用户名: 密码: 验证码:
悬臂浇筑混凝土桥梁节段间接缝对挠度影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,预应力混凝土连续梁、连续刚构桥在投入运营10年左右常常出现下挠过大(10cm以上)的问题,给桥梁的安全性带来隐患。目前大多数学者将桥梁下挠的原因归于混凝土收缩和徐变的影响,而忽视了作为受力性能薄弱的节段间接缝连接刚度降低对桥梁挠度的影响。并且由于施工中常常忽视对节段间接缝界面的处理,使接缝段混凝土的力学性能都要低于一次性浇筑的整体混凝土。大跨径预应力混凝土梁桥一般采用平衡悬臂现浇法施工,全桥的接缝多达上百个,这使桥梁由一个整体受力的结构变为由若干个薄弱的接缝连接而成的“离散结构”。接缝的存在削弱了桥梁受力的整体性和连续性,因而很有可能成为导致桥梁出现过大的下挠的重要原因之一。然而,现在无论是在设计还是在实际施工中对此部位都没有做“特殊处理”,均将结构视为理想的无接缝整体,接缝段混凝土材料性能及力学性能与节段内整块混凝土完全一样,显然这是不符合实际的。
     为研究接缝段连接刚度对桥梁挠度的影响,补充和完善悬臂浇筑混凝土桥梁节段间接缝的设计理论及施工方法,本文开展了竖直节段接缝抗剪试验和抗弯试验。以试验结论为基础,研究了与目前一贯采用的竖直接缝不同的非竖直形式接缝,提出能同时提高接缝抗剪刚度和抗弯刚度的组合形式接缝,并得出了竖直接缝与组合接缝刚度对桥梁挠度的影响。
     接缝抗剪试验共计三片试验梁,根据接缝段连接刚度的不同分为一次性整体浇筑的无接缝试验梁、分段浇筑的有接缝试验梁以及接缝中加入抗剪钢筋的有接缝试验梁。通过对实测的三片试验梁在相应接缝段两侧相对挠度的对比,得出了接缝段截面相对于一次性整体浇筑截面的抗剪刚度降低系数,以及加入抗剪钢筋后的接缝段的抗剪刚度提高系数,并以此为基础提出了接缝抗剪钢筋的设计方法。
     竖直接缝抗弯试验同样包括三片试验梁(无接缝整体、有接缝、接缝加抗剪钢筋)但截面尺寸不同。通过对三片试验梁实测数据的对比分析,得出了接缝和结构整体的抗弯刚度降低系数,以及加入抗剪钢筋后的接缝段的抗弯刚度相对素接缝的提高系数,并提出接缝段混凝土等效弹性模量与等效剪切模量的关系。
     在竖直节段接缝试验研究的基础上,对非竖直形式接缝进行了理论分析。综合考虑倾角在结构变形方面起到的改善作用以及便与施工,本文拟定了5°、10°和15°的三种不同的接缝倾角,并建立与抗剪刚度试验梁和抗弯刚度试验梁截面尺寸相同的有限元模型进行对比分析,分别得出了不同倾角对于抗剪刚度和抗弯刚度的贡献。同样通过建立有限元模型对台阶式接缝进行了分析,得出了不同台阶宽度和高度对于接缝抗剪刚度和抗弯刚度的贡献。并提出通过加抗剪钢筋的竖直接缝、斜接缝及台阶式接缝的分析提出了斜接缝加抗剪钢筋的组合形式接缝,通过有限元分析验证了组合接缝能同时提高接缝的抗剪刚度和抗弯刚度。
     在上述试验和理论分析的基础上,提出了剪力键接缝、斜接缝、台阶式接缝以及组合式接缝的设计方法。
     最后,本文对节段接缝对桥梁挠度的影响进行了理论分析,并以实际工程为例,通过有限元分析得出了竖直接缝与本文提出的组合形式的接缝对桥梁挠度的影响程度,验证了本文提出的组合接缝形式能大幅降低因竖直接缝连接刚度降低导致的桥梁下挠。
In recent years, many prestressed concrete continuous bridges and continuousrigid frame bridges appeared excessive downwarping (more than10cm) after about10years of service, most scholars presently attribute the the factors leadingexcessive downwarping to the shrinkage and creep of concrete, whereas ignoring theeffect of stiffness reduction at segmental joints on deflection of bridges. Due to theneglect in construction, it is generally weaker greatly for segmental joints concretecompared with monolithic concrete shaped at once casting on mechanical property.However, long-span prestressed concrete bridges generally constructed throughbalanced cantilever casting, the quantity of segmental joints can reach hundreds,which leads bridges to be discrete structure connected with numbers of weakersegmental joints rather than monolithic structure. It is potential for joints to be thefactor leading excessive downwarping, due to weakening the structure. Whereas, itis consistently assumed that structure is ideal monolith without joints in bridgesdesign and construction, and the quality of joints concrete is consistent with that ofsegments, which results in the deviation between theory and practice obviously.
