用户名: 密码: 验证码:
低钾下不同耐性玉米钾素积累及其延缓衰老的生理特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以典型的耐低钾玉米自交系90-21-3、099和低钾敏感自交系D937、835为试验材料,于2009-2011年在辽宁省沈阳市满都户乡天然低钾土壤(速效钾含量为50.7ppm)进行大田试验,以施钾肥为对照,通过比较低钾胁迫下不同耐性玉米在苗期、孕穗期和灌浆期根系形态、叶片持绿性、钾素积累特性、光合参数、叶绿素荧光特性、叶片衰老上的差异,试图明确耐低钾玉米钾素吸收和积累特性及叶片延缓衰老的生理机制,为玉米钾高效利用奠定的理论基础。主要结果如下:
     1低钾胁迫下,与低钾敏感玉米自交系相比,耐低钾玉米的总根长有所增加,根体积、根表面积和根平均直径下降幅度较小,比根长(根长/根干重)增加幅度较大,细根有所增加;同时,根系伤流速率、活跃吸收面积和根系还原力下降幅度小,仍保持在较高水平,根系活力相对较强,有利于保持根系对地上部的钾素供应。
     2低钾胁迫下,与低钾敏感自交系相比,耐低钾玉米各器官钾积累量下降幅度小,穗部叶片和叶鞘表现最为突出。说明在钾素缺乏时,耐低钾玉米穗部叶片和叶鞘的含钾量能够稳定保持,从而保证籽粒的发育;耐低钾玉米的钾利用效率和相对钾效率提高的幅度大,能吸收相对较多的钾素,并将之有效利用,以维持植株正常生长和代谢。
     3低钾胁迫下,耐低钾玉米自交系的光合速率下降幅度小,未发生明显的光抑制,ATP酶和光合关键酶活性下降幅度小。研究发现,持绿性与净光合速率、最大光化学效率、NADK和PEPC存在极显著的正相关关系,表明较高的NADK和PEPC活性能有效延缓叶片衰老;而气孔限制值则与持绿性存在极显著负相关关系,气孔限制值的增大会加快叶片衰老进程。与低钾敏感自交系相比,耐低钾玉米叶片延缓衰老的生理机制为叶片持绿性较好,功能期较长;通过相对较高Ca~(2+)-ATPase的活性,清除低钾胁迫产生的多余的Ca~(2+),Mg~(2+)-ATPase的活性也相对较高,确保了有足够的Mg~(2+)存在,使NADK活性稳定保持,为光反应提供电子受体NADP,同时PEPC的活性较高,暗反应又能固定相对较多的CO_2,从而保证了CO_2的供应,光反应和暗反应的协同使耐低钾玉米具有相对较高的光合速率,光系统Ⅱ所受破坏程度较轻,能维持相对较高的光化学效率。
     4低钾胁迫下,与低钾敏感自交系相比,耐低钾玉米自交系抗氧化酶活性下降幅度较小,能有效减轻活性氧的毒害。主要表现在MDA含量增加幅度小,SOD、POD和CAT的酶活性降低幅度小,叶绿体受损程度较轻。叶片衰老指标与抗氧化酶活性的相关分析结果表明,MDA与叶片持绿性呈极显著负相关关系,说明MDA含量越高,叶片衰老越快;SOD、POD和CAT与持绿性呈极显著正相关,这三种酶活性越高,对叶片延缓衰老越有利,因此耐低钾玉米生育后期衰老缓慢,膜脂过氧化程度较轻。
     5低钾胁迫下,与低钾敏感自交系相比,耐低钾玉米产量下降幅度小。具体表现为秃尖长增加幅度小,穗粒数和穗长下降幅度小。单株产量与各性状的相关分析表明,单株产量与灌浆期的总根长、根体积、钾含量呈显著正相关,表明灌浆期发达的根系对产量的贡献率较大。
     耐低钾玉米自交系与低钾敏感自交系相比,根系相对发达,能吸收相对较多的钾素,叶片持绿性较好,光合功能相对较强,光合产物积累下降幅度小,衰老相对缓慢,为产量的保持奠定了物质基础。
Based on the previous studies, maize inbred lines tolerant to K deficiency (90-21-3,099)and sensitive to K deficiency (D937,835) were grown in potassium deficiency fieldconditions. The current experiment was conducted from2009to2011in Manduhu village,Liaozhong County, Shenyang City. The objective of this experiment was to measure theimpact of low potassium stress on root morphology and activity, leaves stay green,photosynthetic and chlorphyll fluorscent parameters and leaf senescense from seedling stageto grain filling stage. This paper will propose to verify the features of maize inbred linestolerant to low potassium stress including root function in K absorption and utilization,physiological mechanism of delaying leaf senescence. The main findings were as follows.
