用户名: 密码: 验证码:
长江口及邻近海域浮游植物生长温度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合海上调查研究表明,自1980s初以来,长江口及邻近海域赤潮发生范围、规模、频率及赤潮肇事藻种类等均较以往大幅增加,且赤潮类型由单一的硅藻赤潮演变为硅藻-甲藻赤潮交替发生。文献研究结果表明,赤潮发生不仅是陆源营养盐输入增加等人类活动的结果,而且也可能是气候演变等自然环境因素综合作用的结果,其中温度变化对赤潮发生有着不可忽视的影响。然而,目前人们对长江口及邻近海域赤潮肇事浮游植物生长温度效应缺乏(半)定量化系统描述,特别是目前尚不清楚浮游植物总生物量的年际变化与典型赤潮肇事浮游植物生长温度效应控制机制之间的定量关系,而且以往对于长江口及邻近海域典型赤潮肇事浮游植物温度效应的研究及描述均基于实验条件与现场实际情况差别较大的实验室培养实验,其结果能否准确反映现场的实际情况尚缺乏深入探讨。
     对此,本文采用海上综合调查数据统计分析、船基围隔生态系/培养瓶模拟现场一次培养实验、数值模拟计算等方法,比较系统地研究了长江口及邻近海域浮游植物总生物量的年际变化温度效应、典型赤潮肇事浮游植物生长的温度效应及控制机制以及两者之间的对应关系,并对比评价了现场培养实验与传统实验室培养实验的差异。其中,研究海域主要位于29~32°N,122~123.5°E附近海域;船基围隔生态系/培养瓶模拟现场一次培养实验的优势藻种包括东海原甲藻(Prorocentrumdonghaiense Lu)、骨条藻(Skeletonema)、角毛藻(Chaetoceros)和拟菱形藻(Pseudo-nitzschia);海上综合调查数据主要包括1981~2010年约95个航次的文献报道数据及“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”和“我国近海藻华灾害演变机制与生态安全”两个973项目分别于2002~2007年和2010~2011年在长江口及邻近海域20个航次的现场调查数据,主要研究结果有3个方面:
     1.长江口及邻近海域浮游植物总生物量年际变化温度效应分析。
     (1)1981-2011年长江口及邻近海域浮游植物总生物量的年际变化总体呈增加趋势,累计增加了约165%;同期海水温度总体上也呈逐渐升高趋势,总计升高约1.80℃,年均升高约0.06℃。线性相关分析表明,温度对浮游植物总生物量年际变化有影响,但不甚显著。
     (2)根据两个973项目分别在2002~2007年和2010~2011年共计20个航次的海上调查数据,选择溶解无机氮(DIN)、磷酸盐(PO4-P)、硅酸盐(SiO3-Si)、溶解有机氮(DON)、溶解有机磷(DOP)、海水温度(ST)及光合有效光辐射通量(PAR,根据水体浊度换算)7个主要海洋学和生态学调查项目数据进行主成分分析,得出温度对浮游植物生长的影响小于营养盐及光照的影响。
     (3)在非线性转化为线性的基础上,建立了上述温度、光照和营养盐因子与浮游植物生物量的多元线性回归模型,进一步分析得出温度对长江口及邻近海域浮游植物生物量年际变化的影响贡献率约为6.8%,相当于总生物量年际变化的温度效应约为5.0%/℃,年均温度效应约为0.3%。
     2.长江口及邻近海域4种典型赤潮肇事浮游植物生长的温度效应研究。
     2011年4、5月及2012年5、6月在长江口及邻近海域进行现场调查时,同步进行了15次船基围隔生态系/培养瓶模拟现场一次培养实验,作为对比并进行了相关优势藻种的实验室一次培养实验。
     (1)按照同站位同温度平行样实验结果,现场培养实验的实验精度平均是90.5%±13.4%,与实验室培养方法的实验精度91.2%±12.6%相当;然而不同站位同藻种现场培养实验的重现性平均是54.1%±29.8%,显著低于不同来源的相同藻种实验室培养实验重现性64.9%±34.3%;但是最终的浮游植物温度效应分析结果表明现场培养实验更接近于自然界实际情况。
     (2)4种典型赤潮肇事浮游植物的生长曲线均呈“S”型,按照生长周期内生物量积分计算结果,在10~30℃范围内,东海原甲藻、骨条藻、角毛藻和拟菱形藻生物量温度效应分别是9.6%/℃、5.1%/℃、8.2%/℃和4.5%/℃。结果,4种典型赤潮肇事种的相对丰度加权平均温度效应是5.2%/℃,与海上调查数据综合统计分析结果的5.0%/℃相当吻合,说明长江口及邻近海域浮游植物总生物量的年际变化温度效应主要决定于这4种典型赤潮肇事藻种。进一步分析说明,东海原甲藻的温度效应9.6%/℃基本可以代表长江口及邻近海域甲藻的温度效应,3种硅藻的相对丰度加权平均温度效应5.8%/℃基本可以代表硅藻温度效应。
     3.长江口及邻近海域典型赤潮肇事浮游植物生长的温度效应控制机制研究。
     (1)4种赤潮肇事浮游植物的生长曲线均符合Logistic生长模型,其中模型参数:最大生物量(Bf)和最大比生长速率(μmax)均具有温度效应。当环境温度低于最适生长温度时,4种典型赤潮肇事藻的μmax温度效应符合Van’t Hoff方程,若同时考虑浮游植物在高于其最适温度条件下的生长状况,则μmax温度效应符合Blanchard方程,与文献报道结果一致,但研究表明当浮游植物的生长温度远小于其最高耐受温度时,后者可以简化为前者。鉴于4种典型赤潮肇事浮游植物的最适生长温度一般大于26℃,所以在长江口及邻近海域使用Van’t Hoff方程能够基本满足它们μmax温度效应的描述要求;同样4种浮游植物的Bf温度效应也总体符合Van’tHoff方程。
     (2)结合已有文献中长江口及邻近海域典型赤潮肇事浮游植物温度效应研究的再分析结果,本文建议在长江口及邻近海域典型赤潮浮游植物生态动力学模型研究中,无论对于硅藻还是甲藻,均应同时考虑μmax和Bf温度效应,采用Van’t Hoff方程表征;对于硅藻,其μmax温度系数的建议取值为0.145±0.108℃-1,Bf温度系数的建议取值为0.011±0.026℃-1;对于甲藻, μmax温度系数的建议取值为0.097±0.059℃-1,Bf温度系数的建议取值为0.044±0.001℃-1。这与以往对长江口及邻近海域浮游植物温度效应的描述差异较大,不过具体哪种描述更为合理,则需通过今后的现场调查数据进行验证。
     总之,本文针对典型赤潮浮游植物生长温度效应,系统研究了长江口及邻近海域浮游植物总生物量的年际变化与4种典型赤潮肇事浮游植物生长温度效应控制机制的关系,并对比评价了现场培养实验与传统实验室培养实验的差异,从而在定量化层面加深了对该海域典型赤潮发生生态学控制机制的认识。本文的研究特色主要体现在综合应用海上调查数据统计分析、现场培养实验和数值模拟计算,证实了相比于传统的浮游植物实验室培养实验,现场培养实验更接近自然界实际情况;并首次得出,在长江口及邻近海域,温度对浮游植物生物量长期变化的影响贡献率约为6%,主要由东海原甲藻、骨条藻、角毛藻和拟菱形藻4种典型赤潮肇事藻引起。
Field research indicates that since1980s, Harmful algal blooms (HAB) becomemore and more serious in the Changjiang Estuary and Adjacent Coastal Waters,meanwhile the dominant species of HAB evolve from single diatom to diatom anddinoflagellate alternately. Resent studies reveal that not only increased input ofland-based sources nutrients due to human activities, but also changes of climaticconditions lead to the aggravation of HAB, and temperature exerts non-negligible impacton the occurrence of HAB. However, the quantitative description of temperature effect ofbloom algae in the Changjiang Estuary and Adjacent Coastal Waters is limited currently,specially the quantitative relationship that between interannual change of phytoplanktonbiomass and the control mechanism of temperature effect of bloom algae is not clear.Besides, previous studies that focused on temperature effect of bloom algae in theChangjiang Estuary and Adjacent Coastal Waters are all based on laboratory experimentswhere experimental conditions distinguish from the actual conditions, and the resultsmay differ from the actual situation.