     Thus, aiming at the effect of joints connection stiffness on deflection and thesupplement of segmental joints design of cantilever casting bridge, experimentswere conducted to assess the connection stiffness including the shear stiffness andthe flexural rigidity of segmental joints. Based on the above testing conclusions, itwas researched on non-vertical segmental joints shape differing with the presentvertical shape joints consistently adopted, and it was put forward for combined jointwhich can increase simultaneously the shear stiffness and flexural rigidity of joint.And it was educed of the effect of siffness of vertical joints and combined joint ondeflection of bridges.
     Shear experiments of vertical joints. The experiments includes3specimenswhich is respectively monolithic non-joints, joints roughened and joints roughenedwith shear-key according to the different shear stiffness at the corresponding jointssection. Through the analysis of the testing results of the relative deformation atjoints concering the3specimens, the reduction degree of shear stiffness and thecontribution of shearkey to enhancing shear stiffness of joints was educed. And itwas put forward for shearkey design method at segmental joints based onforementioned testing conclusion.
     Bending experiments of vertical joints. The3specimens in bending test aresimilar with that of the shear test(monolithic, jointed, shearkeyed) except the sectiondimensions. Through the analysis of the testing results, the reduction degree of flexural rigidity and the contribution of shearkey to enhancing flexural rigidit y ofjoints was educed. And it was presented for the relation between equivalent shearmodulus and equivalent elastic modulus of joint.
     Based on the experiment of vertical joint, finite element models were modeledto research non-vertical joint. Taking account of the stiffness improvement andconvenient construction, through the analysis of finite element modle with3different joint slope angle as5°,10°and15°, the contribution of different slopeangle joints to shear stiffness and flexural rigidity was educed. And it was putforward firstly for the slope angle of segmental joints which enhancing shearstiffness efficiently and constructing conveniently. Through the analysis of finiteelement modle, the contribution of different breadth and height of step to shearstiffness and flexural rigidity was educed. And it was put forward for the designmethod of stepped segmental joints.
     Based on the experimental conclusions and finite element model analysis, itwas put forward for the design method of shearkeyed joint、slope joint、stepped jointand combined joint.
     In the end, theoretical analysis was conducted to the effect of segmental jointson bridge deflection, and it was educed for the effect of stiffness of vertical joint andcombined joint on deflection of cantilever casting bridges by analysis of finiteelement models, and it was proved that the combined joint put forward in thisdissertation can reduces greatly the effect of vertical joints stiffness reduction ondeflection of cantilever casting bridges.
引文
[1] Mindess S, Shah S P. Bonding in cementitious composites[C]. MaterialsResearch Society Symposia Proceedings,1988,114:3-10.
    [2] Berger R L, Cahn D S. Calcium hydroxide as a binder in portland cementpaste[J]. Journal of the American Ceramic Society,1970,53(1):57-58.