     1Compare with maize inbred lines sensitive to potassium deficiency, the tolerant maizedemonstrated some obvious advantages in root morphology and activity under low potassiumstress, which was beneficial to potassium uptake. The effect of low potassium stress on totalroot length, root volume, root surface area and average diameter in maize tolerant topotassium deficiency were more slightly. Specific root length increased more soundly, thisindicated the fine root increased more, which was benefit to absorb much more potassium.Moreover, root exude rate, active absorption area and root activity were relatively higher,which could ensure the supply of nutrient for shoot development.
     2The decline of potassium accumulation in various organs in maize inbred lines tolerant tolow potassium stress were smaller than sensitive ones, especially embodied in panicle leaves.K content of root, leaf, ear increased slightly in tolerant maize, but the K content of eachorgans in sensitive maize were decreased much more; K content of each leaf and leaf sheathsin tolerant maize declined much smaller than that in sensitive ones, particularly where itfound in three ear-leaves and sheaths, which could ensure the growth of grain. And that thedry matter accumulation was much more. K use efficiency was higher.
     3Compared with D937,90-21-3showed a lower stomatal restriction and a higher electronictransition capacity after accelerated ageing due to K deficiency; FPSⅡ、Fv、Fm in90-21-3were higher than that in D937, while F0was lower than that in D937; In addition, under lowpotassium stress, activities of PEPC and NADK in90-21-3were less decreased and PSⅡ was less damaged. Therefore, compared with D937, the leaf senescence of90-21-3wasrelatively slower, which could prolong the functional period of leaves; The activity of NADKcould provide NADP to electronic receptors for photoreaction, at the same time the increasedactivities of PEPC and led to more effective fixation of CO_2, and the synergistic effect oflight reactions and dark reactions contributed to the higher photosynthetic rate and yield of90-21-3. Moreover, correlation analysis indicated that extremly significant positivecorrelation was between the leaf stay green and net photosynthetic rate, the biggestphotochemical efficiency, NADK and PEPC activities. That indicated higher NADK andPEPC activities could delay leaf senescence; On the contrary, the correlation of Ls and leafstay green was extremely significant negative, the increase in Ls could accelerate the leafsenescense process.
     4Results of antioxidant enzymes showed that, during the period of grain filling, theactivities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in ear leafof90-21-3were obviously higher than those of D937under low potassium stress. And thecontent of malondialdehyde (MDA) was lower in90-21-3than that in D937under lowpotassium stress, which indicated that the antioxidant enzymes could eliminate reactiveoxygen species, inhibit the membrane lipid peroxidation and decrease the content of MDAmore efficiently in90-21-3. Correlation analysis results showed that the MDA and leaf greenwere extremely significant negative correlation That means the more MDA content, the fasterthe leaf senescence; SOD, POD and CAT and leaf stay green were extremely significantpositive correlation, so the three enzymes could delay leaf senescense effectively.
     5Under low potassium stress, the root system of90-21-3and099was relatively strongenough to absorb K, moreover the K contents in three ear leaves and sheaths were maintained.The leaf stay-green could keep longer photosynthesis prolonged. Thus dry weight and yieldwere relatively higher than that of D937and835. The correlation analysis between yield androot system indicated that total root length, root volume and potassium content were benefitfor yield per plant.
引文
[1]. Adams F.1971. Soil solution. In: Carson EW, ed. The plant root and its environment. Charlottesville,VA: University Press of Virginia,441–481.
    [2]. Barber SA.1962. A diffusion and mass-flow concept of soil nutrient availability. Soil Science93,39–49.
    [3]. Barber SA.1985. Potassium availability at the soil–root interface and factors influencing potassiumuptake. In: Munson RD, ed. Potassium in agriculture. Madison, Wisconsin, USA: American Societyof Agronomy,309–324.
    [4]. Batten G D, Khan M A, Cullis B R.1984. Yield responses by modern wheat genotypes to phosphatesfertilizer and their implications for breeding. Euphytica,33:81–89
    [5]. Berry J, Bjorkman O.1980. Photosynthetic response and adaptation to temperature in higher plants.Ann. Rev. Plant Physiol.,31:491-543
    [6]. Borrell A K, Hammer G L.2000. Nitrogen dynamics and the physiological basis of stay-green insorghum. Crop Sci.,40:1295-1307
    [7]. Borrell A, Hammer G, van Oosterom E.2001. Stay-green: a consequence of the balance betweensupply and demand for nitrogen during grain filling. Annals of Applied Biology.138:91-95.
    [8]. Borrell AK, Hammer GL, Douglas ACL.2000a. Does maintaining green leaf area in sorghumimprove yield under drought? I. Leaf growth and senescence. Crop Science.40:1026-1037.
    [9]. Borrell AK, Hammer GL, Henzell RG.2000b. Does maintaining green leaf area in sorghum improveyield under drought? II. Dry matter production and yield. Crop Science.40:1037-1048.