     Thus, in present study, we deployed statistical analysis of on site survey data,Ship-based mesocosm/bottle culture field experiments and numerical simulation tosystemically study①the interannual change temperature effect of phytoplanktonbiomass in the Changjiang Estuary and Adjacent Coastal Waters;②the temperatureeffect control mechanism of typical bloom algae; and their relationship, and③synchronously, evaluate the differences between the field culture experiment and thelaboratory culture experiment. The key results are listed bellow:
     1. The effect of interannual temperature change on phytoplankton biomass in theChangjiang Estuary and Adjacent Coastal Waters
     (1) The interannual change pattern of phytoplankton biomass shows a gradualincreasing trend since1981to2011, and biomass increases about165%. Meanwhile, thetemperature of surface water increases about1.80℃among these years, the increase rate is0.06℃/a. Correlation analysis indicates that temperature can affect the interannualchange of phytoplankton biomass, but the effect is not significant.
     (2) Based on the observations of20cruises from2002to2007and2010to2011,data of temperature, irradiance, dissolved inorganic nitrogen (DIN), dissolved organicnitrogen (DON), PO4-P, dissolved organic phosphorus (DOP) and SiO3-Si were treatedby principal component analysis, and results indicated that the influence of temperatureon the growth of phytoplankton is less than nutrients and irradiance.
     (3) After the relationship between the Chla and the environmental factors waschanged from nonlinear to linear, the multiple linear regression models of Chla andenvironmental factors was built. Further analysis reveals that the contribution oftemperature to the interannual change of phytoplankton biomass is6.8%, that means thetemperature effect of biomass interannual change is about5.0%/℃, and the annualtemperature effect is about0.3%.
     2. The effect of temperature on growth of4typical bloom algae in the ChangjiangEstuary and Adjacent Coastal Waters
     15Ship-based mesocosm/bottle culture field experiments were conducted duringthe field survey in April, May2011and May, June2012, and for comparison, thedominant species were cultured in laboratory.
     (1) According to results of parallel samples that at the same station and temperature,the experiment precision of field culture experiment is about90.5%±13.4%, equivalentto laboratory culture experiment; however, the recurrence rate is about54.1%±29.8%which is significantly lower than laboratory culture experiment according to results atdifferent stations but with the same dominant algae; but the final results of mesocosmexperiments indicate that the field incubation experiments are more comparable to theactual nature.
     (2) The growth curves of Prorocentrum donghaiense Lu, Skeletonema, Chaetocerosand Pseudo-nitzschia show “S” type. According to integral biomass within the growthcycle, the temperature effects of the4special bloom algae are9.6%/℃,5.1%/℃,8.2%/℃and4.5%/℃respectively in10~30℃. As a result, the weighted averagetemperature effect of the4algae according to their relative abundance is about5.2%/℃, and well coincides with5.0%/℃which was from the comprehensive statistical analysisof field survey data, hence, the temperature effect of the biomass interannual change inthe Changjiang Estuary and Adjacent Coastal Waters is mainly contributed by this4algae. Further analysis indicates that the temperature effect of dinoflagellate in theChangjiang Estuary and Adjacent Coastal Waters could be represented by the effect ofProrocentrum donghaiense Lu, which is about9.6%/℃; and diatom temperature effectcould be represented by the weighted average temperature effect of the3diatoms, whichis about5.8%/℃.
     3. The control mechanism of temperature effect on bloom algae growth
     (1) The growth curves of the4special bloom algae follow the Logistic growthmodel, and its parameters: maximum specific growth rate (μmax) and maximum biomass(Bf) are all affected by temperature. Under the temperature situation of the ChangjiangEstuary and Adjacent Coastal Waters, temperature effect of μmaxand Bffollow the Van’tHoff equation.
     (2) Based on our analysis and results from published literatures, we suggest that thetemperature effect of μmaxand Bfshould be considered together in ecological dynamicsmodels used to study the areas of the the Changjiang Estuary and Adjacent CoastalWaters. Their quantitative relationship can be described by the Van’t Hoff equation; andfor diatom, the temperature coefficients μmaxof and Bfare0.145±0.108℃-1and0.011±0.026℃-1respectively, and for dinoflagellate the values are0.097±0.059℃-1and0.044±0.001℃-1respectively. This result is quite different from the description oftemperature effect on phytoplankton growth in previous studies, and to validate whichdescription is more reasonable, more field surveys are needed.
     In summary, focused on the temperature effect of bloom forming phytoplankton, westudy the effect of interannual temperature change on phytoplankton biomass in theChangjiang Estuary and Adjacent Coastal Waters, the temperature effect controlmechanism of typical bloom algae and their relationship, as well as the differencesbetween the field culture experiment and the laboratory culture experiment. This workwill contribute to better understanding the ecological mechanism of the occurrence ofHAB. The major findings of this paper are as following: combined with statistical analysis of on site survey data, Ship-based mesocosm/bottle culture field experimentsand numerical simulation, we found that (1) contrast with previous experiment cultureexperiment, field incubation are more comparable to the actual environmental condition;(2) the temperature effect of biomass interannual change in the Changjiang Estuary andAdjacent Coastal Waters is mainly controlled by Prorocentrum donghaiense Lu,Skeletonema, Chaetoceros and Pseudo-nitzschia and its contribution to the biomasschanges is about7%.
