to detect RNA translated by exogenous genes in multi-samples is available by microtube hybridization.
引文
[1]朱祯,刘祥.转基因作物-恶魔还是救星[J].农业生物技术学报, 2000, 8 1-5.
    [2] Clark M.S.顾红雅译植物分子生物学-实验手册高等教育出版社.
    [3]吴乃虎基因工程原理(第二版)(上下册)科学出版社.
    [4] Bevan M W, Flavell R B, Chilton M D. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. 1983 [J]. Biotechnology, 1992, (24): 367-370.
    [5] FANG F M. The benefit and harm of transgenic foods [J]. Health Counselor, 2000, (8): 4-5.
    [6] Sendashonga C, Hill R, Petrini A. The Cartagena Protocol on Biosafety: interaction between the Convention on Biological Diversity and the World Organisation for Animal Health [J]. Rev Sci Tech, 2005, 24 (1): 19-30.
    [7]王鹏,王海之,钱旻.农业生物技术的安全性问题研究[J].农业现代化研究, 2002, 23 (1): 41-43.
    [8] http://en.mercopress.com/2010/10/06/gm-cμltivation-totalled-134-million-hectares-in- 2009-77-soybeans-49-cotton.
    [9] LCL. 2003年世界转基因作物种植概况[J].农药, 2004, 3 (2): 91.
    [10]杨崇良,张君亭,路兴波.农业转基因生物研究现状及安全管理[J].山东农业科学, 2002, (5): 50-52.
    [11] James著C,孙国凤摘编. 2006年转基因作物商业化的全球态势[J]. 2007, 5 (21): 33-36.
    [13]侯文胜,郭三堆,路明.基因枪法获得转基因小麦植株[J].中国农业科学, 2003, 36 (5): 469-472.
    [14]张锐,郭三堆.植物抗虫基因工程研究进展[J].农业生物技术通报, 2001, (2): 8-12.
    [15]郭三堆.植物Bt抗虫基因工程研究进展[J].中国农业科学, 1995, 28 (5): 8-13.
    [16] Bateman A J. Contamination in seed crops. III. Relation with isolation distance [J]. Heredity, 1947, (1): 303-336.
    [17]杨竹平,邓晓梅,王亦非.植物抗除草剂基因工程[J].上海农业学报, 1996, 12 (4): 88-94.
    [18]梁雪莲,王引斌,魏建强等.作物抗除草剂基因研究进展[J].生物技术通报, 2001, (2): 17-21.
    [20] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae [J]. Nature, 1999, 399 (6733): 214.
    [21] HILBECK A B, MARTIN; FRIED, PADRUOT M.; BIGLER, FRANZ. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla cornea (Neuroptera: Chrysopidae) [J]. Entomological Society of America, 1998, 27 (2): 480-487.
    [22] Dalton R. Transgenic corn found growing in Mexico [J]. Nature, 2001, (413): 337.
    [23] Quist D, Chapela I H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico [J]. Nature, 2001, (414): 541-543.
    [24]陈新,王长永,朱成松等.转基因抗草甘膦大豆安全性评价及对环境影响的检测[J].江苏农业科学, 2003, (6): 36-40.
    [25]贾士荣,金芜军.国际转基因作物的安全性争论—几个事件的剖析[J].农业生物技术学报, 2003, 11 (1): 1-5.
    [26] Butler D, Reichhardt T. Long-term effect of GM crops serves up food for thought [J]. Nature, 1999, 398 (6729): 651-656.
    [28] Millstone E, Brunner E, Mayer S. Beyond‘substantial equivalence’[J]. Nature, 1999, 401 (6753): 525-526.
    [29]顾海,唐艳.从国外监管模式考察我国转基因食品的安全管理[J].中国公共卫生管理, 2006, 22 (2): 116-117.
    [30]连丽君,王雷,张可炜.转基因食品安全性的争论与事实[J].食品与药品, 2006, 8 (11): 12-16.
    [31] Raymond E. McDonnell R D C, Wendy A. Smith and Maud A. Hinchee. A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues [J]. Plant Molecular Biology Reporter 1987, 5 (4): 380-386.
    [32] Philip N. Benfey L R, and Nam-Hai Chua. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns [J]. EMBO J., 1989, 8 (8): 2195-2202.
    [33] Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation [J]. Plant Mol Biol, 1992, 18 (4): 675-689.
    [34] E. Gacheta G G M, F. Vigneaua and G. Meyerb. Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available [J]. Trends in Food Science & Technology, 1998, 9 (11-12): 380-388.