    [10].Cao M-J(曹敏建), Wang S-Q(王淑琴), Matsumoto Hideaki(松本英明).1999.Difference oftolerance to potassium deficiency for two corn inbreds. Acta Agron Sin (作物学报).25(02):254-259
    [11].Cao MJ, Yu HQ, Yan HQ.2007. Difference in tolerance to potassium deficiency between two maizeinbred lines. Plant Production Science.10(1):42-46.
    [12].Cassman K G, Kerby T A, Roberts B A, Bryant D C, Brouder S M.1989. Differential response of twocotton cultivars to fertilizer and soil potassium. Agron J.,81:870–876
    [13].Chen J-X(陈际型).1997. Effect of K nutrition on rice root growth and nutrient uptake. Acta PedologSin (土壤学报),34(2):182–188(in Chinese with English abstract)
    [14].Conley DJ, Paerl HW, Howarth RW.2009. Controlling eutrophication: nitrogen and phosphorus.Science.323:1014-1015.
    [15].Dean-Paul Laclau, Julio C.R. Almeida, José Leonardo M. et al.2009. Influence of nitrogen andpotassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptusplantations. Tree Physiol, Jan.,29:111-124.
    [16].Dessougi H.E., Claassen N. et al.2002.Potassium efficiency mechanisms of wheat, barley, and sugarbeet grown on a K fixing soil under controlled conditions. Journal of Plant Nutrition and SoilScience,165(6):732-737.
    [17].Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云).2007. Effect of over expression of maize ppc gene on photosynthesis in transgenic rice plants.Acta Agron Sin(作物学报).33(5):717–722(in Chinese with English abstract)
    [18].Dong H-Z(董合忠), Li W-J(李维江), Tang W(唐薇), Zhang D-M(张冬梅).2005. Researchprogress in physiological premature senescence in cotton. Cotton Sc(i棉花学报),17(1):56–60(inChinese with English abstract)
    [19].Du san L. Chlorophyll a fluorescence induct ion. Biochim Biophy Acta,1999,1412:1-28.
    [20].Duan J(段俊), Liang C-Y(梁承邺), Huang Y-W(黄毓文). Studies on leaf senescence of hybridrice at flowering and grain formation stage. Acta Phytophysiol Sin (植物生理学报),1997,23(2):139144(in Chinese with English abstract)
    [21].Duan Y-X(段咏新), Li S-Q(李松泉), Fu J-R(傅家瑞). Effects of calciumon delaying senescenceof leaves in hybrid rice. Hybrid Rice (杂交水稻),1997,12(6):2325(in Chinese with Englishabstract)
    [22].Fageria NK.2009. The use of nutrients in crop plants. Boca Raton, FL: CRC Press.
    [23].Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol,1982,33:317–345
    [24].Feng B-L(冯佰利), Gao X-L(高小丽), Wang C-F(王长发),Zhang S-W(张嵩午), Li S-X(李生秀). Leaf senescence and active oxygen metabolism of differentype wheats under drought.Chin J Eco-Agric (中国生态农业学报),2005,13(4):7476(in Chinese with English abstract)
    [25].FS Murungu, C Chiduza and P Muchaonyerwa.2011. Productivity of maize after strip intercroppingwith leguminous crops under warm-temperate climate. African Journal of Agricultural Research.6(24):5405-5413.
    [26].Fu G-Z(付国占), Li C-H(李潮海), Wang J-Z(王俊忠), Wang Z-L(王振林), Cao H-M(曹鸿鸣), Jiao N-Y(焦念元), Wang X-D(王小东).2005. Effects of stubble mulching and tillagemanagement on leaf senescence metabolism and grain yield in summer maize. Acta BotBoreal-Occident Sin (西北植物学报),25(1):155160(in Chinese with English abstract)
    [27].Gao X-L(高小丽), Gao J-F(高金锋), Feng B-L(冯佰利)et al.2007. Leaf senescence of differentmung bean varieties during their late growth. Acta Bot Boreal-Occident Sin (西北植物学报).27(5):947853(in Chinese with English abstract)
    [28].Gerloff GC, WH Gabelman. Genetic basis of inorganic plant nutrition. Encyclopdia of PlnatPhysiology New Series Volune15B, Inarganic Plant Nutrition.Springer-Verlag Berlin-heideberg.Printed in Germany.1983,453-480
    [29].Glass A D M.Petley J E.1980.Varietal differences in potassium uptake by barley. Plant Physical,65:160-164.
    [30].Glass ADM.1989. Plant Nutrition, An introduction to current concepts. Jone and Bartlett Publishers.Inc.84-124.
    [31].Glyn Bengough, M McKenzie, PD Hallett, TA Valentine.2011. Root elongation, water stress, andmechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot.62:59-68.