引文
[1] Admiraal W. Influence of light and temperature on the growth rate of estuarine benthic diatom inculture. Marine Biology,1977,39:1-9.
    [2] Agawin N S R, Duarte C M, Agusti S. Nutrient and temperature control of the contribution ofpicoplankton to phytoplankton biomass and production. Limnology and Oceanography,2000,45:591-600.
    [3] Allen J I, Somerfield P J, Siddorn J. Primary and bacterial production in the Mediterranean Sea: amodeling study. Journal of Marine Systems,2002,473-795.
    [4] Andersson A, Haecky P, Hagstrom A. Effect of temperature and light on the growth of micro-nano-and pico-plankton: impact on algal succession. Marine Biology,1994,120:511-520
    [5] Atkinson D, Ciotti B J, Montagnes D J S. Protists decrease in size linearly with temperature: ca.2.5%℃-1. Proceedings the Royal of Society B,2003,270:2605-2611.
    [6] Baars J W M. Autecological investigations on marine diatoms.2: Generation times of50species.Hydrobiological Bulletin,1981,15:137-151.
    [7] Baars J W M. Autecological investigations on marine diatoms.4: Biddulphia aurita (Lyngb.)Brebisson et Godey. A succession of spring diatoms. Hydrobiological Bulletin,1986,19:109-116.
    [8] Baek S H, Shimode S, Kikuchi T. Reproductive ecology of the dominant dinoflagellate, Ceratiumfusus, in coastal area of Sagami Bay, Japan. Journal of Oceanography,2007,63:35-45.
    [9] Baretta-Bekker J G, Baretta J W, Ebenhoh W. Microbial dynamics in the marine ecosystem modilERSEM Ⅱ with decoupled carbon assimilation and nutrient uptake. Journal of Sea Research,1997,38:195-211.
    [10] Barker H A. The culture and physiology of the marine Dinoflagellates. Archives of Microbiology,1935,6:157-181.
    [11] Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-drive trends in contemporary oceanproductivity. Nature,2006,444:752-755.
    [12] Binder B J, Anderson D M. Physiological and environmental control of germination in Scrippsiellatrochoidea (Dinophyceae) resting cycts. Journal of Phycology,1987,23:99-107.
    [13] Bissinger J E, Montagnes D J, Sharples J, et al. Predicting marine phytoplankton maximum growthrates from temperature: Improving on the Eppley curve using quantile regression. Limnology andOceanography,2008,53:487-493.
    [14] Blanchard G F, Guarini J M, Richard P, et al. Quantifying the short-term temperature effect onlight-saturated photosynthesis of intertidal microphytobenthos. Marine Ecology Progress Series,1996,134:309-313.
    [15] Bouman H, Platt T, Sathyendranath S, et al. Dependence of light-saturated photosynthesis ontemperature and community structure. Deep-Sea ResearchⅠ,2005,52:1284-1299.
    [16] Brush M J, Brawley J W, Nixon S W, et al. Modeling phytoplankton production: problems with theEppley curve and an empirical alternative. Marine Ecology Progress Series,2002,238:31-45.
    [17] Chen C, Qi J, Li C, et al. Complexity of the flooding/drying process in an estuarine tidal-creeksalt-marsh system: An application of FVCOM. Journal of Geophysical Research: Oceans,2008,113:C07052.
    [18] Chen Y L, Chen H Y, Gong G C, et al. Phytoplankton production during a summer coastalupwelling in the East China Sea. Continental Shelf Research,2004,24:1321-1338.
    [19] Cho E S, Kotaki Y, Park J G. The comparison between toxic Pseudo-nitzschia multiseries (Hasle)Hasle and non-toxic P. pungens (Grunow) Hasle isolated from Jinhae Bay, Korea. Algae,2001,16:275-285.
    [20] Dhib A, Frossard V, Turki S, et al. Dynamics of harmful dinoflagellates driven by temperature andsalinity in a northeastern Mediterranean lagoon. Environmental Monitoring and Assessment,2013,185:3369-3382
    [21] Di Toro D M, O’Connor D J, Thomann R V. A dynamic model of the phytoplankton population inthe Sacramento-San Joaquin Delta. Advances in Chemistry,1971,106:131-180.
    [22] Edwards M, Richardson A J. Impact of climate change on marine pelagic phenoligy and trophicmismatch. Nature,2004,430:881-884.
    [23] Eppley R W. Temperature and phytoplankton growth in the sea. Fishery Bulletin,1972,70:1063-1085.
    [24] Feng Y, Hare C E, Leblanc K, et al. Effect of increased pCO2and temperature on the North Atlanticspring bloom.Ⅰ. The phytoplankton community and biogeochemical response. Marine EcologyProgress Series,2009,388:13-25.
    [25] Fryxell G A, Villac M C, Shapiro L P. The occurrence of the toxic diatom genusPseudo-nitzschia(Bacillariophyceae) on the West coast of the USA,1920-1996: a review.Phycologia,1997,36:419-437.
    [26] Goldman J G, Carpenter E J. A kinetic approach to the effect of temperature on algal growth.Limnology and Oceanography,1974,19:756-766.
    [27] Graneli E, Vidyarathna N Y, Funari E, et al. Can increase in temperature stimulate blooms of thetoxic benthic dinoflagellate Ostreopsis ovata?. Harmful Algae,2011,10:165-172.
    [28] Grinten E V D, Janssen A P H M, Mutsert K D, et al. Temperature-and light light-dependentperformance of the cyanobacterium Leptolyngbya foveolarum and the diatom Nitzschia perminutain mixed biofilms. Hydrobiogia,2005,548:267-278.
    [29] Grzebyk D, Berland B. Influences of temperature, salinity and irradiance on growth ofProrocentrum miniumu (Dinophyceae) from the Mediterranean Sea. Journal of Plankton Research,1996,18:1837-1849.
    [30] Guerrini F, Ciminiello P, Aversano C D, et al. Infulence of temperature, salinity and nutrientlimitation on yessotoxin production and release by the dinoflagellate Protoceratium reticulatum inbatch-cultures. Harmful Algae,2007,6:707-717.
    [31] Hallegraeff G M. Ocean climate change, phytoplankton community responses, and harmful algalblooms: a formidable predictive challenge. Journal of Phycology,2010,46:220-235.
    [32] Halse G R, Lange C B, Syvertsen E E. A review of Pseudo-nitzschia, with special reference to theSkagerrak, North Atlantic, and adjacent waters. Helgol Meeresunters,1996,50:131-175.
    [33] Harris P G.. Phytoplankton ecology. Structure, function and fluctuation. London: Chapman Hall,1986.
