用户名: 密码: 验证码:
生物有机肥防控土传番茄青枯病的效果及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄青枯病是由青枯菌Ralstonia solanacearum引起的一种毁灭性土传细菌病害,严重制约着番茄产业的发展和经济效益的提高。生物防治因对环境、生态和人类健康安全而受到了国内外的关注,并在防治土传病害中发挥着越来越重要的作用。利用有益微生物防治青枯病已有大量的报道,但总体还处在生防菌资源收集阶段,缺乏稳定有效的生防产品。本研究从健康番茄植株根际分离获得解淀粉芽孢杆菌Bacillus amyloliquefaciens QL-18和皮氏劳尔氏菌Ralstonia pickettii QL-A6,分别研制出抗番茄青枯病的生物有机肥和液体菌剂。通过温室盆栽和田间试验研究了生物有机肥和液体菌剂单独或复合施用控制番茄青枯病的效果,并探讨了两者的作用机理。主要结果如下:
     1、调查了南京麒麟镇后村蔬菜种植区番茄青枯病的现状,结果表明:春季发病率一般低于秋季,前茬为寄主作物的田块发病率高于前茬为非寄主作物的田块。灌溉水源中没有检测到致病菌,但在灌溉沟渠中检测到致病菌。利用选择性培养基M-SMSA从番茄植株根际分离获得流动型(疑似致病力青枯菌)和非流动型菌株(疑似无致病力青枯菌),根据形态特征、生理生化、特异性基因片段扩增、16S rRNA基因序列、致病性鉴定等手段,最终确定流动型菌株为强致病力R. solanacearum (其中一株命名为QL-Rs1115);非流动型菌株为R. pickettii (其中一株命名为QL-A6)和R. mannitolilytica。
     2、从健康番茄植株根际分离到37株对青枯菌QL-Rs1115有抑制能力的细菌,其中B. amyloliquefaciens QL-18对青枯菌的平板抑制作用最强,在健康土壤(水稻土)和带病土壤(番茄连作土)中均显著抑制了青枯病发病率,减少了青枯菌在番茄植株根际和茎基部的数量。生防菌QL-18具有合成Fengycin、Subtilisin和Iturin等抗生素的能力,在PDA平板上能抑制Rhizoctonia solani, Phytophthora capsici, P. nicotianae, Fusarium oxysporum f. sp. niveum, F. oxysporum f. sp. cucumuerimu, F. oxysporum f. sp. melonis和Verticillium dahliae Kleb等植物土传病原真菌。GFP标记研究发现生防菌QL-18在番茄植株根表具有较好的定殖能力。
     3、以菜粕堆肥(RCC)、猪粪堆肥(PMC)、菜粕和猪粪堆肥1:1混合物(R&P)、鸡粪堆肥(CMC)、牛粪堆肥(CDC)和中药渣堆肥(HRC)和2种泥炭(高位泥炭MP和低位泥炭FP)为原料,筛选适合生防菌QL-18的营养载体。结果表明,RCC不但能为生防菌QL-18提供大量的可溶性C、N养分,使其在载体中更好的繁殖和存活;而且能抑制青枯菌QL-Rs1115的生长,是菌株QL-18的最佳营养载体。在FP中生防菌QL-18也能保持很高的数量,但与其它堆肥载体相比,FP延长了青枯菌QL-Rs1115的存活时间,因此不是最适的生防菌营养载体。
     4、将生防菌QL-18与菜粕堆肥二次固体发酵制成生物有机肥BOF。盆栽试验中,在育苗穴盘和移栽盆钵中均施用BOF的处理,番茄植株根际青枯菌的数量显著减少,有效降低了青枯病发病率。田间条件下BOF的控病效果因季节不同而异,春季施用BOF防效比秋季好,且育苗和移栽时均施用BOF的处理防效高于单施处理。番茄植株青枯病发病率与土壤中初始青枯菌的含量呈显著正相关,土壤初始病原菌数量越高,BOF的防病效果越差。
     5、盆栽试验研究发现R. pickettii QL-A6在番茄根际和茎部定殖数量达到107cfu/gdw和108cfu/g fps,具备和青枯菌竞争的能力。灌根法施用R. pickettii QL-A6,能显著降低根际病原菌数量,有效防控苗期番茄青枯病的发生;增加R. pickettii QL-A6的施用量,能显著提高其生防效率。茎部注射法施用R. pickettii QL-A6的防控效果显著高于灌根法,R. pickettii QL-A6在地上部各组织大量定殖,抑制了病原菌对番茄的侵染。田间试验结果表明,茎部注射法施用R. pickettii QL-A6能有效降低番茄青枯病的发病率。
     6、温室和田间试验结果表明,育苗施用BOF和茎部注射施用R. pickettii QL-A6两种方法配施能稳定防控番茄青枯病(70%-86%)。田间单独施用BOF或R. pickettiiQL-A6的防效均受季节影响:BOF处理的春季防效好(54.7%),秋季防效差(30.5%);R. pickettii QL-A6处理春季防效差(31.6%),秋季防效好(80.0%)。育苗施用BOF后,生防菌QL-18能在番茄根际大量定殖,降低根际青枯菌的数量;茎部注射施用后,R. pickettii QL-A6在地上部快速大量定殖,减缓了青枯菌在地上部的侵染速度。
Bacterial wilt of tomato (BWT), a destructive soilborne disease caused by Ralstonia solanacearum, is a threat to tomato production and economical benefit. No effective measures have been developed yet. Environmentally friendly pesticide alternatives such as biolgical control have been suggested as integrated control strategies for BWT. Many beneficial microorganisms (BMs) have been screened for suppression of this disease; however, bio-products based on these BMs that could stably and efficiently control the disease are scare. In present study, BMs such as Bacillus amyloliquefaciens QL-18and Ralstonia pickettii QL-A6were isolated from the rhizosphere soil of healthy tomato plants. A bio-organic fertilizer (BOF) fortified with B. amyloliquefaciens QL-18and a liquid bio-product based on R. pickettii QL-A6were developed for suppression of BWT. A serial of experiments were conducted to test their control efficacies of BWT under greenhouse and field conditions. The possible control mechanisms were also discussed.
     The main results obtained were listed as follows:
     1. Field surveys on the epidemiolgy of BWT were undertaken in major tomato growing districts of the Qilin town, China. Disease incidences varied along with the crop seasons (spring and autumn) and previous crops (host and non-host plants). The pathogen was frequently detected from plant, soil and irrigation canals, not from irrigation water reservoir. Two phenotypically different colonies, fluidal (virulent R. solanacearum-Wke) and afluidal (avirulent R. solanacearum-liko) types were obtained from the rhizosphere soil using a modified semi-selective medium, South Africa (M-SMSA). Based on the results of the morpholgical characteristics, physiolgical and biochemical tests, amplication of R. solanacearum-specific genes,16S rRNA gene sequence and pathogenicity tests, the fluidal types were conformed as virulent R. solanacearum strains; and the afluidal types belong to R. pickettii and R. mannitolilytica.
     2. Thirty-seven out of503rhizobacteria isolated from the rhizosphere soil of healthy tomato plants showed inhibitory effects against R. solanacearum strain QL-Rs1115. B. amyloliquefaciens QL-18performed best in suppression of R. solanacearum in vitro and efficiently reduced the disease incidences and populations of R. solanacearum in the rhizosphere soil and crown of tomato plants growing in both of paddy soil and soil continuously cropped with tomato plants. B. amyloliquefaciens QL-18has the capacities of producing antibiotics, such as fengycin, subtilisin and iturin, and inhibiting the growth of the phytopathogens including R. solanacearum, R. solani, P. capsici, P. nicotianae, F. oxysporum f. sp. Niveum, F. oxysporum f. sp. Cucumuerimu, F. oxysporum f. sp. melonis and V. dahliae Kleb. B. amyloliquefaciens QL-18successfully colonized the surface of tomato roots; this was conformed by labeling B. amyloliquefaciens QL-18with gfp and detecting the fluorescent cells under a fluorescence microscope.