    [32].Hao Y-S(郝艳淑), Jiang C-C(姜存仓), Wang X-L(王晓丽)et al.2011. Differences of PotassiumEfficiency Characteristics and Root Morphology between Two Cotton Genotypes. Acta Agron Sin(作物学报).37(11):2094-2098(in Chinese with English abstract)
    [33].Haussmann, BIG., Mahalakshmi, V, Reddy, BVS.2002. QTL mapping of stay-green in two sorghumrecombinant inbred populations. Theor Appl Genet.106:133-142.
    [34].Heckman JR and EJ Kamprath.1992. Potassium accumulation and corn yield related to potassiumfertilizer rate and placement. Soil Sci. Soc. Am. J.56:141–148.
    [35].Hopkins WG and Huner.2004. N.P.A. Introduction to Plant Physiology4th edition. John Wiley&Sons Inc.
    [36].Howard Thomas, Catherine J.2002. Howarth. Five ways to stay green. Journal and ExperimentalBotany.51(1):329-337.
    [37].Huber S C. Biochemical basis for effects of K-deficiency on assimilate export rate and accumulationof soluble sugars in soybean leaves. Plant Physiol.,1984,76:424-430.
    [38].Humble G D, Raschke K.1971. Stomatal opening quantitatively related to potassium transport. PlantPhysiol.,48:447-453.
    [39].Hung K T, Kao C H.2004. Hydrogen peroxide is necessary for abscisicacid-induced senescence ofrice leaves. J Plant Physiol,161:13471357
    [40].Hylander LD, Ae N, Hatta T, Sugiyama M.1999. Exploitation of K near roots of cotton, maize,upland rice, and soybean grown in an Ultisol. Plant and Soil208,33–41.
    [41].Jiang DA and Lu Q.1992. Regulation of potassium nutrition to photosynthetic function andlight-energy absorption of rice leaf. Journal of Zhejiang Agricultural University.(4):25-29
    [42].JT Christopher, AM Manschadi GL Hammer, AK Borrell.2008. Developmental and physiologicaltraits associated with high yield and stay-green phenotype in wheat. Australian Journal of AgriculturalResearch,59(4):354–364
    [43].Jungk A, Claassen N.1997. Ion diffusion in the soil–root system. Advances in Agronomy61,53–110.
    [44].Jungk A. Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci,2001,164:121–129
    [45].Kaiser W. The effect of hydrogen peroxide on CO2fixation of isolated intact chloroplasts.Biochemica et Biophysica Acta,1976,440:476482
    [46].Karley AJ, White PJ (2009). Moving cationic minerals to edible tissues: potassium, magnesium,calcium. Current Opinion in Plant Biology.12:291-298.
    [47].Karley AJ, White PJ. Moving cationic minerals to edible tissues: potassium, magnesium, calcium.Current Opinion in Plant Biology2009;12:291-298.
    [48].Kesler SE.2007. Mineral supply and demand into the21st century. In: Briskey JA, Schulz KJ, editors.U.S. Geological Survey circular1294: proceedings for a workshop on deposit modeling, mineralresource assessment, and their role in sustainable development. Reston, VA: US Geological Survey. p.55-62.
    [49].Kuchenbuch R, Claassen N, Jungk A.1986. Potassium availability in relation to soil-moisture.1.Effect of soil-moisture on potassium diffusion, root-growth and potassium uptake of onion plants.Plant and Soil95,221–231.
    [50].Labuchili A., R L Bielesk i..Encyclopedia of Plant Phy siology, New Series: Inorganic PlantNutrition, Vol.15B.Berlin: Springer Verlag.453-480
    [51].Leigh RA, Wyn Jones RG.1984. A hypothesis relating critical potassium concentrations for growthto the distribution and function of this ion in the plant cell. New Phytologist97,1–13.
    [52].Leon V. Kochian, Jiao Xin-zhi and William J. Lucas.1985. Potassium Transport in Corn Roots. PlantPhysiol.79,771-776
    [53].Libault M, Brechenmarcher L, Cheng J L, Xu D, Stacey G.2010. Root hair systems biology. TrendsPlant Sci,15:641–649
    [54].Li S(李杉), Xing G-M(邢更妹), Cui K-R(崔凯荣) et al.2003. Ultracytochemical localization ofcalcium and ATPase activity on the2,4-D induced somatic embryogenesis of Lycium barbarum L.Acta Biol Exp Sin (实验生物学报),36(6):414420(in Chinese with English abstract)
    [55].Li Y-S(李奕松), Huang P-S(黄丕生), Huang Z-Q(黄仲青), DingY-F(丁艳锋).2002.Characteristics of photosynthesis and senescence after heading stage in two-line indica hybridrice. Chin J Rice Sci.(中国水稻科学),16(2):141145(in Chinese with English abstract)
    [56].Li Z-G(李忠光), Li J-H(李江鸿), Du C-K(杜朝昆).2002.Simultaneous measurement of fiveantioxidant enzyme activities using a single extraction system. J Yunnan Normal Univ (Nat SciEdn)(云南师范大学学报·自然科学版),22(6):44–48(in Chinese with English abstract)
    [57].Liao H, Yan XL (2000). Adaptive changes and genotypic variation for root architecture of commonbean in response to phosphorus deficiency, Acta Botanica Sinica.42(2):158-163.