    [3] Pan Z F, Fu C C, Jiang Y. Uncertainty analysis of creep and shrinkage effectsin long-span continuous rigid frame of sutong bridge[J]. Journal of BridgeEngineering,2011,4:248-258.
    [4] Ramesh B M, Matu R S, Montgomery T S, Smita B B. Temperature aging,compression recovery, creep, and weathering of a foam silicone sealant forbridge expansion joints[J]. Journal of Bridge Engineering,2011,3:287-297.
    [5] Jia B Y, Yan Q S. Analysis of creep effects for a cable-stayed bridge withcomposite girder[C]. Fourth International Conference on ExperimentalMechanics,2010,75223Q:1-7.
    [6] Sungmoon J, Jamshid G, Camilo M. Field calibration of time-dependentbehavior in segmental bridges using self-learning simulation[J]. EngineeringStructures,2007,29:2692-2700.
    [7] Nguyena D V, Ki D K, Warnitchaia P. Simulation procedure for vehiclesubstructure dynamic interactions and wheel movements using linea-rizedwheel–rail interfaces[J]. Finite Elements in Analysis and Design,2009,45:341-356.
    [8] Bacinskas D, Kaklauskas G, Gribniak V, Sung W P, Shih M H. Layer modelfor long-term deflection analysis of cracked reinforced concrete bendingmembers[J]. Mech Time-Depend Mater,2011,3:1-11.
    [9] Phillip S K, Lin X B, Harold S H. Numerical study of an integral abutmentbridge supported on drilled shafts[J]. Journal of Bridge Engineering,2010,2:19-31.
    [10] Chaudhary S, Pendharkar U, Nagpal A K. Control of creep and shrinkageeffects in steel concrete composite bridges with precast decks[J]. Journal ofBridge Engineering,2009,9:336-345.
    [11] Sa M F, Gomes A M, Correia J R, Silvestre N. Creep behavior of pultrudedgfrp elements-part1: literature review and experimental study[J]. CompositeStructures,2011,93:2450-2459.
    [12] Low I M, Che Z Y, Latella B A. Mapping the structure, composition andmechanical properties of bamboo[J]. Materials Research Society,2006,0238:1969-1976.
    [13] Guo N S, Zhao Y H. Viscoel astic response of fiber reinforeced asphaltpavement subjected to long periodic load[C]. International Conference onTransportation Engineering,2009:862-868.
    [14] Koichi M, Nobuhiro C, Ishida T. Long-term deformational simulation of pcbridges based on the thermohygro model of micro-pores in cementitiouscomposites[J]. Cement and Concrete Research,2011,41:1310-1319.
    [15] Phillip S. K. Ooi, Lin X B, Harold S H. Field behavior of an integral abutmentbridge supported on drilled shafts[J]. Journal of Bridge Engineering,2010,2:4-18.
    [16] Wang W W, Dai J G, Li G, Huang C K. Long-term behavior of prestressedold-new concrete composite beams[J]. Journal of Bridge Engineering,2011,4:275-285.
    [17] Malm R, Sundquist H. Time-dependent analyses of segmentally constructedbalanced cantilever bridges[J]. Engineering Structures,2010,32:1038-1045.
    [18] Karthikeyan J, Upadhyay A, Bhandari N M. Artificial neural network forpredicting creep and shrinkage of high performance concrete[J]. Journal ofAdvanced Concrete Technology,2008,2:135-142.
    [19]卢锋,郑恒斌,余晓琳.大跨度连续刚构桥长期下挠影响参数分析[J].科学技术与工程,2010,10(14):3542-3545.
    [20]王宏亮.收缩徐变对预应力混凝土连续梁桥的影响[J].甘肃科技,2011,27(04):126-156.
    [21]沈飞峰.徐变对大跨径混凝土箱梁桥挠度影响[J].山西建筑,2009,35(14):317-319.
    [22]孙涛,袁明,颜东煌.大跨度PC连续刚构桥混凝土收缩和徐变影响分析[J].中外公路,2010,30(5):136-139.