    [34] Hattenrath T K, Anderson D M, Gobler C J. The influence of anthropogenic nitrogen loading andmeteorological conditions on the dynamics and toxicity of Alexandrium fundyense blooms in a NewYork(USA) estuary. Harmful Algae,2010,9:402-412.
    [35] Hoogenhout H, Amesz J. Growth rates of photosynthetic microorganisms in laboratory cultures.Archives of Microbiology,1965,50:12-25.
    [36] Ignatiades L, Smayda T J, Autecological studies on the marine diatom Rhizosolenia fragilissimaBergon.Ⅰ. The influence of light, temperature, and salinity. Journal of phycology,1970,6:332-339.
    [37] Inniss W E, Ingraham J I. Microbial life at low temperatures: mechanisms and molecular aspects. In:Kushner D J,(Ed). Microbial life in extreme environments. London: Academic Press,1978.73-104.
    [38] IPCC. Climate Change2007: Synthesis Report. Genevese: the Intergovernmental Panel on ClimateChange,2007.
    [39] Kaeriyama H, Katsuki E, Otsubo M, et al. Effects of temperature and irradiance on growth of strainsbelonging to seven Skeletonema species isolated from Dokai Bay, southern Japan. European Journalof Phycology,2011,46:113-124.
    [40] Kalnay E, Kanamitsua M, Kistlera R, et al. The NCEP/NCAR40-year reanalysis project. Bulletin ofthe American Meteorological Society,1996,77:437-471.
    [41] Karentz D, Smayda T J. Temperarure and seasonal occurrence patterns of30dominantphytoplankton species in Narragansett Bay over a22-year period (1959-1980). Marine EcologyProgress Series,1984,18:277-293
    [42] Krawiec R W. Autecology and clonal variability of the marine centric diatom Thalassiosira rotula(Bacillariophyceae) in response to light, temperature and salinity. Marine Biology,2982:79-89.
    [43] Kudo I, Noiri Y, Nishioka J, et al. Phytoplankton community response to Fe and temperaturegradients in the NE (SERIES) and NW (SEEDS) subarctic Pacific Ocean. Deep-Sea Research Ⅱ,2006,53:2201-2213.
    [44] Lange C B, Hasle G R, Syvertsen E E. Seasonal cycle of diatoms in the Skagerrak North Atlantic,with emphasis on the period1980-1990. Sarsia,1992,77:173-187.
    [45] Laws E A, Falkowski P G, Smith W O, et al. Temperature effects on export production in the openocean. Global Biogeochemical Cycles,2000,14:1231-1246.
    [46] Lewis N L, Bates S S, Mclachlan J L, et al. Temperature effects on growth, domoic acid production,and morphology of the diatom Nitzschia pungens f. multiseries. In: Smayda T J, Shimizu Y (Eds).Toxic phytoplankton Blooms in the sea. Amsterdam: Elsevier,1993.601-606.
    [47] Lundholm N, Clarke A, Ellegaard M. A100-year record of changing Pseudo-nitzschia species in asill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae,2010,9:449-457.
    [48] Magana H A, Villareal T A. The effect of environmental factors on the growth rate of Karenia brevis(Davis) G. Hansen and Moestrup. Harmful Algae,2006,5:192-198.
    [49] Mangialajo L, Bertolotto R, Cattaneo-Vietti R, et al. The toxic benthic dinoflagellate Ostreopsisovata: Quantification of proliferation along the coastline of Genoa, Italy. Marine Pollution Bulletin,2008,56:1209-1204.
    [50] Matsubara T, Nagasoe S, Yamasaki Y, et al. Effects of temperature, salinity, and irradiance on thegrowth of the dinoflagellate Akashiwo sanguinea. Journal of experimental marine biology andecology,2007,342,226-230.
    [51] Mclaren I A. Effects of temperature on growth of zooplankton, and the adaptive value of verticalmigration. Journal of Fish Research,1963,16:633-639.
    [52] Mitrovic S M, Hitchcock J N, Davie A W, et al. Growth responses of Cyclotellameneghiniana(Bacillariophyceae) to various temperature. Journal of Plankton Research,2010,32:1217-1221.
    [53] Moison J R, Moisan T A, Abbott M R. Modelling the effect of temperature on the maximum growthrates of phytoplankton populations. Ecological Modelling,2002,153:197-215.
    [54] Montagnes D J S, Franklin D J. Effect of temperature on diatom volume, growth rate, and carbonand nitrogen content: Reconsidering some paradigms. Limnology and Oceanography,2001,46:2008-2018.
    [55] Moran M A G, Lopezurrutia A, Calvo-Diaz A, et al. Increasing importance of small phytoplanktonin a warmer ocean. Global Change Biology,2010,16:1137-1144.
    [56] Nagasoe S, Kim D, Shimasaki Y, et al. Effects of temperature, salinity and irradiance on the growthof the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee. Harmful Algae,2006,5:20-25
    [57] Noiri Y, Kudo I, Kiyosawa H, et al. Influence of iron and temperature on growth, nutrient utilizationratios and phytoplankton species composition in the western subarctic Pacific Ocean during theSEEDS experiment. Progress in Oceanography,2005,64:149-166.
    [58] Oh S J, Yamamoto T, Kataoka Y, et al. Utilization of dissolved organic phosphorus by the two toxicdinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). FisheriesScience,2002,68:416-424.
    [59] Palacios D P, Bograd S J, Mendelssohn R, et al. Long-term and seasonal trends in stratification inthe California Current,1950-1993. Journal of Geophysical Research: Ocean,2004,109: C11016.
    [60] Paytan A,McLaughlin K. The oceanic phosphorus cycle. Chemical Reviews,2007,107:563–576.
    [61] Pena M A. Modelling the response of the planktonic food web to iron fertilization and warming inthe NE subarctic Pacific. Progress in Oceanography,2003,57:453-479.
    [62] Popovich C A, Gayoso A M. Effects of irradiance and temperature on the growth rate ofThalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Blhia Blance estuary(Argentina). Journal of Plankton Research,1999,21:1101-1110.
    [63] Renaud S M, Zhou H C, Parry D L, et al. Effect of temperature on the growth total lipid content andfatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium,Nitzschia paleacea and commercial species Isochrysis sp.(clone T. ISO). Journal of AppliedPhycology,1995,6:595-602.
    [64] Renaud S M, Thinh L, Lambrinidis G, et al. Effect of temperature on growth, chemical compositionand fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture,2002,23:195-214.
    [65] Rose J M, Feng Y, DiTullio G R, et al. Synergistic effects of iron and temperature on Antarcticphytoplankton and microzooplankton assemblages. Biogeosciences,2009,6:3131-3147.
    [66] Rose K A, Megrey B A, Wermer F E, et al. Calibration of the NEMUROnutrient-phytoplankton-zooplankton food web model to a coastal ecosystem: Evaluation of anautomated calibration approach. Ecological modeling,2007,202:38-51.