     3. Six composts, i.e., rapeseed cake compost (RCC), pig manure compost (PMC), mixture (1:1w/w) of RCC and PMC (R&P), chicken manure compost (CMC), cow dung compost (CDC), herb residue compost (HRC), and two peats, i.e., mosspeat (MP) and fenpeat (FP) were used as carriers of B. amyloliquefaciens QL-18. The results showed that RCC was the best carrier for B. amyloliquefaciens QL-18, because (1) B. amyloliquefaciens QL-18survived best in RCC, which could supply B. amyloliquefaciens QL-18with enough dissolvable organic carbon and nitrogen for multiplication;(2) RCC inhibited the growth of R. solanacearum. B. amyloliquefaciens QL-18could also survive well in the carrier FP, but the pathogen R. solanacearum survived in FP with large population (>105cfu/g dc) for more than60days, while R. solanacearum in RCC could not be detected15days after conservation. Thus, FP is unsuitable to be a carrier of a BM antagonistic against R. solanacearm.
     4. The effect of BOF, a bio-product of RCC fortified with B. amyloliquefaciens QL-18was tested on suppression of BWT under both of the greenhouse and field condition. The best biocontrol efficiency was obtained by application of BOF into substrate during the nursery phase of tomato seedling followed by a second application to pot soil when seedlings were transplanted in greenhouse. However, the suppressiveness in field depended on the crop seasons. Disease incidence in the spring crop season was significantly reduced, while a low suppressive effect was observed in the autumn crop season. Disease incidences were significantly and positively correlated with the initial (before transplanting) R. solanacearum population in the soil.
     5. Due to the good performances in colonization of the rhizosphere soil and stem of tomato, R. pickettii QL-A6was selected and developed as a liquid bio-product for suppression of R. solanacearum by use of the soil drench (SD) and stem injection (SI) methods in greenhouse. By the SI method, disease incidence was reduced by71.2%on the average with an inoculation dosage only about105cfu of R. pickettii QL-A6per plant. By the SD method, disease incidence was reduced by52.9%on the average but needed inoculation dosage was as high as about109cfu of R. pickettii QL-A6per plant. Thus, the SI method was chosen further test in field. The field disease incidence in R. pickettii QL-A6treated plots was8.8%at harvest time, while that in the sterilized water treated plots was as high as33.1%. It is concluded that direct injection of R. pickettii QL-A6in stem of tomato could be an alternative to chemical pesticides for biocontrol of R. solanacearum.
     6. The effects of application of BOF and injection of R. pickettii QL-A6alone or in combination on suppression of BWT were investigated under greenhouse and field conditions. The results showed that combined treatment achieved better control effects (70-86%). The control efficacies of application of BOF and R. pickettii QL-A6alone altered along with the crop seasons in field. The control efficacies of BOF treatment was high (54.7%) in spring crop season, while was low (30.5%) in fall crop season. The control efficacies of stem injection of R. pickettii QL-A6was high (80.0%) in fall crop season, while was low (31.6%) in spring crop season. As BOF was amended with the seedling substrate, B. amyloliquefaciens QL-18colonized in tomato rhizosphere with large population (>106cfu/g dw) and reduced the population of R. solanacearum in the rhizosphere soil. The delay of multiplication of R. solanacearum in the aboveground parts of plants may due to the systemically colonization of both shoots and roots after R. pickettii QL-A6cells were directly injected into the plant stem, in which R. pickettii QL-A6may form a series of biofilms or other barriers and compete against the pathogen for spaces and nutrients.
引文
Ahmad, F., Ahmad, I., Khan, M. S.,2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiolgical Research.163,173-181.
    Albareda, M., Rodriguez-Navarro, D. N., Camacho, M., Temprano, F. J.,2008. Alternatives to peat as a carrier for rhizobia inoculants:Solid and liquid formulations. Soil Biolgy and Biochemistry.40, 2771-2779.
    Aliye, N., Fininsa, C., Hiskias, Y.,2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biolgical Control.47,282-288.
    Alvarez, B., Lopez, M. M., Biosca, E. G.,2007. Influence of Native Microbiota on Survival of Ralstonia solanacearum Phylotype Ⅱ in River Water Microcosms. Appl Environ Microbiol.73, 7210-7217.
    Alvarez, B., Vasse, J., Le-Courtois, V., Trigalet-Demery, D., Lopez, M. M., Trigalet, A.,2008. Comparative behavior of Ralstonia solanacearum biovar 2 in diverse plant species. Phytopatholgy.98,59-68.
    Andreote, F. D., de Araujo, W. L., de Azevedo, J. L., van Elsas, J. D., da Rocha, U. N., van Overbeek, L. S.,2009. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol.75,3396-3406.
    Aoki, M., Uehara, K., Koseki, K., Tsuji, K., Iijima, M., Ono, K., Samejima, T.,1991. An antimicrobial substance produced by Pseudomonas cepacia B5 against the bacterial wilt disease pathogen, Pseudomonas solanacearum. Agricultural and Biolgical Chemistry.55,715-722.
    Arwiyanto, T., Goto, M., Tsuyumu, S., Takikawa, Y.,1994. Biolgical control of bacterial wilt of tomato by an avirulent strain of Pseudomonas solanacearum isolated from Strelitzia reginae. Ann. Phytopath. Soc. Japan.60,421-430.
    Backman, P. A., Sikora, R. A.,2008. Endophytes:An emerging tool for biolgical control. Biolgical Control.46,1-3.
    Bailey, K. L., Lazarovits, G,2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research.72,169-180.
    Baker, K. F.,1987. Evolving concepts of biolgical control of plant pathogen. Annu Rev Phytopathol.25, 67-85.
    Balgh, B., Jones, J. B., Iriarte, F. B., Momol, M. T.,2010. Phage Therapy for Plant Disease Control. Current Pharmaceutical Biotechnolgy.11,48-57.
    Barret, M., Morrissey, J. P., O'Gara, F.,2011. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biolgy and Fertility of Soils.47, 729-743.
    Barretti, P. B., Souza, R. M. d., Pozza, E. A., Souza, J. T. d.,2012. Combination of endophytic bacteria and resistant cultivars improves control of Ralstonia wilt of tomato. Australasian Plant Patholgy. 41,189-195.
    Bashan, Y.,1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnolgy Advances.16,729-770.
    Bellstedt, D. U.,2009. Enzyme-linked immunosorbent assay detection of Ralstonia solanacearum in potatoes:the South African experience. Methods in Molecular Biolgy.508,51-62.
    Biebl, M., Bonatti, H., Eller, M., Fille, M., Hoeller, E., Lass-Floerl, C., Stelzmueller, I., Weiss, G,2006. Ralstonia pickettii-innocent bystander or a potential threat? Clinical Microbial Infect.12, 99-101.
    Bonanomi, G., Chiurazzi, M., Caporaso, S., Del Sorbo, G., Moschetti, G., Felice, S.,2008. Soil solarization with biodegradable materials and its impact on soil microbial communities. Soil Biolgy and Biochemistry.40,1989-1998.