    [35] Gert van Duijn, Ria van Biert, Henri?tte Bleeker-Marcelis, Heleen Peppelman and Martin Hessing. Detection methods for genetically modified crops [J]. Food Control, 1999, 10 (6): 375-378.
    [36] Lipp M, Anklam E, Stave J W. Validation of an Immunoassay for Detection and Quantitation of a Genetically Modified Soybean in Food and Food Fractions Using Reference Materials: Interlaboratory Study [J]. Journal of AOAC INTERNATIONAL, 2000, 83 (4): 919-927.
    [37] Duijn G v, Biert R v, Bleeker-Marcelis H, et al. Detection of Genetically Modified Organisms in Foods by Protein- and DNA-Based Techniques: Bridging the Methods [J]. Journal of AOAC INTERNATIONAL, 2002, 85 (3): 787-791.
    [38]王保民,何钟佩.抗虫棉Bt杀虫晶体蛋白免疫检测方法的研究[J].棉花学报, 1998, 10 (4): 220-221.
    [39]陈松,吴敬音.转基因抗棉组织中Bt毒蛋白表达量的ELISA测定[J].江苏农业学报, 1997, 13 (3): 154-156.
    [40] Elke Anklam F G, Petra Heinze, Hans Pijnenburg and Guy Van Den Eede. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products [J]. European Food Research and Technology 2002, 214 (1): 3-26.
    [41] C. Wolf M S, A. Wurz, U. Pauli, P. Hübner and J. Lüthy. Detection of cauliflower mosaic virus by the polymerase chain reaction: testing of food components for false-positive 35S-promoter screening results [J]. European Food Research and Technology 2000, 210 (5): 367-372.
    [42] Markus Lipp A B, Fabrice Eyquem, Lothar Kruse, Heinz Schimmel, G. Van den Eede and E. Anklam. Validation of a method based on polymerase chain reaction for the detection of genetically modified organisms in various processed foodstuffs [J]. European Food Research and Technology 2001, 212 (4): 497-504.
    [43]郑文杰,刘煊,刘伟, et al.转基因大豆加工产品的定性PCR检测[J].农业生物技术学报, 2003, 11 (5): 467-471.
    [44] Schmittgen T D. Real-time quantitative PCR [J]. Methods, 2001, 25 (4): 383-385.
    [45] Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression [J]. Methods, 2001, 25 (4): 386-401.
    [46] Marta Hernández T E, SaloméPrat and Maria Pla. Development of real-time PCR systems based on SYBR? Green I, Amplifluor? and TaqMan? technologies for specific quantitative detection of the transgenic maize event GA21 [J]. Journal of Cereal Science, 2003, 39 (1): 99-107.
    [47] Hernandez M, Rodriguez-Lazaro D, Esteve T, et al. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection [J]. Anal Biochem, 2003, 323 (2): 164-170.
    [48]黄俊明,李文立,胡帅尔, et al. TaqMan探针检测转基因大豆含量方法的建立及应用[J].华南预防医学, 2008, 34 (5): 26-29.
    [49] Ber P. Methods for the detection of genetically modified organisms : Precision, pitfalls, and proficiency [J]. Molecular Biology and Immunology, 2001, 33 (3): 70-80.
    [50] Zhou P P, Zhang J Z, You Y H, et al. Detection of genetically modified crops by combination of multiplex PCR and low-density DNA microarray [J]. Biomed Environ Sci, 2008, 21 (1): 53-62.
    [51] Kok E J, Aarts H J, Van Hoef A M, et al. DNA methods: critical review of innovative approaches [J]. J AOAC Int, 2002, 85 (3): 797-800.
    [52] Sugiyama S, Masutab C, Sekiguchi H, et al. A simple,sensitive,specific detection of mixed infection of multiple plant viruses using macroarray and microtube hybridization [J]. Journal of Virological Methods, 2008, (153): 241-244.
    [53] Pieter Windels S B, Ann Depicker, William Moens, Erik Van Bockstaele, Marc De Loose. . Qualitative and event-specific PCR real-time detection methods for StarLink maize [J]. Eur. Food Res. Technol, 2003, (216): 259-263.
    [54] Hugo R. Permingeat M I R, and Rubén H. Vallejos. Detection and quantification of transgenes in grains by multiplex and real-time PCR [J]. J. Agric. Food Chem, 2002, 50 (16): 4431-4436.
    [55] Pauli U, Liniger, M., Schrott, M., Schouwey, B., Hübner, P., Brodmann, P. and Eugster, A. Quantitative detection of genetically modified soybean and maize: method evaluation in a Swiss ring trial [J]. Mitt. Lebensm. Hyg, 2001, (92): 145-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700