    [67] Schabhuttl S, Hingsamer P, Weigelhofer G, et al. Temperature and species richness effects inphytoplankton communities. Oecologia,2013,171:527-536.
    [68] Shen Z L. A study on the relationships of the nutrients near the Changjiang River estuary with theflow of the Changjiang River water. Chinese Journal of Oceanology and Liminology,1993,11:260-267.
    [69] Skogen M D, Soiland H, Sevendsen E. Effect of changing nutrient loasds to the North Sea. Journalof Marine Systems,2004,46:23-38.
    [70] Smith J C, Mclachlan J L, Cormier P G, et al. Growth and domoic acid production and retention byNitzschia pungens f multiseries at low temperature. In: Smayda T J, Shimizu Y,(Eds). Toxicphytoplankton Blooms in the sea. Amsterdam: Elsevier,1993.631-636.
    [71] Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorusenrichment. Limnology and Oceanography,2006,51:377-384
    [72] Sole J, Estrada M, Garcia-Ladona E. Biological conrol of harmful algal blooms: A modeling study.Journal of Marine Systems,2006,61:165-179.
    [73] Sorokin D, Krauss R W. Effects of temperature and illuminance on chlorella growth uncoupled fromcell division. Plant Physiology,1962,37:37-42.
    [74] Sommer U, Lewandowska A. Climate change and the phytoplankton spring bloom: Warming andoverwintering zooplankton have similar effects on phytoplankton. Global Change Biology,2011,17:154-162
    [75] Staehr P A, Birkeland M J. Temperature acclimation of growth, photosynthesis and respiration intwo mesophilic phytoplankton species. Phycologia,2006,45:648-656.
    [76] Suzuki Y, Takahashi M. Growth responses of several diatom species isolated from variousenvironments to temperature. Journal of Phycology,1995,31:880-888.
    [77] Talling J F. The relative growth rates of three plankton diatoms in relation to underwater radiationand temperature. Annals of Botany,1955,19:329-341.
    [78] Talling J F. Photosynthetic characteristics of some freshwater plankton diatoms in relation tounderwater radiation. New Phytologist,1957,56:29-50.
    [79] Teoh M, Chu W, Phang S. Effect of temperature change on physiology and biochemistry of algae: areview. Malaysian Journal of Science,2010,29:82-97.
    [80] Thomas W, Effect of temperature and illuminance on cell division rates of three species of tropicaloceanic phytoplankton. Journal of Phycology,1966,2:17-22.
    [81] Tomas C. Olisthodiscus luteus (Chrysophyceae) Ⅰ. Effects of salinity and temperature on growth.Motility and survivals. Journal of Phycology,1978,14:309-313.
    [82] Vonshak A, Abeliovich A, Boussiba S, et al. Production of Spirulina biomass: Effects ofenvironmental factors and population density. Biomass,1982,2:175-185.
    [83] Wang B. Cultural entrophication in the Changjiang (Yangtze River) plume: History and perspective.Estuarine, Coastal and Shelf Science,2006,69:471-477.
    [84] Yamaguchi H, Mizushima K, Sakamoto S, et al. Effects of temperature, salinity and irradiance ongrowth of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae,2010,9:398-401.
    [85] Yamaguchi M, Shigeru I, Nagasaki K, et al. Effects of temperature and salinity on the growth of thered tide flagellates Heterocapsa circularisquama (Dinophyceae) and Chattonella verruculosa(Raphidophyceae). Journal of Plankton Research,1997,19:1167-1174.
    [86] Yan T, Zhou M, Qian P. Combined effects of temperature, irradiance and salinity on growth ofdiatom Skeletonema costatum. Chinese Journal of Oceanology and Limnology,2002,20:237-243.
    [87] Yunev O A, Carstensen J. Moncheva S, et al. Nutrient and phytoplankton trends on the westernBlack Sea shelf in response to cultural eutrophication and climate changes. Estuarine Coastal andShelf Science,2007,74:63-76.
    [88] Zhang Y, Zhu L, Zeng X, et al. The biogeochemical cycling of phosphorus in the upper ocean of theEast China Sea [J]. Estuarine, Coastal and Shelf Science.2004,60:369-379.
    [89] Zinser E R, Johnson Z I, Coe A, et al. Influence of light and temperature on Prochlorococcusecotype distributions in the Atlantic Ocean. Limnology and Oceanography,2007,52:2205-2220.
    [90]柴心玉.叶绿素-a含量的分布和初级生产力的估算.山东海洋学报,1986,16:1-26.
    [91]陈炳章,王宗灵,朱明远,等.温度、盐度对东海原甲藻生长的影响及其与中肋骨条藻的比较.海洋科学进展,2005,23:60-64.
    [92]陈翰林.东海赤潮的现场调查及赤潮原因种的相互作用效应研究:[硕士学位论文].广州:暨南大学,2006.
    [93]陈亚瞿.东海1972年一次毛丝藻赤潮的分析.水产学报,1982,6:181-189.
    [94]陈艳拢,赵冬至,杨建洪,等.赤潮藻类温度生态幅的定量表达模型研究.海洋学报,2009,31:156-161.
    [95]邓光,李夜光,胡鸿钧,等.温度、光照和pH值对轮状斯克藻和塔玛亚历山大藻光合作用的影响及光暗周期对其生长速率和生物量的影响.武汉植物学研究,2004,22:129-135.
    [96]方琦,顾海峰,蓝东兆,等.温、盐度及营养盐对不同藻株塔玛亚历山大藻生长的影响.海洋通报,2006,25:20-25.
    [97]方绍锦.浙江近海上升流调查海域赤潮的初步探讨.海洋学报,1984,6:408-414.
    [98]费尊乐,毛兴华,吕瑞华,等.东海黑潮区叶绿素a和初级生产力的分布特征. In:孙湘平,editor.黑潮调查研究论文集.北京:海洋出版社,1987,256-265.
    [99]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999
    [100]福迪B(罗迪安译).藻类学.上海:上海科学技术出版社,1980.
    [101]顾海峰.中国东南沿海典型藻类的休眠体、生活史和系统发育:[博士学位论文].青岛:中国海洋大学,2007.
    [102]顾新根.东海赤潮研究概况.现代渔业信息,1989,4:40-43.
    [103]国家海洋局.1990年中国海洋灾害公报.北京:国家海洋局,1997.
    [104]国家海洋局.1992年中国海洋灾害公报.北京:国家海洋局,1997.
    [105]国家海洋局.1993年中国海洋灾害公报.北京:国家海洋局,1997.
    [106]国家海洋局.1995年中国海洋灾害公报.北京:国家海洋局,1995.
    [107]国家海洋局.1996年中国海洋灾害公报.北京:国家海洋局,1996.