    Boudazin, G., Claire Le Roux, A., Josi, K., Labarre, P., Jouan, B.,1999. Design of division specific primers of Ralstonia solanacearum and application to the identification of European isolates. European Journal of Plant Patholgy.105,373-380.
    Boukaew, S., Chuenchit, S., Petcharat, V.,2010. Evaluation of Streptomyces spp. for biolgical control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl.56,365-374.
    Buddenhagen, I. W., Kelman, A.,1964. Biolgical and physiolgical aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol.2,203-230.
    Buddenhagen, I. W., Sequeira, L., Kelman, A.,1962. Designation of races of Pseudomonas solanacearum. Phytopatholgy 52,726.
    Burr, T. J., Schroth, M. N., Suslow, T.,1978. Increased potato yield by treatment of seedpieces with specific strain of Pseudomonas fluorescens and P. putida. Phytopatholgy.68,1377-1383.
    Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., Shen, Q.,2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biolgy and Fertility of Soils.47, 495-506.
    Caruso, P., Bertolini, E., Cambra, M., Lopez, M. M.,2003. A new and sensitive Co-operational polymerase chain reaction for rapid detection of Ralstonia solanacearum in water. Journal of Microbiolgical Methods.55,257-272.
    Caruso, P., Llop, P., Palomo, J. L., Garcia, P., Morente, C., Lopez, M. M.,1998. Evaluation of methods for detection of potato seed contamination by Ralstonia solanacearum. In:Prior, Ph., C. Allen, and J. Elphinstone (eds.). Bacterial wilt disease:melocular and ecolgical aspects. Springer Verlag, Berlin, Germany. P.128-132.
    Caruso, P., Palomo, J. L., Bertolini, E., Alvarez, B., Lopez, M. M., Biosca, E. G.,2005. Seasonal Variation of Ralstonia solanacearum Biovar 2 Populations in a Spanish River:Recovery of Stressed Cells at Low Temperatures. Appl. Environ. Microbiol.71,140-148.
    Chen, C., Bauske, E. M., Musson, G., Rodriguez-Kabana, R., Kloepper, J. W.,1995. Biolgical control of Fusarium wilt on cotton by use of endophytic bacteria. Biolgical Control.5,83-91.
    Chen, W. Y., Echandi, E.,1981. Bacteriocin production and semiselective medium for detection, isolation, and quantification of Pseudomonas solanacearum in soil. Phytopatholgy 72,310-313.
    Chen, W. Y., Echandi, E.,1984. Effects of avirulent bacteriocin-producing strains of Pseudomonas solanacearum on the control of bacterial wilt of tobacco. Plant patholgy.33,245-253.
    Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Sussmuth, R., J. Piel, Borriss, R.,2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnolgy.140,27-37.
    Chen, Y, Zhang, W. Z., Liu, X., Ma, Z. H., Li, B., Allen, C., Guo, J. H.,2010. A real-time PCR assay for the quantitative detection of Ralstonia solanacearum in horticultural soil and plant tissues. J. Microbiol. Biotechnol.20,193-201.
    Choi, O., Kim, J., Ryu, C.-M., Park, C. S.,2004. Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathol. J.20,97-102.
    Chumthong, A., Kanjanamaneesathian, M., Pengnoo, A., Wiwattanapatapee, R.,2008. Water-soluble granules containing Bacillus megaterium for biolgical control of rice sheath blight:formulation, bacterial viability and efficacy testing. World Journal of Microbiolgy and Biotechnolgy.24, 2499-2507.
    Clark, J. W., Kambhampati, S.,2003. Phylgenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea:Cryptocercidae), including a description of three new species. Mol Phylgenet Evol.26,82-88.
    Coenye, T., De Vos, P., Goris, J., Vandamme, P.,2003. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa. International Journal of Systematic and Evolutionary Microbiolgy.53,1075-1080.
    Cook, D., Sequeira, L.,1991. The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Molecular and General Genetics MGG. 227,401-410.
    Daza, A., Santaman'a, C., Rodriguez-Navarro, D. N., Camacho, M., Orive, R., Temprano, F.,2000. Perlite as a carrier for bacterial inoculants. Soil Biolgy and Biochemistry.32,567-572.
    de Boer, M., Bom, P., Kindt, F., Joost J. B. Keurentjes, Ientse van der Sluis, Loon, L. C. v., Bakker, P. A. H. M.,2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease suppressive mechanisms. Phytopatholgy.93,626-632.
    Dhingra, O. D., Coelho-Netto, R. A., Rodrigues, F. A., Silva, J. G. J., Maia, C. B.,2006. Selection of endemic nonpathogenic endophytic Fusarium oxysporum from bean roots and rhizosphere competent fluorescent Pseudomonas species to suppress Fusarium-yellow of beans. Biolgical Control.39,75-86.
    Dong, F., Zhang, X. H., Li, Y. H., Wang, J. F., Zhang, S. S., Hu, X. F., Chen, J. S.,2010. Characterization of the endophytic antagonist pY11T-3-1 against bacterial soft rot of Pinellia ternata. Lett Appl Microbiol.50,611-7.
    Dubey, S. C., Bhavani, R., Singh, B.,2009. Development of Pusa 5SD for seed dressing and Pusa Biopellet 10G for soil application formulations of Trichoderma harzianum and their evaluation for integrated management of dry root rot of mungbean (Vigna radiata). Biolgical Control.50, 231-242.
    Eden, P. A., Schmidt, T. M., Blakemore, R. P., Pace, N. R.,1991. Phylgenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. International Journal of systematic bacterialgy.41,324-325.
    Eilenberg, J., Hajek, A., Lomer, C.,2001. Suggestions for unifying the terminolgy in biolgical control. BioControl.46,387-400.
    Eilenberg, J., Hokkanen, H. M. T.,2006. An ecolgical and societal approach to biolgical control. Springer.
    Elabyad, M. S., Elsayed, M. A., Elshanshoury, A. R., Elsabbagh, S. M.,1993. Towards the biolgical control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant and Soil.149,185-195.
    Elphinstone, J. G,2005. Bacterial wilt disease and the Ralstonia solanacearum:species complex. APS Press, St. Paul, Minnesota.
    Elphinstone, J. G, Hennessy, J., Wilson, J. K., Stead, D. E.,1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin.26,663-678.
    Elphinstone, J. G, Stead, D. E., Caffier, D., Janse, J. D., Lopez, M. M., Mazzucchi, U., Muller, P., Persson, P., Rauscher, E., Schiessendoppler, E., Sousa Santos, M., Stefani, E., Vaerenbergh, J., 2000. Standardization of methods for detection of Ralstonia solanacearum in potato. EPPO Bulletin.30,391-395.
    Emmert, E. A., Handelsman, J.,1999. Biocontrol of plant disease:a (gram) positive perspective. FEMS Microbiol Lett.171,1-9.
    Englerbrecht, M. C.,1994. Modification of a semi-selective medium for the isolation and quantification Pseudomonas solanacearum. ACIAR Bact. Wilt News Lett.10,3-5.
    EPPO,2004. EPPO Standards PM 7/21. Diagnostic protocols for regulated pests:Ralstonia solanacearum. EPPO Bulletin.34,173-178.
    Etchebar, C., Trigalet-Demery, D., Gijsegem, G., Vasse, J., Trigalet, A.,1998. Xylem colonization by a hrcV mutant of Ralstonia solanacearum is a key factor for the efficient biolgical control of tomato bacterial wilt. Mol. Plant-Microbe Interact..11,869-877.