    [58].Liao H., Rubio, G., Yan X (2001). Effect of phosphorus availability on basal root shallowness incommon bean, Plant Soil.232:69-79.
    [59].Liebersbach H, Steingrobe B, Claassen N.2004. Roots regulate ion transport in the rhizosphere tocounteract reduced mobility in dry soil. Plant and Soil260,79–88.
    [60].Lin Z F, Li S S, Lin G Z, G J Y.1988.The accumulation of hydrogen peroxide in senescing leavesand chloroplasts in relation to lipid peroxidation. Acta Phytophysiolgica Sinica,14(1):16-22
    [61].Lin Z-F(林植芳), Li S-S(李双顺), Lin G-Z(林桂珠), Sun G-C(孙谷畴), Guo J-Y(郭俊彦).1984.Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves.Acta Bot Sin (植物学报),26(6):605–615(in Chinese with English abstract)
    [62].Liu F H, Liang X N, Zhang S W (2000). Accumulation and utilization efficiency of potassium inramie varieties. Journal of Plant Nutrition,23:6,785-792
    [63].Liu J-C (刘建超), Li J-S(李建生), Mi G-H(米国华), Chen F-J(陈范骏), Zhang F-S(张福锁).2009, QTL mapping of seedling growth traits and grain yield under two nitrogen conditions inmaize. Scientia Agricultura Sinica(中国农业科学),42(10):3413-3420(in Chinese with Englishabstract)
    [64].Liu L-T(刘连涛), Li C-D(李存东), Sun H-C(孙红春), Lu W-J(路文静), Feng L-X(冯丽肖).2007.Physiological effects of nitrogen nutrition on the senescence of cotton leaves at differentpositions.Plant Nutr Fert Sci (植物营养与肥料学报),13(5):910–914(in Chinese with Englishabstract)
    [65].Longstreth D J, Nobel P S.1980.Nutrient influences on leaf photosynthesis. Plant Physiol.,65:541-543.
    [66].Losak, T., Hlusek, J., Filip ík, R., Pospí ilová, L., Maňásek, J., Proke, K., Buňka, F., Krá mar, S.,Martensson, A., Orosz, F.2010. Effect of nitrogen fertilization on metabolisms of essential andnon-essential amino acids in field-grown grain maize (Zea mays L.). Plant, Soil and Environment.56(12)574-579.
    [67].Losak, T., Hlu ek, J., Martinec, J., Jandák, J., Szostková, M., Filip ík, R., Maňásek, J., Proke, K.,Peterka, J., Varga, L., Ducsay, L.,Orosz, F., Martensson, A.2011. Nitrogen fertilization does notaffect micronutrient uptake in grain maize (Zea mays L.). Acta Agriculturae Scandinavica, SectionB-Plant Soil Science.61(6):543-550.
    [68]. Lynch J P. Root architecture and plant productivity.1995. Plant Physiol,109:7–13
    [69].M. K. Ashley, M. Grant, and A. Grabov.2006.Plant responses to potassium deficiencies: a role forpotassium transport proteins. J. Exp. Bot. Jan;57:425-436.
    [70].Mahalakshmi V, Bidinger FR (1985) Water stress and time of floral initiation in pearl millet.Journal of Agricultural Science105,437–445.
    [71].Marschner H (1995). Mineral nutrition of higher plants.2nd edn. London: Academic Press.Marschner H, Kirkby E A, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning ofphotoassimilates and cycling of mineral nutrients. J Exp Bot,1996,47:1225–1263Mathuis FJM andSanders D (1996). Mechanism of potassium absorption by higher plant roots.
    [72].Physical Plant.96:158-168.
    [73].Miller AJ, Shen Q, Xu G (2009). Freeways in the plant: transporters for N, P and S and theirregulation. Current Opinion in Plant Biology.12:284-290.
    [74].Miller RO (1998). Nitric perchloric acid wet digestion in an open vessel. pp.57-62. In: YP Kalra
    [Ed.] Handbook of Reference Methods for plant analysis. Soil and Plant Analysis Council, Inc. CRCPress. Washington D.C., USA.
    [75].Miwa K, Kamiya T, Fujiwara T.2009.Homeostasis of the structurally important micronutrients, Band Si. Current Opinion in Plant Biology;12:307-311.