    [108]国家海洋局.1997年中国海洋灾害公报.北京:国家海洋局,1997.
    [109]国家海洋局.1998年中国海洋灾害公报.北京:国家海洋局,1998.
    [110]国家海洋局.1999年中国海洋灾害公报.北京:国家海洋局,1999.
    [111]国家海洋局.2002年中国海洋灾害公报.北京:国家海洋局,2003.
    [112]国家海洋局.2003年中国海洋灾害公报.北京:国家海洋局,2004.
    [113]国家海洋局.2004年中国海洋灾害公报.北京:国家海洋局,2005.
    [114]国家海洋局.2005年中国海洋灾害公报.北京:国家海洋局,2006a.
    [115]国家海洋局.2006年中国海洋灾害公报.北京:国家海洋局,2007a.
    [116]国家海洋局.2007年中国海洋灾害公报.北京:国家海洋局,2008a.
    [117]国家海洋局.2008年中国海洋灾害公报.北京:国家海洋局,2009.
    [118]国家海洋局.2009年中国海洋灾害公报.北京:国家海洋局,2010.
    [119]国家海洋局.2010年中国海洋灾害公报.北京:国家海洋局,2011.
    [120]国家海洋局.2011年中国海洋灾害公报.北京:国家海洋局,2012.
    [121]国家海洋局.2000年中国海洋环境质量公报.北京:国家海洋局,2001.
    [122]国家海洋局.2001年中国海洋环境质量公报.北京:国家海洋局,2002.
    [123]国家海洋局.2005年中国海洋环境质量公报.北京:国家海洋局,2006b.
    [124]国家海洋局.2006年中国海洋环境质量公报.北京:国家海洋局,2007b.
    [125]国家海洋局.2007年中国海洋环境质量公报.北京:国家海洋局,2008b.
    [126]国家海洋局东海分局.2009年东海域海洋环境公报.上海:国家海洋局东海分局,2010.
    [127]国家海洋局东海分局.2011年东海域海洋环境公报.上海:国家海洋局东海分局,2012.
    [128]郭术津,孙军,戴民汉,等.2009年冬季东海浮游植物群集.生态学报,2012,32:3266-3278.
    [129]郭术津,田伟,戴民汉,等.2009年夏季东海浮游植物群集.海洋科学进展,2011,29:474-486.
    [130]郭伟其,沙伟,沈红梅,等.东海沿岸海水表层温度的变化特征及变化趋势.海洋学报,2005,27:1-8.
    [131]郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊,1992,33:167-189.
    [132]韩小燕,潘晓东,马林芳.浙南沿岸海表面温度分布特征.海洋通报,2011,30:619-624.
    [133]韩秀荣,王修林,孙霞,等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报,2003,14:1097-1101.
    [134]韩秀荣.长江口及邻近海域浮游植物生长的多环境因子影响解析研究:[博士学位论文].青岛:中国海洋大学,2009.
    [135]海洋图集编委会.渤、黄、东海海洋图集(生物分册).北京:海洋出版社,1991.
    [136]何青,孙军.长江口及其邻近水域网采浮游植物群落.生态学报,2009a,29:3928-3938.
    [137]何青,孙军,栾青杉,等.冬季长江口及其邻近水域的浮游植物.海洋环境科学,2009b,28:360-365.
    [138]洪君超,黄秀清,蒋晓山.长江口赤潮多发区的一次中肋骨条藻赤潮现象观察.海洋环境科学,1992,11:75-79.
    [139]侯继灵.不同氮源和铁对浮游植物生长影响的围隔实验研究:[硕士学位论文].青岛:中国海洋大学,2006
    [140]黄蓉.浙江沿海赤潮状况及防治对策.环境监测管理与技术,2001,13:29-30.
    [141]黄秀清,蒋晓山,陶然,等.长江口海域一次骨条藻赤潮发生过程的多元分析.海洋环境科学,2000,19:1-5.
    [142]江涛.长江口水域富营养化的形成、演变与特点研究:[博士学位论文].青岛:中国科学院研究生院(海洋研究所),2009
    [143]江天久,黄伟建,王朝晖,等.几种环境因子对塔玛亚历山大藻(大鹏湾株)生长及其藻毒力影响.应用于环境生物学报,2006,6:151-154.
    [144]蒋国昌.浙江南部海域富营养化和赤潮的探讨.东海海洋,1993,11:55-61.
    [145]金德祥,陈贞奋,刘师成,等.温度和盐度对三种海洋浮游植物硅藻生长繁殖的影响.海洋与湖沼,1965,7:373-385.
    [146]孔凡洲.长江口赤潮区浮游植物的粒级结构、种类组成和色素分析:[博士学位论文].青岛:中国科学院海洋研究所,2012.
    [147]赖俊翔.长江口及邻近海域浮游植物色素与富营养化研究:[博士学位论文].青岛:中国科学院海洋研究所,2011.
    [148]李扬,吕颂辉,江天久,等.2006年春夏期间浙江南麂海域浮游植物群落结构特征.亚热带植物科学,2009,38:1-6.
    [149]李雁宾.长江口及邻近海域季节性赤潮生消过程控制机理研究:[博士学位论文].青岛:中国海洋大学,2008.
    [150]李云,李道季,唐静亮,等.长江口及毗邻海域浮游植物的分布与变化.环境科学,2007,28:719-729.
    [151]林军.长江口外海域浮游植物生态动力学模型研究:[博士学位论文].上海:华东师范大学,2011.
    [152]林军,朱建荣,张经,等.长江口外海域浮游植物生物量分布及其与环境因子的关系.水产学报,2011,35:74-87.
    [153]刘录三,李子成,周娟,等.长江口及其邻近海域赤潮时空分布研究.环境科学,2011,32:2497-2504.
    [154]刘子琳.浙江潮下带海域秋季初级生产力和叶绿素a的分布.东海海洋,1989,7:57-65.
    [155]刘子琳,宁修仁.浙江海岛邻近海域叶绿素a和初级生产力的分布.东海海洋,1997,15:21-28.
    [156]刘子琳,宁修仁,蔡昱明.杭州湾-舟山渔场秋季浮游植物现存量和初级生产力.海洋学报,2001,23:93-99.
    [157]龙华,周燕,余骏,等.2001-2007年浙江海域赤潮分析.海洋环境科学,2008,27:增1-增4.
    [158]鲁北伟,王荣.春季东海表层水体叶绿素a含量分布特征.海洋与湖沼,1996,27:487-492.
    [159]陆茸.东海围隔实验中营养盐对浮游植物生长的影响及其动力学研究:[硕士毕业论文].青岛:中国海洋大学,2005.
    [160]吕颂辉,李英.我国东海4种赤潮藻的细胞氮磷营养储存能力对比.过程工程学报,2006,6:439-444.