    Fegan, M., Prior, P.,2005. How complex is the "Ralstonia solanacearum species complex"? In:Allen C, Prior P, Hayward AC, eds. Bacterial wilt disease and the Ralstonia solanacearum species complex. St. Paul, MN:APS Press.449.
    Ferreira, E. M., Castro, I. V.,2005. Residues of the cork industry as carriers for the production of legumes inoculants. Silva Lusitana.13,159-167.
    Forster, R. C.,1986. The ultrastructure of the rhizoplane and rhizosphere. Annu Rev Phytopathol.24, 211-234.
    Frapolli, M., Defago, G., Moenne-Loccoz, Y.,2010. Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biolgy and Biochemistry.42, 649-656.
    Fravel, D. R.,2005. Commercialization and implementation of biocontrol. Annual Review of Phytopatholgy.43,337-359.
    French, E. R., Gutarra, L., Aley, P., Elphinstone, J.,1995. Culture media for Ralstonia solanacearum isolation, identification and maintenance. Fitopatolgia 30,126-130.
    Frey, P., Prior, P., Marie, C., Kotoujansky, A., Demery, D. T., Trigalet, A.,1994. Hrp- Mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Appl. Environ. Microbiol.60,3175-3181.
    Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., Yamada, T.,2011. Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages. Applied and Environmental Microbiolgy.77,4155-4162.
    Fujiwara, A., Kawasaki, T., Usami, S., Fujie, M., Yamada, T.,2008. Genomic characterization of Ralstonia solanacearum phage phi RSA1 and its related prophage (phi RSX) in strain GMI1000. Journal of Bacteriolgy.190,143-156.
    Furuya, N., Matsuyama, N.,1992. Biolgical control of the bacterial wilt of tomato with antibiotic-producing strains of Pseudomonas glumae. Journal of the Faculty of Agriculture Kyushu University.37,159-171.
    Gamliel, A., Austerweil, M., Kritzman, G.,2000. Non-chemical approach to soilborne pest management-organic amendments. Crop Protection.19,847-853.
    Ghorbani, R., Wilcockson, S., Koocheki, A., Leifert, C.,2008. Soil management for sustainable crop disease control:a review. Environmental Chemistry Letters.6,149-162.
    Graham-Weiss, L., Bennett, M. L., Paau, A. S.,1987. Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Applied and Environmental Microbiolgy.53, 2138-2140.
    Graham, J., Jones, D. A., Lloyd, A. B.,1979. Survival of Pseudomonas solanacearum race 3 in plant debris and in latently infected potato tubers. Phytopatholgy.69,1100-1103.
    Graham, J., Lloyd, A. B.,1979. Survival of potato strain (race 3) of Pseudomonas solanacearum in the deeper soil layers. Aust J Agric Res.30,489-496.
    Granada, G A., Sequeira, L.,1983a. A new selective medium for Pseudomonas solanacearum. Plant Disease.67,1084-1088.
    Granada, G A., Sequeira, L.,1983b. Survival of Pseudomonas solanacearum in soil, rhizosphere, and plant roots. Can J Microbiol.29,433-440.
    Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., Dinoor, A.,2002. Improving biolgical control by combining biocontrol agents each with several mechanisms ofdisease suppression. Phytopatholgy.92,976-985.
    Guo, J.,2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biolgical Control.29, 66-72.
    Guo, J. H., Qi, H. Y, Guo, Y. H., Ge, H. L., Gong, L. Y, Zhang, L. X., Sun, P. H.,2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biolgical Control.29,66-72.
    Haas, D., Defago, G,2005. Biolgical control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiolgy.3,307-319.
    Hara, H., Ono, K.,1991. Effect of weakly-virulent bacteriocin-producing strain of Pseudomonas solanacearum on the protection of tobacco plant from bacterial wilt Annals of the Phytopatholgical Society of Japan.57,24-31.
    Hase, S., Shimizu, A., Nakaho, K., Takenaka, S., Takahashi, H.,2006. Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Patholgy.55, 537-543.
    Hase, S., Takahashi, S., Takenaka, S., Nakaho, K., Arie, T., Seo, S., Ohashi, Y., Takahashi, H.,2008. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Patholgy.57,870-876.
    Hayward, A. C.,1964. Characteristics of Pseudomonas solanacearum. Applied Bacteriolgy.27,265-277.
    Hayward, A. C.,1991. Biolgy and epidemiolgy of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol.29,65-87.
    Hert, A. P., Marutani, M., Momol, M. T., Roberts, P. D., Olson, S. M., Jones, J. B.,2009. Suppression of the bacterial spot pathogen Xanthomonas euvesicatoria on tomato leaves by an attenuated mutant of Xanthomonas perforans. Appl. Environ. Microbiol.75,3323-3330.
    Hikichi, Y., Yoshimochi, T., Tsujimoto, S., Shinohara, R., Nakaho, K., Kanda, A., Kiba, A., Ohnishi, K., 2007. Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnolgy.24,149-154.
    Hoitink, H. A. J., Boehm, M. J.,1999. Biocontrol within the context of soil microbial communities:a substrate-dependent phenomenon. Annu. Rev. Phytopathol.37,427-446.
    Hongoh, Y., Deevong, P., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Vongkaluang, C., Noparatnaraporn, N., Kudo, T.,2005. Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol.71,6590-6599.
    Horita, M., Yano, K., Tsuchiya, K.,2004. PCR-based specific detection of Ralstonia solanacearum race 4 strains. Journal of General Plant Patholgy.70,278-283.
    Hsieh, F. C., Lin, T. C., Meng, M., Kao, S. S.,2008. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr. Microbiol.56,1-5.
    Huang, J., Wu, J., Li, C., Xiao, C., Wang, G.,2009. Specific and sensitive detection of Ralstonia solanacearum in soil with quantitative, real-time PCR assays. J Appl Microbiol.9999,1-11.
    Ikeda, K., Toyota, K., Kimura, M.,1998. Role of extracellular pectinases in the rhizoplane competence of a rhizobacterium Burkholderia pickettii MSP3Rif. Soil Biolgy and Biochemistry.30, 323-329.
    Julia, K.-S., Welington, L. A., Rodrigo, M., Aparecida, P.-k. A., Lucio, A. J.,2005. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant and Soil.273,91-99.
    Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., Steinberg, C.,2007. Soil health through soil disease suppression:Which strategy from descriptors to indicators? Soil Biolgy and Biochemistry.39,1-23.
    Ji, P., Wilson, M.,2002. Assessment of the importance of similarity in carbon source utilization profiles between the biolgical control agent and the pathogen in biolgical control of bacterial speck of tomato. Appl Environ Microbiol.68,4383-4389.
    Ji, X., Lu, G., Gai, Y, Zheng, C., Mu, Z.,2008. Biolgical control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiolgy Ecolgy.65,565-573.
    Karganilla, A. D., Buddenhagen, I. W.,1972. Development of a selective medium for Pseudomonas solanacearum. Phytopatholgy.62,1373-1376.
    Kawasaki, T., Shimizu, M., Satsuma, H., Fujiwara, A., Fujie, M., Usami, S., Yamada, T.,2009. Genomic characterization of Ralstonia solanacearum phage phi RSB1, a T7-like wide-host-range phage. Journal of Bacteriolgy.191,422-427.
    Kelman, A.,1954. The relationship of pathogenicity in Pseudononas solanacearum to colony appearance on tetrazolium medium. Phytopatholgy.44,693-695.
    Kelman, A.,1956. Factors influencing viability and variation in cultures of Pseudomonas solanacearum. Phytopatholgy.46,16-17.