    [23]王震.浅谈混凝土徐变对桥梁施工挠度控制的影响[J].经营管理者,2009(17):319.
    [24]李朝忠,张海文.收缩徐变对矮塔斜拉桥主梁挠度的影响[J].工程结构,2007,27(5):101-104.
    [25]罗龙.徐变系数对挠度的影响分析研究[J].山西建筑,2008,34(33):90-91.
    [26]陈倩,胡成.混凝土收缩徐变对预应力连续梁桥的影响分析[J].研究与探索,2009,23(2):165-167.
    [27]龙永章,李伟.砼徐变在刚构桥预拱度设置中的应用[J].公路与汽运,2009(4):181-183.
    [28]宋郁民,刘媛,周世军.预应力混凝土桥梁悬臂施工中徐变挠度的计算[J].兰州交通大学学报,2008,27(4):25-28.
    [29]马润平,卫军,高宗余.大跨预应力混凝土梁式桥后期下挠原因分析[J].铁道工程学报,2007(5):51-54.
    [30]漆景星,侯艳红.混凝土收缩徐变对成桥后主梁变形影响研究[J].交通科技,2011(1):32-34.
    [31]王炜,潘峰.刚构-连续组合梁桥施工中徐变效应影响研究[J].河南城建学院学报,2011,20(2):9-11.
    [32]龚昕,郭伟伟.早强剂对大跨连续刚构桥挠度的影响[J].四川建筑,2007,27(3):123-124.
    [33]王培金,盛洪飞,赵尚栋.大跨连续刚构桥预应混凝土箱梁的挠度预测探讨[J].公路交通科技,2007,24(1):87-89,99.
    [34]许震,张雪松,徐君兰.连续刚构跨中下挠的参数影响分析[J].重庆交通大学学报,2007,26(4):9-13.
    [35]刘小燕,王光辉,韦成龙,欧阳祥森.大跨度桥梁混凝土收缩徐变对桥面铺装受力的影响分析[J].中外公路,2006,26(3):141-143.
    [36]刘敏,徐仲春.考虑徐变效应的结构可靠度研究[J].四川建筑科学研究,2006,32(5):41-44.
    [37]谢峻,王国亮,郑晓华.大跨径预应力混凝土箱梁桥长期下挠问题的研究现状[J].公路交通科技,2007,24(1):47-50.
    [38]李熠,于磊.收缩徐变对混凝土斜拉桥成桥状态的影响分析[J].国防交通工程与技术,2009,(6):27-30.
    [39]李坚,陆元春.预制节段混凝土桥梁的设计与工程实践[J].城市道桥与防洪,2003.11,6:35-38.
    [40] Franz G. Versucheüber die querkraftaufnahem in fugen von spannebetontrgern aus fertigteien[J]. Beton-und Stahlbetonbau,1959,54(6):137-140.
    [41] Jones L L. Shear tests on joints between precast post-tensioned units[J].Magazine of Concrete Research,1959,11(31):156-158.
    [42] Zelger C, Rusch H. Der einfuss von fugen auf die feistigkeit vonfertigteilen[J]. Betonund Stahlbetonbau,1961,10:234-237.
    [43] Base G D. Shearing tests on thin epoxy-resin joints between precast concreteunits[J]. Concrete and Construction Engineering,1963,7:273-277.
    [44] Gaston J R, Kriz L G. Connections in precast concrete structures[J]. New York,John Wiley and Sons,1964:69-78.
    [45] Sims F A, Woodhead S. Rawcliffe bridge in yorkshire[J]. Civil Engineeringand Public Works Review,1968,63(741):385-391.
    [46] Finsterwalder U, Jungwith D, Bauman T. Tragfahigkeit von spannebetonbalken aus fertigtelien mit trockenfugen quer zur haupttragrichtung[J]. DerBauingernieur,1974,10:1-10.
    [47] Moustafa S E. Ultimate load test of a segmentally constructed prestressedi-beam[J]. PCI Journal,1974,19(4):54-75.