    [76].Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase inspinach chloroplasts. Plant Cell Physiol.,22:867–880
    [77].Oliveira RH, Rosolem CA, Trigueiro RM.2004. Importance of mass flow and diffusion on thepotassium supply to cotton plants as affected by soil water and potassium. Revista Brasileira DeCiencia Do Solo28,439–445.
    [78].Orosz F, Jakab S, Losak T, Slezak K (2009). Effect of fertilizer application to sweet corn (Zeamays.) grown on sandy soil. Journal of Environmental Biology.30(6):933-938.
    [79].Pantalone VR, Rebetzke GJ and Burton JW (1996). Phenotypic evaluation of root traits in soybeanand applicability to plant breeding. Crop Science.36:456-459.
    [80].Peasles D E, Moss D N.1996.Photosynthesis in K-and Mg deficient maize leaves. Soil Sci,30:220-223.
    [81].Peoples T R, Koch D W.1979. Role of potassium in carbon dioxideas similation in Medicago sativaL. Plant Physiol.63:878-881.
    [82].Petterson S and Jensen P(1983). Variation among species and various in uptake and utilization ofpotassium. Plant and Soil.72:231-237.
    [83].Pretty KM, Stangel PJ.1985. Current and future use of world potassium. In: Munson RD, ed.Potassium in agriculture. Madison, Wisconsin, USA: American Society of Agronomy,99-128.
    [84].Puig S, Pe arrubia L.2009.Placing metal micronutrients in context: transport and distribution inplants. Current Opinion in Plant Biology,12:299-306.
    [85].Qi Z, Spalding EP.2004. Protection of plasma membrane K+transport by the salt overly sensitive1Na+-H+antiporter during salinity stress. Plant Physiology,136:2548-2555.
    [86].Ren H-M(任汇淼), Wei J-M(魏家绵), Shen Y-G(沈允钢).1994.Progress in the study on structure,function and regulation of chloroplast ATP synthase. Plant Physiol Commun (植物生理学通讯),30(3):161169(in Chinese with English abstract)
    [87].Rengel A, Damon P M.2008.Crops and genotypes differ in efficiency of potassium uptake and use.Physiol Plant,133:624–636.
    [88].Rosenow D T, Quisenberry J E, Wendt C W.1983.Drought tolerant sorghum and cotton germplasm.AgricWater Manage,7:207-222.
    [89].Rosolem CA, Mateus GP, Godoy LJG, Feltran JC, Brancaliao SR.2003. Root morphology andpotassium supply to pearl millet roots as affected by soil water and potassium contents. RevistaBrasileira De Ciencia Do Solo,27:875-884.
    [90].Rus A, Lee Bh, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM.2004.AtHKT1facilitates Na+homeostasis and K+nutrition in planta. Plant Physiology136,2500–2511.
    [91].Sánchez-Calderón L, López-Bucio J, Chacón-López A et al.2005.Phosphate starvation induces adeterminate developmental programin the roots of Arabidopsis thaliana. Plant Cell Physiol,46:174–184
    [92].Seiffert S, Kaselowsky J, Jungk A, Claassen N.1995. Observed and calculated potassium uptake bymaize as affected by soil water content and bulk density. Agronomy Journal87,1070–1077.
    [93].Shin R, Schachtman D P.2004. Hydrogen peroxide mediates plant root cell response to nutrientdeprivation. Proc Natl Acad Sci USA,101:8827–8832
    [94].Shin R, Schachtman D P.2004. Hydrogen peroxide mediates plant root cell response to nutrientdeprivation. Proc Natl Acad Sci USA,101:8827–8832
    [95].Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD.1999. Potassium uptakesupporting plant growth in the absence ofAKT1channel activity: inhibition by ammoniumandstimulation by sodium. Journal of General Physiology113,909-918.
    [96].Sparks DL, Huang PM.1985. Physical chemistry of soil potassium. In: Munson RD, ed. Potassium inagriculture. Madison, Wisconsin, USA: American Society of Agronomy,201–276.
    [97].Syers JK.1998. Soil and plant potassium in agriculture. York: The Fertiliser Society.
    [98].Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL.2000. Identification ofgenomic regions associated with stay‐green in sorghum by testing RILs in multiple environments.Theoretical and Applied Genetics.6:1225–1232.
    [99].Thomas H and Smart CM.1993. Crops that stay green. Annals of Applied Biology.123(1):193-219.
    [100]. Tinker, P.B. and A, Labuchili.1984. Advances in Plant Nutrition. New York: Praeger,57-102.
    [101]. Tisdale SL, Nelson WL, Beaton JD, Havlin JL.1993. Soil fertility and fertilizer. New York:Macmillan.