    Kelman, A., Hruschka, J.,1973. The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth culture of Pseudomonas solanacearum. J Gen Microbiol.76,177-188.
    Kelman, A., Sequeira, L.,1965. Root-to-root spread of Pseudomonas solanacearum. Phytopatholgy.55, 304-309.
    Kinsella, K., Schulthess, C. P., Morris, T. F., Stuart, J. D.,2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere Soil Biolgy and Biochemistry.41,374-379.
    Kishore, G K., Pande, S., Podile, A. R.,2005. Phylloplane bacteria increase seedling emergence growth and yield of field-grown groundnut (Arachis hypogea L.). Letters in Applied Microbiolgy.40, 260-268.
    Kloepper, J. W., Rodriguez-Kabana, R., Mcinroy, J. A., Yong, R. W.,1992. Rhizosphere bacteria antagonistic to soybean cyst(Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes:Identification by fatty acid analysis and frequency of biolgical control activity. Plant and Soil.139,75-84.
    Kloepper, J. W., Ryu, C. M., Zhang, S. A.,2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopatholgy 94,1259-1266.
    Krausz, J. P., Thurston, H. D.,1975. Breakdown of resistance to Pseudomonas solanacearum in tomato. Phytopatholgy.65,1272-1274.
    Kubota, R., Vine, B. G., Alvarez, A. M., Jenkins, D. M.,2008. Detection of Ralstonia solanacearum by loop-mediated isothermal amplification. Phytopatholgy.98,1045-1051.
    Kutin, R. K., Alvarez, A., Jenkins, D. M.,2009. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. Journal of Microbiolgical Methods.76,241-246.
    Lee, K., Pan, J. J., May, G.,2009. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett.299,31-37.
    Lemessa, F., Zeller, W.,2007. Screening rhizobacteria for biolgical control of Ralstonia solanacearum in Ethiopia. Biolgical Control.42,336-344.
    Lin, C. H., Hsu, S. T., Tzeng, K. C., Wang, J. F.,2009. Detection of race 1 strains of Ralstonia solanacearum in field samples in Taiwan using a BIO-PCR method. European Journal of Plant Patholgy.124,75-85.
    Masunaka, A., Nakaho, K., Sakai, M., Takahashi, H., Takenaka, S.,2009. Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. Journal of General Plant Patholgy.75,281-287.
    Mazurier, S., Corberand, T., Lemanceau, P., Raaijmakers, J. M.,2009. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 3,977-991.
    McLaughlin, R. J., Sequeira, L.,1988. Evaluation of an avirulent strain of Pseudomonas solanacearum for biolgical control of bacterial wilt of potato. American Journal of Potato Research.65, 255-268.
    Messiha, N. A. S., van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., van Bruggen, A. H. C.,2007. Stenotrophomonas maltophilia:a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Patholgy.118, 211-225.
    Mew, T. W., Ho, W. C.,1977. Effect of soil temperature on resistance of tomato cultivars to bacterial wilt. Phytopatholgy.909-911.
    Michel, V. V, Hartman, G. L., Midmore, D. J.,1996. Effect of previous crop son soil populations of Burkholderia solanacearum, bacterial wilt, and yield of tomatoes in Taiwan. Plant Disease.80, 1367-1372.
    Michel, V. V., Mew, T. W.,1998. Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopatholgy.88,300-305.
    Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., Wilson, M.,2007. Biolgical control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biolgical Control.41,199-206.
    Nesmith, W. C., Jr. Jenkins, S. F.,1979. A selective medium for the isolation and quantification of Pseudomonas solanacearum from soil. Phytopatholgy.69,182-185.
    Nonomura, T., Matsuda, Y., Bingo, M., Onishi, M., Matsuda, K., Harada, S., Toyoda, H.,2001. Algicidal effect of 3-(3-indolyl) butanoic acid, a control agent of the bacterial wilt pathogen, Ralstonia solanacearum. Crop Protection.20,935-939.
    Okabe, N., M. Goto,1963. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol.1,397-418.
    Okon, Y., Labandera-Gonzalez, C. A.,1994. Agronomic applications of Azospirillum:an evaluation of 20 years worldwide field inoculation. Soil Biolgy and Biochemistry.26,1591-1601.
    Opina, N., Tavner, F., Hollway, G., Wang, J., Li, T., Maghirang, R., Fegan, M., Hayward, A., Krishnapillai, V., Hong, W., Holloway, B., Timmis, J.,1997. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia-Pacific Journal of Molecular Biolgy And Biotechnolgy.5,19-30.
    Ozawa, H., Tanaka, H., Ichinose, Y., Shiraishi, T., Yamada, T.,2001. Bacteriophage P4282, a parasite of Ralstonia solanacearum, encodes a bacteriolytic protein important for lytic infection of its host. Molecular Genetics and Genomics.265,95-101.
    Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W., Lee, S. Y,2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J.23,22-25.
    Pastrik, K. H., Elphinstone, J. G., Pukall, R.,2002. Sequence analysis and detection of Ralstonia solanacearum by multiplex PCR amplification of 16S-23S ribosomal Intergenic spacer region with internal positive control. European Journal of Plant Patholgy.108,831-842.
    Paulitz, T. C.,2000. Population dynamics of biocontrol agents and pathogens in soils and rhizospheres. European Journal of Plant Patholgy.106,401-413.
    Persson, P.,1998. Successful eradication of Ralstonia solanacearum from Sweden. EPPO Bulletin.28, 113-119.
    Poussier, S., Luisetti, J.,2000. Specific detection of biovars of Ralstonia solanacearum in plant tissues by nested-PCR-RFLP. European Journal of Plant Patholgy.106,255-265.
    Poussier, S., Thoquet, P., Demery, D. T., Barthet, S., Meyer, D., Arlat, M., Trigalet, A.,2003. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene. Molecular Microbiolgy.49,991-1003.
    Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., Trigalet, A.,2000. Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiolgy.146, 1679-1692.
    Pradhanang, P. M., Elphinstone, J. G., Fox, R. T. V,2000. Identification of crop and weed hosts of Ralstonia solanacearum biovar 2 in the hills of Nepal. Plant Pathol. J.49,403-413.
    Priou, S., Gutarra, L., Aley, P.,2006. An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS-ELISA. Plant Patholgy.55, 36-45.
    Priou, S., Marquez, M., Gutarra, L.,2005. Biolgical control of bacterial wilt of potato(Ralstonia solanacearum) using antagonistic Pseudomonas putida strains. Phytopatholgy.95, S85-S85.
    Raaijmakers, J., Paulitz, T., Steinberg, C., Alabouvette, C., Moenne-Loccoz, Y.,2009. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil.321,341-361.
    Rajeshwari, N., Shylaja, M. D., Krishnappa, M., Shetty, H. S., Mortensen, C. N., Mathur, S. B.,1998. Development of ELISA for the detection of Ralstonia solanacearum in tomato:its application in seed health testing. World Journal of Microbiolgy and Biotechnolgy.14,697-704.
    Ralston, E., Palleroni, N. J., Doudoroff, M.,1973. Pseudomonas pickettii, a new species of clinical origin related to Pseudomonas solanacearum. International Journal of systematic bacterialgy.23, 15-19.
    Ramesh, R., Joshi, A., Ghanekar, M.,2009. Pseudomonads:major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiolgy and Biotechnolgy.25,47-55.
    Ramos, H. J., Roncato-Maccari, L. D., Souza, E. M., Soares-Ramos, J. R., Hungria, M., Pedrosa, F. O., 2002. Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol.97,243-252.