    [48] Buyukozturk O, Bakhoum M M, Beattie S M. Shear behavior of joints inprecast concrete segmental bridges[J]. Journal of Structure Engineering,ASCE,1990,116(12):3380-3401.
    [49] Bakhoum M M. Shear behavior and design of joints in precast concretesegmental bridges[D]. Massachusetts: Massachusetts Institute of Technology,1990:20-228.
    [50] Takebayashi T, Leung Y W. Full-scale destructive test of a precast segmentalbox girder bridge with dry joints and external tendons[J]. Proceedings of theInstitution of Civil Engineers: Structures and Buildings.1994,3:297-315.
    [51] Rombach G A. Dry joint behavior of hollow box girder segmental bridges[C].Fib Symposium, Segmental Construction in Concrete. New Delhi,2004,11:26-29.
    [52] Zhou X M, Mickleborough N, Li Z J. Shear strength of joints in precastconcrete segmental bridges[J]. ACI Structural,2005,102(1):3-11.
    [53] J. Turmo, G. Ramosy, and A. C. Aparicio. FEM study on the structural be-havior of segmental concrete bridges with unbonded prestressing and dryjoints: simply supported bridges[J]. Engineering Structures,2005,27:1652-1661.
    [54] Turmo J, Ramosy G, Aparicio A C. Shear strength of match cast dry joints ofprecast concrete segmental bridges: proposal for eurocode2[J]. Materiales deConstruccion,2006,56(282):45-52.
    [55] Turmo J, Ramosy G, Aparicio A C. FEM modelling of unbonded post-tensioned segmental beams with dry joints[J]. Engineering Structures,2006,28:1852-1863.
    [56] Turmo J, Ramosy G, Aparicio A C. Shear strength of dry joints of con-cretepanels with and without steel fibres application to precast segmentalbridges[J]. Engineering Structures,2006,28:23-33.
    [57] Issa M A, Abdalla H A. Structural behavior of single key joints in precastconcrete segmental bridges[J]. Journal of Bridge Engineering, ASCE,2007,3:315-324.
    [58] Huang J M. Designing durable reliable precast concrete connections[J].Bridge Line,2008,4:10-13.
    [59] Veletzos M J, Restrepo J I. Modeling of jointed connections in segmentalbridges[J]. Journal of Bridge Engineering.2011,1:139-147.
    [60] Kim T H, Lee H M, Kim Y J, Shin H M. Performance assessment of precastconcrete segmental bridge columns with a shear resistant connectingstructure[J]. Engineering Structures,2010,32:1292-1303.
    [61]汪双炎.悬臂拼装节段梁剪力键模型试验研究[J].铁道建筑,1997(3):23-28.
    [62]李国平.干接缝节段式预应力混凝土桥梁的优势与缺陷[J].中国市政工程,2007(9):54-55.
    [63]柯家满.混凝土预制节段拼装式桥梁的施工[J].华中科技大学学报(城市科学版),2005,22:57-59.
    [64]王侃.节段式混凝土桥梁预制阶段线形与姿态控制系统[D].上海:同济大学硕士学位论文,2008:8-70.
    [65]田东权.浅谈混凝土预制节段拼装式桥梁的施工[J].民营科技,2010(3):163.
    [66]雷宇.节段式桥梁接缝剪切性能试验研究综述[J].2007(4):282-283.
    [67]徐栋,徐海军.预制节段体外预应力桥梁的耐久性评述[J].同济大学学报,2003(11):1261-1265.
    [68]宋国华,王东炜,田鲁.影响结构竖向齿槽接缝抗剪强度的因素[J].河南科学,2003(3):312-314.
    [69]葛继平,刘丰,魏红一,王志强.胶接缝连接的节段拼装桥墩抗震分析模型[J].武汉理工大学学报,2009(5):880-883.
    [70]杨发.节段块件制作安装的质量通病防治[J].科技信息,2007(14):341
    [71]张新,郭正兴,韩雪莹.苏通大桥连续梁节段预制拼装接缝处密封性能研究[J].施工技术,2006(10):63-64.