    [161]宁波市海洋与渔业局.2001年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2002.
    [162]宁波市海洋与渔业局.2002年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2003.
    [163]宁波市海洋与渔业局.2003年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2004.
    [164]宁波市海洋与渔业局.2004年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2005.
    [165]宁波市海洋与渔业局.2005年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2006.
    [166]宁波市海洋与渔业局.2006年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2007.
    [167]宁波市海洋与渔业局.2007年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2008.
    [168]宁波市海洋与渔业局.2008年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2009.
    [169]宁波市海洋与渔业局.2010年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2011.
    [170]宁波市海洋与渔业局.2011年宁波市海洋环境公报.宁波:宁波市海洋与渔业局,2012.
    [171]宁德市海洋与渔业局.2003年宁德市海洋环境公报.宁德:宁德市海洋与渔业局,2004.
    [172]宁修仁,刘子琳,胡钦贤.浙江沿岸上升流区叶绿素a和初级生产力的分布特征.海洋学报,1985,17:72-84.
    [173]宁修仁,史君贤,刘子琳.长江口及浙江近海夏季叶绿素a和ATP的分布特征.海洋学报,1986,8:603-610.
    [174]宁修仁, C库蒂.长江口及冲淡水区叶绿素a、细菌ATP、POC及微生物呼吸作用速率之间的关系.海洋学报,1991,13:831-837.
    [175]宁修仁,史君贤,蔡昱明,等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004,26:96-106.
    [176]欧阳怡然,陈逸华,于波.嵊泗列岛养殖海域浮游植物、赤潮生物的研究.浙江水产学院学报.1993a,12:257-264.
    [177]欧阳怡然,陈逸华,于波.嵊泗列岛养殖海域发生的菱形裸甲藻Gymnodinium rhomboidsSCHUTT赤潮.浙江水产学院学报,1993b,12:14-20.
    [178]潘玉球,黄树生.长江冲淡水输运和扩散途径的分析.东海海洋,1997,15:25-34
    [179]蒲新明.长江口区浮游植物营养限制因子的研究:[硕士学位论文].青岛:中国科学院海洋研究所,2000.
    [180]齐雨藻.赤潮.广州:广东科技出版社,1999.
    [181]乔方利,袁业立,朱明远,等.长江口海域赤潮生态动力学模型及赤潮控制因子研究.海洋与湖沼,2000,31:93-100.
    [182]上海市海洋局.2002年上海市海洋环境质量公报.上海:上海市海洋局,2003.
    [183]上海市海洋局.2003年上海市海洋环境质量公报.上海:上海市海洋局,2004.
    [184]上海市海洋局.2004年上海市海洋环境质量公报.上海:上海市海洋局,2005.
    [185]上海市海洋局.2005年上海市海洋环境质量公报.上海:上海市海洋局,2006.
    [186]上海市海洋局.2006年上海市海洋环境质量公报.上海:上海市海洋局,2007.
    [187]沈国英,施并章.海洋生态学.北京:科学出版社,2002.
    [188]沈新强,胡方西.长江口外水域叶绿素a分布的基本特征.中国水产科学,1995,2:71-80.
    [189]宋书群,孙军,沈志良,等.三峡库区蓄水后夏季长江口及其邻近水域粒级叶绿素a.中国海洋大学学报,2006,36:114-120.
    [190]孙百晔.长江口及邻近海域浮游植物生长的光照效应研究:[博士学位论文].青岛:中国海洋大学,2008.
    [191]孙军,刘东艳,钱树本.浮游植物生物量研究Ⅰ.浮游植物生物量细胞体积转化法.海洋学报,1999,21:75-85.
    [192]孙军,田伟.2009年春季长江口及其邻近水域浮游植物——物种组成与粒级叶绿素a.应用生态学报,2011,22:235-242.
    [193]孙霞.光照对东海赤潮高发区赤潮藻类生长的影响:[博士学位论文].青岛:中国海洋大学,2005.
    [194]台州市海洋与渔业局.2007年台州市海洋环境公报.台州:台州市海洋与渔业局,2008.
    [195]谭书杰,宫相忠,孙军,等.春季东海产卵场及其邻近海域的浮游植物群落.海洋科学,2009,33:5-10.
    [196]唐洪杰.长江口及邻近海域富营养化近30年际变化趋势及其与赤潮发生的关系和控制策略研究:[博士学位论文].青岛:中国海洋大学,2009.
    [197]佟蒙蒙.我国赤潮的分型分级及赤潮灾害评估体系:[硕士学位论文].广州:暨南大学,2006
    [198]王保栋.长江口及邻近海域富营养化状况及其生态效应:[博士学位论文].青岛:中国海洋大学,2006
    [199]王长友,王修林,梁生康,等.偏异目标海域污染物域均浓度校正及年均浓度估算方法.海洋学报,2010,32:155-160.
    [200]王丹,孙军,周锋,等.2006年6月长江口低氧区及邻近水域浮游植物.海洋与湖沼,2008,39:619-627.
    [201]王桂兰,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮的分布与特点.海洋科学,1993,(5):51-55.
    [202]王灏.夏季台湾暖流的水文、化学特性及其对东海高发区生源要素补充的初步研究:[硕士学位论文].青岛:中国海洋大学,2007.
    [203]王金辉,黄秀清.东海原甲藻的生态特征及赤潮成因浅析.应用生态学报,2003,14:1065-1069.
    [204]王宪,李文权.4种单胞藻同化速率与温度关系的实验研究.台湾海峡,1990,9:287-290.
    [205]王玉衡,蒋国昌,董恒霖.春季浙江南部海域溶解氧、pH值和营养盐分布特征及相互关系研究.海洋学报,1990,12:654-660.
    [206]王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应.海洋与湖沼,2001,32:15-18.
    [207]温州市海洋与渔业局.2003年温州市海洋环境公报.温州:温州市海洋与渔业局,2004.
    [208]温州市海洋与渔业局.2004年温州市海洋环境公报.温州:温州市海洋与渔业局,2005.
    [209]温州市海洋与渔业局.2006年温州市海洋环境公报.温州:温州市海洋与渔业局,2007.
    [210]温州市海洋与渔业局.2007年温州市海洋环境公报.温州:温州市海洋与渔业局,2008.
    [211]温州市海洋与渔业局.2008年温州市海洋环境公报.温州:温州市海洋与渔业局,2009.
    [212]温州市海洋与渔业局.2009年温州市海洋环境公报.温州:温州市海洋与渔业局,2010.
    [213]温州市海洋与渔业局.2010年温州市海洋环境公报.温州:温州市海洋与渔业局,2011.
    [214]温州市海洋与渔业局.2011年温州市海洋环境公报.温州:温州市海洋与渔业局,2012.