    Ran, L. X., Liu, C. Y., Wu, G. J., van Loon, L. C., Bakker, P. A. H. M.,2005. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biolgical Control.32, 111-120.
    Romantschuk, M.,1992. Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol.30,225-243.
    Rosado, A., Duarte, G., Seldin, L.,1994. Optimization of electroporation procedure to transform B. polymyxa SCE2 and other nitrogenfixing Bacillus. J Microbiol Methods.19,1-11.
    Ruiz-Argiieso, T., Santamaria, J., Labandera, C. A., Orive, R.,1979. Crecimientoysobrevivencia de Rhizobium japonicum (CB-1809) y Rhizobium trifolii (WU-290) en turbas espanolas de diferentes origenes. Anales del INIA/Serie Production Vegetal 11,127-137.
    Saile, E., McGarvey, J. A., Schell, M. A., Denny, T. P.,1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopatholgy.87,1264-1271.
    Santamaria, O., Smith, D. R., Stanosz, G. R.,2011. Interaction between Diplodia pinea and D. scrobiculata in red and jack pine seedlings. Phytopatholgy.101,334-339.
    Santosa, B. M., Gilreatha, J. P., Motisa, T. N., Nolingb, J. W., Jonesa, J. P., Norton, J. A.,2006. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Protection.25,690-695.
    Schonfeld, J., Heuer, H., van Elsas, J. D., Smallal, K.,2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol.69,7248-7256
    Schell, M. A.,2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38,263-292.
    Schroth, M. N.,1986. Root-cloning bacteria and plant health. Hort Sci.21,1295-1297.
    Seal, S. E., Jackson, L. A., Daniels, M. J.,1992. Isolation of Pseudomonas solanacearum-specfic DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Applied and Environmental Microbiolgy.58,3751-3758.
    Seal, S. E., Jackson, L. A., Young, J. P. W., Danie, M. J.,1993. Differentiation of Pseudomonas solanacearum, Pseudomonas syzygii, Pseudomonas pickettii and the Blood Disease Bacterium by partial 16s rRNA sequencing:construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. Journal of General Microbiolgy.139,1587-1594.
    Sequeira, L.,1985. Surface components involved in bacterial pathogen-plant host recognition. J Cell Sci Suppl.2,301-316.
    Shamsuddin, N., Lloyd, A. B., Graham, J.,1979. Survival of the potato strain of Pseudomonas solanacearum in soil. J Aust Inst Agric Sci.44,212-215.
    Shiomi, Y, Nishiyama, M., Onizuka, T., marumoto, T.,1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol.65,3996-4001.
    Srinivasan, K., Mathivanan, N.,2009. Biolgical control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biolgical Control.51,395-402.
    Stephens, J. H. G., Rask, H. M.,2000. Inoculant production and formulation. Field Crops Research.65, 249-258.
    Stirling, G. R., Licastro, K. A., West, L. M., Smith, L. J.,1998. Development of commercially acceptable formulations of the nematophagous fangusVerticillium chlamydosporium. Biolgical Control.11, 217-223.
    Suarez, E. F., Vargas, G. C., Lopez, M. J., Capel, C., Moreno, J.,2007. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Protection.26,46-53.
    Sun, C., Pan, J., Chen, X., Zhang, Y., Gao, P.,2002. Screen of biocontrol Trichoderma spp inhibiting Pseudomonas solanacearum 3 of ginger and its mechanism. Journal of Shangdong University. 37,373-376.
    Sun, S. K., Huang, J. W.,1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Disease.69,917-920.
    Suresh, C. K., Rai, P. V.,1991. Interaction of Pseudomonas solanacearum with antagonistic bacteria and VA mycorrhiza. Current Research Univresity of Agricultural Scineces Bangalore.20,36-37.
    Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A., Takahashi, H.,2008. Colonization of Pythium oligandrum in the tomato rhizosphere for biolgical control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopatholgy.98, 187-195.
    Tan, H., Cao, L., He, Z., Su, G., Lin, B., Zhou, S.,2006. Isolation of endophytic Actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiolgy and Biotechnolgy.22,1275-1280.
    Tan, H., Zhou, S., Deng, Z., He, M., Cao, L.,2011. Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biolgical Control.59,245-254.
    Tanaka, H., Negishi, H., H. Maeda,1990. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Annals of the Phytopatholgical Society of Japan.56,243-246.
    Tans-Kersten, J., Huang, H., Allen, C.,2001. Ralstonia solanacearum needs motility for invasive virulence on tomato Journal of Bacteriolgy.183,3597-3605.
    Terefe, M., Tefera, T., Sakhuja, P. K.,2009. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. Journal of Invertebrate Patholgy.100,94-99.
    Thomas, F. C., Chin-A-Woeng, Guido V. Bloemberg, Ben J. J. Lugtenberg,2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytolgist.157,503-523.
    Tittabutr, P., Payakapong, W., Teaumroong, N., Singleton, P. W., Boonkerd, N.,2007. Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Science Asia.33,69-77.
    Tomlinson, D., Elphinstone, J., Soliman, M., Hanafy, M., Shoala, T., Abd El-Fatah, H., Agag, S., Kamal, M., Abd El-Aliem, M., Fawzi, F., Stead, D., Janse, J.,2009. Recovery of Ralstonia solanacearum from canal water in traditional potato-growing areas of Egypt but not from designated Pest-Free Areas (PFAs). European Journal of Plant Patholgy.125,589-601.
    Toyoda, H., Kakutani, K., Ikeda, S., Goto, S., Tanaka, H., Ouchi, S.,1991. Characterization of deoxyribonucleic acid of virulent bacteriophage and its infectivity to host bacterium, Pseudomonas solanacearum. Journal of Phytopatholgy-Phytopatholgische Zeitschrift.131, 11-21.
    Trigalet, A., Demery, D.,1986. Invasiveness in tomato plant of Tn5-induced avirulent mutants of Pseudomonas solanacearum. Physiolgical and Molecular Plant Patholgy.28,423-430.
    Trigalet, A., Trigalet-Demery, D.,1990. Use of avirulent mutants of Pseudomonas solanacearum for the biolgical control of bacterial wilt of tomato plants. Physiolgical and Molecular Plant Patholgy. 36,27-38.
    Trillas, M. I., Casanova, E., Cotxarrera, L., Ordovas, J., Borrero, C., Aviles, M.,2006. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biolgical Control.39,32-38.
    Tsai, J. W., Hsu, S. T., Chen, L. C.,1985. Bacteriocin-producing strains of Pseudomonas solanacearum and their effect on development of bacterial wilt of tomatoes. Plant Prot Boll.27,267-278.
    Turner, J. T., Backman, P. A.,1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis.75,347-353.
    van Elsas, J. D., Kastelein, P., de Vries, P. M., van Overbeek, L.,2001. Effects of ecolgical factors on the survival and physiolgy of Ralstonia solanacearum bv.2 in irrigation water. Can J Microbiol 47, 842-854.
    van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M., van Overbeek, L. S., 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopatholgy.90,1358-1366.
    van Overbeek, L. S., Cassidy, M., Kozdroj, J., Trevors, J. T., van Elsas, J. D.,2002. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. Journal of Microbiolgical Methods.48,69-86.
    Vanitha, S., Niranjana, S., Mortensen, C., Umesha, S.,2009. Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl.54,685-695.
    Vanitha, S. C., Umesha, S.,2011. Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biolgia Plantarum.55,317-322.
    Vasse, J., Frey, P., Trigalet, A.,1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant-Microbe Interact.8, 241-251.