    [72]胡方健,李国平.轻轨高架桥干接缝节段式体外预应力混凝土梁设计[J].结构工程师,2008(6):41-45.
    [73]贺朋,周志祥,季国富,范亮.连续刚构桥竖向接缝的质量及其对工后挠度的影响[J].重庆交通学院学报,2004,23(1):6-9.
    [74]胡伟雄.大跨径梁桥竖向接缝有关问题分析[J].公路与汽运,2004(4):84-86.
    [75]陈猛,徐咏梅.竖向接缝对连续刚构桥长期变形的影响分析[J].交通标准化,2006(6):39-41.
    [76]孙军超.悬臂现浇法施工中竖向接缝问题分析[J].山西建筑,2007,33(20):339-340.
    [77]何畅.竖向接缝对连续刚构桥后期挠度的影响[J].重庆交通大学学报(自然科学版),2009,28(3):480-483.
    [78]何广汉,蒲黔辉,杨永清,谢冀萍,况勇.部分预应力混凝土梁接缝的静力与疲劳试验研究.桥梁建设,1995(1):57-60.
    [79]张开敬,赵人达,马忠国.武汉长江斜拉桥主梁分段施工混凝土接缝性能试验[J].西南交通大学学报,1994,29(4):436-441.
    [80]钟明全,张开敬.预应力混凝土梁分段灌筑接缝的静力性能研究[J].西南交通大学学报,1994,29(4):429-435.
    [81]张开敬. PC、PPC梁分段施工接缝混凝土抗拉强度降低系数的试验研究[J].桥梁建设,2000(1):6-8.
    [82] Li X L, Chen Y L. Structure mechanical study on overlay of the tied archconcrete bridge deck[C]. Geo Hunan International Conference,2009:35-44.
    [83] Xia J, Mackie K R, Muhammad A. Saleem, and Amir Mirmiran. Shear failureanalysis on ultra-high performance concrete beams reinforced with highstrength steel[J]. Engineering Structures,2011,33:3597-3609.
    [84] Panda K C, Bhattacharyya S K, Barai S V. Shear strengthening of rc t-beamswith externally side bonded gfrp sheet[J]. Journal of Reinforced Plastics andComposites,2011,30(13):1139-1154.
    [85] Valerio P, Ibell T J, Darby A P. Deep embedment of frp for concrete shearstrengthening[J]. Structures and Buildings,2009,162:311-321.
    [86] Emrani M A, Kliger R. Analysis of interfacial shear stress in beams streng-thened with bonded prestressed laminates[J]. Science Direct,2006, Part B37:265-272.
    [87] Olivito R S, Zuccarello F A. On the shear behaviour of concrete beams rein-forced by carbon fibre-reinforced polymer bars: an experimental investiga-tion by means of acoustic emission technique[J]. Strain,2010,46:470-481.
    [88] Dymond B Z, Carin L, Wollmann R, Thomas E C. Shear strength of alightweight self-consolidating concrete bridge girder[J]. Journal of BridgeEngineering,2010:615-618.
    [89] Fathifazl G, Razaqpury A G, Isgor O B. Shear strength of reinforced recycledconcrete beams without stirrups[J]. Magazine of Concrete Research,2009,61:477-490.
    [90] Rodrigues R V, Ruiz M F, Muttoni A. Shear strength of rc bridge cantileverslabs[J]. Engineering Structures,2008,30:3024-3033.
    [91] Ahn J H, Lee C G, Won J H, Kim S H. Shear resistance of the perfobond-ribshear connector depending on concrete strength and rib arrangement[J].Journal of Constructional Steel Research,2010,66:1295-1307.
    [92] Ibrahim A E M, Conceic L. Strength of shear keys used in precast prestressedcomposite beams[J]. Materials and Structures,2010,43:675-685.