    [102]. Xu G-H(徐国华), Bao S-D(鲍士旦), Yang J-P(杨建平), Wu M(吴明).1995. The relationshipbetween potassium absorption ability and root parameters of different crops. J Nanjing Agric Univ(南京农业大学学报),18(1):49-52(in Chinese with English abstract)
    [103]. Van Kooten O, S nel F H.1990. The use of chlorophyll fluorescence nomenclature in plant stressphysiology. Photosynth Res.,25:147-150.
    [104]. Vetterlein D, Jahn R.2004. Gradients in soil solution composition between bulk soil andrhizosphere: in situ measurement with changing soil water content. Plant and Soil258,307–317.
    [105]. Walker DJ, Leigh RA, Miller AJ.1996. Potassium homeostasis in vacuolated plant cells.Proceedings of the National Academy of Sciences, USA93,10510-10514.
    [106]. Walulu R S, Rosenow D T, Wester D B, Nguyen H T.1994. Inheritance of the stay green trait insorghum. Crop Sci.34:970-972
    [107]. Wang J, Zhang H and Allen RD.1999. Overexpression of an Arabidopsis putative peroxisomalascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol.40:725-732.
    [108]. Wang K-J(王空军), Hu C-H(胡昌浩), Dong S-T(董树亭), Liu K-C(刘开昌), Sun Q-Q(孙庆泉).1999. Changes of the protective enzyme activities and lipid per oxidation after anthesisamong maize varieties planted in different years. Acta Agron Sin (作物学报),25(6):700-706(inChinese with English abstract)
    [109]. Wang R-G(王爱国), Luo G-H(罗广华).1990. Quantitative relation between the reaction ofhydroxylamine and superoxide anion radicals in plants. Plant Physiology Commun.(植物生理学通讯).(6):55–57(in Chinese with English abstract)
    [110]. Wang W(王伟), Li X-T(李兴涛), Qi Z-Y(綦左莹)et al.2008. Effect of Low Potassium Stresson Photosynthetic and Chlorophyll Fluorescence Parameters of Two Soybean Varieties with DifferentK efficiency. Soybean Science,27(3):451-455(in Chinese with English abstract)
    [111]. Wang X-J(王旭军), Xu Q-G(徐庆国), Yang Z-J(杨知建).2005. Advances of research onrice leaf senescence physiology. Chin Agric Sci Bull (中国农学通报),21(3):187190
    [112]. White PJ and Hammond JP.2009. The sources of phosphorus in the waters of Great Britain.Journal of Environmental Quality.38:13-26.
    [113]. White PJ, Broadley MR.2009. Biofortification of crops with seven mineral elements oftenlacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. NewPhytologist,182:49-84
    [114]. Wild A, Skarlu V, Clement C R, Snaydon R W.1974.Comparison of potassium uptake b fourplant species grown in sand and in flowing solution culture. J Appl Ecol,11:801-812.
    [115]. Woodend J J and Glass A D M.1993.Genotype-environment interaction and correlation betweenvegetative and grain production measures of potassium use-efficiency in wheat (T. aestivum L.)grown under potassium stress.Plant and Soil,151:39-44.
    [116]. Wu J(武际), Ye S-Y(叶舒娅), Wang W-J(王文军), Zhu H-B(朱宏斌).2006. Effectof application of sulphate-potassium magnesium on maize yield. J Anhui Agric Sci (安徽农业科学).34(18):4706-4707(in Chinese with English abstract)
    [117]. Xu D Q.1997.Some p roblems in stomatal limitation analysis of photosynthesis. PlantPhysiology Communications,33(4):241-244.(in Chinese)
    [118]. Yanai J, Linehan DJ, Robinson D et al.1996. Effects of inorganic nitrogen application on thedynamics of the soil solution composition in the root zone of maize. Plant and Soil180,1–9.
    [119]. Yang S-S(杨淑慎), Gao J-F(高俊凤), Li X-J(李学俊)et al.2004. Leaf senescence andprotective enzyme system of spring wheat hybrid. Sci Agric Sin (中国农业科学).37(3):460-463(in Chinese with English abstract)
    [120]. Zhang X-Z(张宪政). Methods for Physiology Research in Crops(作物生理研究法). Beijing:Agriculture Press,1992. pp140142,197198(in Chinese)
    [121]. Zhao J, Fu JB, Liao H, He Y, et al.2004. Characterization of root architecture in an applied corecollection for phosphorus efficiency of soybean germplasm. Chin Sci Bull.49:1611-1620.