    [215]伍玉梅,徐兆礼,樊伟,等.1985-2005年东海海表温度时空变化特征分析.海洋学报,2011,33:9-18.
    [216]萧云朴,李扬,李欢,等.南麂列岛海域硅藻和甲藻群落的分布特征.华南师范大学学报(自然科学版),2009,(2):100-105.
    [217]徐宁,吕颂辉,陈菊芳,等.温度和盐度对轮状斯克藻生长的影响.海洋环境科学,2004,23:36-38.
    [218]徐宁.中国沿海典型赤潮藻的生态位研究:[博士学位论文].广州:暨南大学,2006.
    [219]徐韧,洪君超,王桂兰,等.长江口及邻近海域的赤潮现象.海洋通报,1994,13:25-29.
    [220]徐韧.长江口及其邻近海域赤潮发生的特点及管理对策初探.海洋开发与管理,1994,(4):36-38.
    [221]许建平.浙江沿岸的赤潮灾害及防治对策.东海洋洋,1992,30-37.
    [222]杨东方,陈生涛,胡均等.光照、水温和营养盐对浮游植物生长重要影响大小的顺序.海洋环境化学,2007,26:201-207.
    [223]杨红,何春良.我国海域赤潮发生与海温及厄尔尼诺的相关分析.海洋湖沼通报,2009,(2):1-6
    [224]杨鸿山,朱启琴,戴国梁.长江口杭州湾海域两次赤潮的调查与初步研究.海洋环境科学,1990,9:23-27.
    [225]杨茹君.不同环境污染物条件下海洋浮游植物生长的粒径效应研究:[博士学位论文].青岛:中国海洋大学,2004.
    [226]叶属峰,黄秀清.东海赤潮及其监视监测.海洋环境科学,2003,22:10-14.
    [227]由希华.东海原甲藻和塔玛亚历山大藻生长对重要环境因子的响应及种间竞争研究:[硕士学位论文].青岛:中国海洋大学,2006
    [228]于萍.温度、光照及种间相互作用对东海典型浮游植物生长的影响:[硕士学位论文].青岛:中国海洋大学,2005.
    [229]余文翎,龙华,王红霞,等.我国东海藻华新记录种多环旋沟藻赤潮事件分析.海洋开发与管理.2011,(11):66-68.
    [230]余小青,金海燕,陈建芳,等.2009年初夏长江口及毗邻海域表层浮游植物群落结构的色素表征.海洋学研究,2011,29:145-154.
    [231]章飞燕.长江口及邻近海域浮游植物群落变化的历史对比及其环境因子研究:[硕士学位论文].上海:华东师范大学,2009.
    [232]张传松.长江口及邻近海域赤潮生消过程特征及其营养盐效应分析:[博士学位论文].青岛:中国海洋大学,2007.
    [233]张传松,王修林,石晓勇,等.东海赤潮高发区营养盐时空分布特征及其与赤潮的关系.环境科学,2007,28:2416-2424.
    [234]张春雷.长江口邻近海域围隔实验中营养盐对浮游植物生长的影响及其动力学研究:[硕士毕业论文].青岛:中国海洋大学,2006.
    [235]张捷,于波.长江口至嵊泗列岛附近海域浮游植物与赤潮的监测研究.浙江海洋学院学报(自然科学版),2001,20:213-216.
    [236]张新建,任艳,黄玉杰,等.新月菱形藻的紫外诱变及优化培养.山东科学,2011,24:22-27.
    [237]张正斌.海洋化学.青岛:中国海洋大学出版社,2004
    [238]赵冬至,赵玲,张丰收,等.赤潮海水温度预报方法研究.赤潮灾害预报机理与技术.北京:海洋出版社,2004
    [239]赵水东.温度、盐度和营养盐对东海原甲藻生长的影响:[硕士学位论文].青岛:中国海洋大学,2006
    [240]赵冉.三峡大坝截留前后长江口及其邻近水域浮游植物群集对比研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [241]赵冉,白洁,孙军,等.2006年夏季长江口及其邻近水域浮游植物群集.海洋湖沼通报,2009,(2):88-96.
    [242]赵冉,孙军,白洁.2006年秋季长江口及邻近水域浮游植物群集.海洋科学,2010,34:32-39.
    [243]赵卫红,王江涛,李金涛,等.长江口及邻近海域冬夏季浮游植物营养限制及其比较.海洋学报,2006,28:119-126.
    [244]浙江省海洋与渔业局.2001年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2002.
    [245]浙江省海洋与渔业局.2006年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2007.
    [246]浙江省海洋与渔业局.2007年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2008.
    [247]浙江省海洋与渔业局.2009年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2010.
    [248]浙江省海洋与渔业局.2011年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2012.
    [249]郑元甲,陈雪忠,程家骅,等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003.
    [250]《中国海洋年鉴》编纂委员会.2001年中国海洋年鉴.北京:海洋出版社,2002
    [251]《中国海洋年鉴》编纂委员会.2002年中国海洋年鉴.北京:海洋出版社,2003
    [252]《中国海洋年鉴》编纂委员会.2003年中国海洋年鉴.北京:海洋出版社,2004
    [253]《中国海洋年鉴》编纂委员会.2004年中国海洋年鉴.北京:海洋出版社,2005
    [254]周凯,黄长江,姜胜,等.2000-2001年拓林湾浮游植物群落结构及数量变动的周年调查.生态学报,2002,22:688-698.
    [255]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13:54-59.
    [256]周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报,2003,14:1031-1038.
    [257]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21:673-679.
    [258]周伟华,袁翔城,霍文毅,等.长江口邻域叶绿素a和初级生产力的分布.海洋学报,2004,26:143-150.
    [259]周伟华,殷克东,朱德弟.舟山海域春季浮游植物生物量及东海原甲藻赤潮频发机制初探.应用生态学报,2006,17:887-893.
    [260]周晓英,胡德宝,王赐震,等.长江口海域表层水温的季节、年际变化.中国海洋大学学报,2005,35:357-362.
    [261]舟山市海洋与渔业局.2004年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2005.
    [262]舟山市海洋与渔业局.2005年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2006.
    [263]舟山市海洋与渔业局.2006年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2007.
    [264]舟山市海洋与渔业局.2007年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2008.
    [265]舟山市海洋与渔业局.2008年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2009.
    [266]舟山市海洋与渔业局.2009年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2010.
    [267]舟山市海洋与渔业局.2010年舟山市海洋环境公报.舟山:舟山市海洋与渔业局,2011.
    [268]朱德弟,陆斗定,王云峰,等.2005年春初浙江近海的低温特征及其对大规模东海原甲藻赤潮发生的影响.海洋学报,2009,31:31-39.
    [269]朱建荣.长江口外海域叶绿素a浓度分布及其动力成因分析.中国科学(D辑地球科学),2004,34:757-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700