    [93] Wu C J, Zhang Z X, Lai Y J. Shear deformation behavior of the cementedinterface between concrete and argillaceous siltstone[C]. Advances inAnalysis, Modeling&Design (GSP199)2010ASCE,2010:1265-1274.
    [94] Flavia M S, Ibrahim A E M, Lidia C D. Shear strength of precast prestressedcomposite beams with discontinuous connections made of cast-in-place shearkeys[J]. Materials and Structures,2006,39:353-364.
    [95] Pashan A, Hosain M U. New design equations for channel shear connectors incomposite beams[J]. Can. J. Civ. Eng.,2009,36:1435-1443.
    [96] Ariel D E, Javier L. Estimation of bond strength envelopes for old-to-newconcrete interfaces based on a cylinder splitting test[J]. Construction andBuilding Materials,2011,25:1222-1235.
    [97] Keller T, Gurtler H. In-plane compression and shear performance of frpbridge decks acting as top chord of bridge girders[J]. Composite Structures,2006,72:151-162.
    [98] Huang Z, Liu X L. Modified skew bending model for segmental bridge withunbonded tendons[J]. Journal of Bridge Engineering,2006,1:59-63.
    [99] Ahmed E A, Ehab F E S, Benmokrane B. Shear performance of rc bridgegirders reinforced with carbon frp stirrups[J]. Journal of Bridge Engineering,2010,1:44-54.
    [100]Ahmed K E, Khaled S. Evaluation of shear design equations of concretebeams with frp reinforcement[J]. Journal of Composites for Construction,2011,1:9-20.
    [101]Mofidi A, Chaallal O. Shear strengthening of rc beams with eb frp:influencing factors and conceptual debonding model[J]. Journal of Compo-sites for Construction,2011,1:62-74.
    [102]手册编委会.建筑结构试验检测技术与鉴定加固修复实用手册[M].北京:世图音像电子出版社,2002.10:1320-1321.
    [103]郭进军,张雷顺.高温影响下新老混凝土粘结的剪切性能试验[J].建筑结构学报,2004(3):107-113.
    [104]张雷顺,闫国新,张晓磊,王二花.沟槽式新老混凝土粘结面抗剪强度试验研究[J].郑州大学学报(工学版),2006,27:24-28.
    [105]李庆勇,远方,童中明.混凝土剪切破坏数值模拟[J].低温建筑技术,2011(5):51-53.
    [106]肖成志,田稳苓,刘波,赵晓艳.设置界面构造锚筋的新老混凝土粘结性能试验研究[J].建筑结构学报,2011,32:75-81.
    [107]王少波,郭进军,张雷顺,李小枝.界面剂对新老混凝土粘结的剪切性能的影响[J].工业建筑,2001,31(11):35-38.
    [108]蒋学行,袁群,李翠玲,胡凤启.新旧混凝土黏结方法试验研究[J].人民黄河,2011,33:112-113.
    [109]袁建伟,龙莉萍.新旧混凝土粘结性能的改善方法[J].山西建筑,2008,34:161-162.
    [110]梁亚水.如何加强新旧混凝土结合面的粘结[J].四川建材,2006(3):140-141.
    [111]张雷顺,闫国新,张晓磊.新老混凝土切槽法结合面抗剪性能试验研究分[J].工业建筑,2007,37:101-115.
    [112]林拥军,钱永久,王振领.新旧混凝土结合面粘结强度计算方法研究[J].工业建筑,2006(增刊),36:844-846.
    [113]石体伟.关于混凝土结合面的受力分析[J].建筑与工程,2010(5):310.
    [114]李邦映,汪莲.新老混凝土粘结理论及其应用[J].工程与建设,2010,24:114-116.
    [115]ACI Committee318. Building Code Requirements for Structural Concreteand Commentary,2005:171-175.
    [116]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:479-492.
    [117]张树仁,郑绍佳,黄侨,鲍卫刚.钢筋混凝土及预应力混凝土桥梁结构设计原理[M].北京:人民交通出版社,2004:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700