    Vidhyasekaran, P., Muthamilan, M.,1995. Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Disease.79,782-786.
    Wakimoto, S., Utatsu, I., Matsuo, N., Hayashi, N.,1982. Multiplication of Pseudomonas solanacearum in pure water. Ann Phytopath Soc Jpn.48,620-627.
    Wang, H. L., Wen, K., Zhao, X. Y., Wang, X. D., Li, A. Y., Hong, H. Z.,2009. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protection.28,634-639.
    Wang, J.-F., Lin, C.-H., Integrated management of tomato bacterial wilt. AVRDC-The world vegetable center, Taiwan,2005, pp.1-12.
    Weller, D. M.,2007. Pseudomonas biocontrol agents of soilborne pathogens:looking back over 30 years. Phytopatholgy.97,250-256.
    Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., Thomashow, L. S.,2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopatholgy.40,309-348.
    Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., van Beuningen, A. R., Janse, J. D.,1999. Ralstonia(Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts:first report on stinging nettle (Urtica dioica). Eur J Plant Pathol.105,307-315.
    Wiyono, S., Schulz, D. F., Wolf, G. A.,2008. Improvement of the formulation and antagonistic activity of Pseudomonas fluorescens B5 through selective additives in the pelleting process. Biolgical Control.46,348-357.
    Wu, H. S., Yang, X. N., Fan, J. Q., Miao, W. G., Ling, N., Xu, Y. C., Huang, Q. W., Shen, Q. R.,2009. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl.54,287-300.
    Wullings, B. A., Beuningen, A. R., Janse, J. D.,1998. Detection of Ralstonia solanacearum, which cause brown rot of potato by fluorescent in situ hybridization with 23 S rRNA targeted probes. Appl Environ Microbiol.64,4546-4554.
    Xue, Q., Chen, Y., Li, S., Chen, L., Ding, G., Guo, D., Guo, J.,2009. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biolgical Control.48,252-258.
    Yabuuchi, E., Kosako, Y., Yano, L., Hotta, H., Nishiuchi, Y,1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia Gen. Nov.:proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) Comb. Nov., Ralstonia solanacearum (Smith 1896) Comb. Nov. and Ralstonia eutropha (Davis 1969) Comb. Nov. Microbiolgy and Immunolgy.39,897-904.
    Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., Fujie, M.,2007. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiolgy-Sgm.153,2630-2639.
    Yamada, T., Satoh, S., Ishikawa, H., Fujiwara, A., Kawasaki, T., Fujie, M., Ogata, H.,2010. A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virolgy.398,135-147.
    Yao, J., Allen, C.,2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriolgy.188,3697-3708.
    Yao, J., Allen, C.,2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol.189,6415-6424.
    Yen, J. H., Chen, D. Y, Hseu, S. H., Lin, C. Y, Tsay, T. T.,1997. The effect of plant-parasitic nematodes on severity of bacterial wilt in solanaceous plants. Plant Patholgy Bulletin (Taiwan).6,141-152.
    Yu, J. Q.,1999. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (L. ycopersicon esculentum) in a tomato-Chinese chive(Allium tuberosum) intercropping system. Journal of Chemical Ecolgy.25,2409-2417.
    Zhang, L. Q., Yang, Q., Tosa, Y., Nakayashiki, H., Mayama, S.,2001. Involvement of gacA gene in the suppression of tomato bacterial wilt by Pseudomonas fluorescens FPT9601. Journal of General Plant Patholgy.67,134-143.
    Zhang, S. S., Raza, W., Yang, X. M., Hu, J., Huang, Q. W., Xu, Y. C., Liu, X. H., Ran, W., Shen, Q. R., 2008. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biolgy and Fertility of Soils.44,1073-1080.
    Zhou, H. Y, Wei, H. L., Liu, X. L., Wang, Y, Zhang, L. Q., Tang, W. H.,2005. Improving biocontrol activity of Pseudomonas fluorescens through chromosomal integration of 2, 4-diacetylphloroglucinol biosynthesis genes. Chinese Science Bulletin.50,775-781.
    Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., Shen, Q., Shen, B.,2012. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiolgical Research. doi:10.1016/j.micres.2012.01.003
    王羽,肖崇刚,2004.番茄青枯病病菌无致病力菌株的分离和控病研究.西南农业大学学报.26,426-428.
    王汉荣,茹水,王连平,方丽,任海英,冯忠民,2009.嫁接防治番茄青枯病的研究.浙江农业学报.21 283-287.
    冉红艳,葛绍荣,陶勇,金虹,刘世贵,2005.一株拮抗姜瘟青枯假单胞杆菌的链霉菌的分离及鉴定.微生物学报.45,325-328.
    田亨达,张丽,张坚超,王秋君,徐大兵,哈丽哈什·依巴提,徐佳乐,黄启为,2011.苏南地区稻麦轮作系统对不同有机无机复混肥的响应.应用生态学报.22,2868-2874.
    申爱荣,姬广海,魏兰芳,何月秋,2006.复合菌剂防治马铃薯青枯病研究.云南农业大学学报.21,449-453.
    仝赞华,郭荣君,2001.生防菌AS818抗药性标记株在大豆根际定殖.微生物学通报.28,40-44.
    任欣正,申道林,方中达,1988.无致病力产细菌素拮抗菌MA-7防治番茄青枯病研究初报.生物防治通报.4,62-64.
    任欣正,张建华,方中达,1987.无致病力产细菌素拮抗菌nOE-104在番茄植株上定殖能力的研究.植物病理学报.17,129-133.
    朱育菁,周涵韬,刘波,张赛群,2004.番茄青枯雷尔氏菌的强致病力与无致病力菌株生长竞争关系的研究.厦门大学学报(自然科学版).43,97-101.
    朱红惠,姚青,李浩华,羊宋贞,2004.AM真菌对青枯菌的抑制和对酚类物质的影响.微生物学通报.31,1-5.
    朱红惠,龙良坤,羊宋贞,姚青,2005.AM真菌对青枯菌和根际细菌群落结构的影响.菌物学报.24,137-142.
    何礼远,康耀卫,1990.利用青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性.植物保护学报.17,113-116.
    李林章,谢从华,柳俊,2005.茄科雷尔氏菌(Ralstonia solanacearum)分子生物学基础及其致病机制.中国马铃薯.5,290-294.
    李海燕,刘润进,束怀瑞,2001.丛枝菌根真菌提高植物抗病性的作用机制.菌物系统.20,435-439.
    肖田,肖崇刚,邹阳,袁希雷,2008.青枯菌无致病力菌株对烟草青枯病的控病作用初步研究.植物保护.34,79-82.
    周晓见,陈毓遒,缪莉,董昆明,董夏伟,靳翠丽,2011.一株拮抗烟草青枯病菌的真菌的筛选与鉴定.生态环境学报.20,1418-1423.
    邱思鑫,何红,阮宏椿,关雄,胡方平,2004.具有抑菌促生作用的植物内生细菌的筛选.应用与环境生物学报.10,655-659.
    姚革,张帆,李舟,1994.土壤添加剂防治细菌性青枯病初报.生物防治通报.10,106-109.
    徐玲,王伟,魏鸿刚,沈国敏,李元广,2006.多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用.中国生物防治.22,216-220.
    徐焰,2003.噬菌体溶菌机制研究进展.重庆医学.32,106-108.
    袁立和,苏清岚,易由华,袁斌,1997.番茄青枯病抑病土壤作用机制研究.植物保护学报.24,121-125.