    [122]. Zhao S-W(赵尚文), Yu H-Q(于海秋), Yu Y(于泳) et al.2009. Effect of low potassiumstress on potassium assimilation and accumulation of maize varieties with different potassiumsensitivities, Journal of Shenyang Agricultural University(沈阳农业大学学报).40(3):264-268.(in Chinese with English abstract)
    [123]. Zhang J-H(张俊环), Zhang G-Q(张国强), Liu Y-P(刘悦萍)等.2006. Cytochemical localizationand changes in activity of plasma membrane Ca2+-ATPase in young grape (Vitisvinifera L. cv.Jingxiu) plants during cross adaptation to temperature stresses. Sci Agric Sin (中国农业科学),39(8):1617-1625(in Chinese with English abstract)
    [124]. Zhang J-H(张金红), Wu J-P(吴隽平), Wei J-H(魏继中)et al.1992. The effect of Pr3+, Nd3+onactivity of Ca2+, Mg2+-ATPase on plasma membrane of Vicia feba leaves. Chin J Biochem,8(2):195200(in Chinese with English abstract)
    [125]. Zhou B-Y(周宝元), Ding Z-S(丁在松), Zhao M(赵明).2011. Alleviation of drought stressinhibition on photosynthesis by over expression of pepc gene in rice. Acta Agron Sin (作物学报),37(1):112–118(in Chinese with English abstract)
    [126]. Zou C-Q(邹春琴), Li Z-S(李振声), Li J-Y(李继云).2002. Characteristics of potassiumnutrition of six wheat cultvars at different growth stages. Sci Agric Sin (中国农业科学),35(3):340–344
    [127].郭焕茹;于海秋;蒋春姬;夏乐;刘宇;曹敏建.2009.低钾下不同耐性玉米苗期根形态及钾效率的差异.作物杂志,2:62-65.
    [128].郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1-8.
    [129].姜存仓,王运华,鲁剑巍,等.2004.植物钾效率基因型差异机理的研究进展.华中农业大学学报,23(4):483-487.
    [130].蒋德安,陆庆,薛建明,等.1992.钾营养对稻叶光合功能及光能吸收的调节.浙江农业大学学报,18(4):25-29.
    [131].蒋德安,饶立华,彭佐权.1987.低钾对水稻产量形成的一些生理效应.浙江农业大学学报,13:441-444.
    [132].蒋德安,翁晓燕,陆庆,等.1996.钾营养对水稻光合速率(Pn),Hill反应及SOD活力日变化的影响.植物生理学报,22(1):87-93.
    [133].李宗泰,陈二影,张美玲.2012.施钾方式对棉花叶片抗氧化酶活性、产量及钾肥利用效率的影响.作物学报,38(03):487-494
    [134].林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    [135].彭海欢,翁晓燕,徐红霞等.2006.缺钾胁迫对水稻光合特性及光合防御机制的影响.中国水稻科学,20(6):621-625.
    [136].宋慧,冯佰利,高小丽等.2010.不同小豆品种(系)叶片衰老与活性氧代谢.作物学报,36(2):347-353
    [137].于振文;张炜;岳寿松等.1996.钾营养对冬小麦光合作用和衰老的影响.作物学报,22(03):305-312
    [138].孙富,杨丽涛,谢晓娜等.2012.低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响.作物学报.38(04):732-739
    [139].田晓莉,王刚卫,杨富强等.2008.棉花不同类型品种耐低钾能力的差异.作物学报.2008.34(10):1770-1780
    [140].王国莉,郭振飞.2005.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响.中国水稻科学,19(4):381-383.
    [141].王伟,曹敏建,綦左莹等.2007.不同大豆品种对钾素吸收和利用效率差异的比较研究[J].大豆科学,26(4):561-564.
    [142].王晓光,曹敏建,蒋文春等.2006.钾肥对不同基因型大豆叶片生理功能的影响.大豆科学,25(2):133-136.
    [143].王彦荣,华泽田,陈温福等.2003.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响.作物学报.29(06):892-898
    [144].魏海燕,张洪程,马群等.2010.不同氮肥吸收利用效率水稻基因型叶片衰老特性.作物学报, Vol.36(4):645-654
    [145].翁晓燕,蒋德安,陆庆.2000.水稻转绿型白化突变系W25转绿过程中Rub isco、Rubisco活化酶活性和光合速率的变化.植物生理学报,26(3):213-218.
    [146].武际,叶舒娅,王文军等.2006.施用硫酸钾镁肥对玉米的产量效应.安徽农业科学.34(18):4706-4707
    [147].谢少平,倪晋山,李共福.1989.植物生理学报,154):377-381
    [148].徐红霞,翁晓燕,毛伟华等.2005.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响.中国水稻科学,19(4):338-342.
    [149].严小龙,张福锁.植物营养遗传学.北京:中国农业出版社.1997:1-17
    [150].于振文,张炜,岳寿松等.1996.钾营养对冬小麦光合作用和衰老的影响.作物学报,22(03):305-312
    [151].张福锁.植物营养生态生理学和遗传学.1993.北京:中国科学技术出版社,63-67.
    [152].郑炳松,蒋德安,翁晓燕等.2001.钾营养对水稻剑叶光合作用关键酶活性的影响.浙江大学学报:农业与生命科学版.27(5):489-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700