    郝永娟,王万立,刘耕春,王勇,2000.土壤添加剂防治作物土传病害研究概述.天津农业科学.6,52-54.
    康耀卫,毛国璋,吕常盛,1995.利用青枯菌胞外蛋白输出缺失突变体防治番茄青枯病的研究.植物保护学报.22,287-288.
    康耀卫,何礼远,1994.青枯菌无毒自发突变株接种花生引起的生化变化.中国油料.16,38-40.
    郭坚华,王玉菊,瑾,李.,任欣正,1996.抑菌圈-定殖力双重测定法筛选青枯病生防细菌植物病理学报.26,49-54.
    郭坚华,龚龙英,祁红英,张立新,方中达,2003.三个拮抗菌株对辣椒青枯病的作用机制.中国生物防治.19,6-10.
    章健,任欣正,1993.利用无致病力青枯菌株防治番茄青枯病的研究.南京农业大学学报.16,63-67.
    彭细桥,刘红艳,罗宽,邓正平,2007.烟草内生青枯病拮抗细菌的筛选和初步鉴定.中国烟草科学.28,38-40.
    葛慈斌,林抗美,朱育菁,苏明星,刘波,2006.生防菌ANTI-8098A对青枯雷尔氏菌不同致病力菌株抑制作用的差异性.中国农学通报.22,293-296.
    葛红莲,郭坚华,祁红英,郭亚辉,黄艳霞,2004.复合菌剂AR99防治辣椒青枯病.植物病理学报.34,162-165.
    蒲小明,林壁润,郑奕雄,沈会芳,2011.一株抗花生青枯病菌海洋放线菌的分类鉴定及其活性产物研究.广东农业科学.16,62-65.
    蔡燕飞,廖宗文,2003.FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果.中国农业科学.36,922-927.
    蔡燕飞,廖宗文,章家恩,孔维栋,何成新,2003.生态有机肥对番茄青枯病及土壤微生物多样性的影响.应用生态学报.14,349-353.
    黎起秦,林炜,陈永宁,蒙姣荣,彭好文,1999.植物土传病害拮抗真菌的筛选.西南农业学报.12,81-84.
    黎起秦,罗宽,林纬,彭好文,罗雪梅,2003.番茄青枯病内生拮抗细菌的筛选.植物病理学报.33,364-367.
    魏春妹,张春明,王建明,刘宗镇,赵建华,2000.拮抗青枯病90B4-2-2菌株作用机理探讨.上海农业学报.16,74-77.
    魏海雷,王烨,张力群,唐文华,2004.生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析.植物病理学报.34,80-85.
    魏鸿刚,李淑兰,2008.防治作物青枯病和枯萎病的微生物农药——0.1亿cfu/g多粘类芽孢杆菌细粒剂.世界农药.30,51-52.
    凌宁,王秋君,杨兴明,徐阳春,黄启为,沈其荣,2009.根际施用微生物有机肥防治连作西瓜枯萎病研究.植物营养与肥料学报.15,1136-1141.
    刘波,青枯病生防菌ANTI-8098A及其培养基、培养方法和生防应用.中国发明专利,Vol.CN03132036.8,2003.
    刘波,林营志,朱育菁,葛慈斌,曹宜,2004.生防菌对青枯雷尔氏菌的致弱特性.农业生物技术学报.12,322-329.
    刘润叶,杨土凤,陈晓梅,刘世贵,龙章富,2007.一株拮抗姜瘟青枯劳尔氏菌的泛菌的分离及鉴定.四川大学学报(自然科学版).44,683-686.
    单志慧,廖伯寿,谈宇俊,李栋,雷永,沈明珍,1997.花生青枯菌潜伏侵染的酶联免疫血清检测技术.中国油料.19,45-47.
    孙世春,赵锡光,孙建华,刘匆,舒勇,牟哲松,王雁鸣,1999.异硫氰酸苄酯(BITC)防污损效果研究——对3种海洋细菌的抑菌作用.环境污染及其防治.2,49-51.
    孙新城,司艳红,张莉,王云龙,2008.抗烟草青枯病拮抗菌的筛选及抑菌活性研究.安徽农业科学.36,5917-5918,5929.
    张朝坤,罗燕华,张连水,2008.嫁接栽培对樱桃番茄抗青枯病和产量的影响.江西农业学报.20,68-69.
    张赛群,邹燕红,吴素琴,胡菁捷,周涵韬,2008.青枯雷尔氏菌无致病力菌株诱导番茄系统获得性抗性研究.厦门大学学报(自然科学版).47,31-35.
    杨仲华,张春明,任炽麓,安凤霞,任敏,张逸庆,张华泉,施氏假单胞菌Zh9944及其筛选方法和防治青枯病的微生物制剂.中国发明专利,Vol.ZL00119018.0,2004.
    杨合同,任欣正,王少杰,王建平,高强,1994.番茄根土区系中拮抗性细菌的分布与青枯病发生的关系.生物防治通报.10,162-165.
    杨宇红,刘俊平,杨翠荣,龚惠芝,冯东听,谢丙炎,2008.无致病力hrp-突变体防治茄科蔬菜青枯 病.植物保护学报.35,433-437.
    缪莉,董夏伟,周晓见,丁碧婷,刘杨,查鑫垚,董昆明,2011.烟草青枯病生防真菌的分离鉴定与拮抗活性的初步研究.河南农业科学.40,81-85.
    罗宽,王庄,1983.利用拮抗的Pseudomonas spp.和无致病力的P. solanacearum防治青枯病的研究.植物病理学报.13,51-56.
    苏阿德,谢关林,李斌,Coosemans,刘波,2004.芽孢杆菌在促进番茄生长和控制青枯病上的比较优势(英文).浙江大学学报(农业与生命科学版).30,603-610.
    谭兆赞,徐广美,刘可星,廖宗文,2009.不同堆肥对番茄青枯病的防病效果及土壤微生物群落功能多样性的影响.华南农业大学学报.30,10-14.
    郑继法,张建华,许永玉,王智发,1994.利用无毒产细菌素菌株防治烟草细菌性青枯病.中国烟草.3,21-24.
    陆民强,林美琛,陆民强,林美琛,陈华平,马汉良,1991.番茄抗病砧木嫁接防治青枯病效果及嫁接方法的初步研究.浙江农业科学.5,23-25.
    陆合,张碧波,2009.有机肥防治生姜青枯病及其RAPD分析.微生物学杂志.29,74-78.
    陈勇,金晨钟,2009.植物青枯病的生物防治研究进展.湖南农业科学.7,82-85.
    陈庆河,翁启勇,胡方平,2004.无致病力青枯菌株对番茄青枯病的防治效果.中国生物防治.20,42-44.
    随学超,卜崇兴,郭世荣,朱雨薇,梁勇,周静波,2007.基质中添加有机缓释肥对番茄青枯病防效的影响.江苏农业科学.4,85-88.
    鲍士旦,2002.土壤农化分析.第3版.中国农业出版社,北京.
    黄世群,丁估,石万成,2008.防治青枯病(姜瘟病)的生物农药——青枯停.四川农业科技.3,53.
    黄明媛,顾文杰,张发宝,徐培智,杨少海,王立群,解开治,2011.番茄青枯病拮抗菌筛选鉴定及其发酵条件初探.微生物学通报.38,214-220.
    龙良鲲,2002.番茄青枯病的研究进展.广西农业科学.3,134-137.
    龙良鲲,肖崇削,窦彦霞,2003.防治番茄青枯病内生细菌的分离与筛选.中国蔬菜.2,19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700