用户名: 密码: 验证码:
华南沿海海雾及其边界层结构的观测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同区域海雾的形成机制和边界层结构特征有一定的差异,这与不同区域的地理和气候背景密切相关。本论文主要利用中国气象局广州热带海洋气象研究所茂名博贺海洋气象科学试验基地2007-2012年海雾季节的观测资料和其它的一些气象资料,一方面对华南沿海海雾过程及其边界层结构和海气界面交换特征进行了分析研究;另一方面在认识到海雾近地层存在逆温和等温这一关键特征的基础上,尝试了用近地层温差因子改进广东沿海海雾区域预报。本论文得到的主要结论如下:
     (1)华南沿海海雾主要发生在1-4月,峰值在3月份;海雾往往发生在两次冷空气入侵之间;海雾发生的天气型主要与出海变性高压、冷锋、西南低压等天气系统密切相关;在海雾发生区域的天气形势背景上具有一些共性的特征。当海雾发生时,华南沿海地区低空多为东南风输送的海上暖湿气流;当海雾消散时,低空多为东北风输送的北方干冷气流。
     (2)从饱和湿空气稳定度定义出发,发现在海雾的饱和湿空气中存在着位势稳定和位势不稳定两种性质完全不同的大气层结。在此基础上,定义了假相当位温梯度为零((?)θse/(?)z=0)的高度为海雾中热力湍流分界面的高度(观测值为180-380m)。指出了海雾中存在明显的分层湍流结构特征:在热力湍流分界面以上,以雾顶长波辐射冷却引起的热力湍流交换为主;而在分界面以下,则以风切变引起的动力湍流交换为主。明确了华南沿海海雾的边界层结构的演变过程可大致分为生成、发展和消散三个阶段;其中热力湍流分界面既是海雾发生发展中重要的湍流分界面,又是海雾消散抬升为层云后的主要维持因子。
     (3)华南沿海海雾经常伴随着低云出现,而且还有因海雾发展断裂后形成低云的现象。同时,在雾顶和云顶一般都有逆温(等温)层与之相对应。华南沿海海雾雾顶高度的发展与水平方向的水汽输送、雾顶长波辐射作用、垂直方向的湍流发展等因素密切相关。在有充足的水汽输送的背景下,雾顶长波辐射作用会使雾迅速向高层发展;而如果雾顶高度抬升过快,或在水汽输送减弱的背景下,雾顶长波辐射作用虽然仍使雾向高层发展,但在湍流、夹卷等作用下,往往会导致雾层发生断裂,反而导致雾顶高度降低。
     (4)分析了海雾的海气界面交换特征。分别从海气温差、海面辐射和湍流通量等三个方面进行了分析,得到了一些新的结果:在海雾发生期间,2011年的4个海雾过程中有3个的海气温差出现了近海面气温低于海温的现象。当海气温差为正,气温高于海温时,会出现向下长波辐射大于向上长波辐射的现象,而且当海气温差正值越大时这一现象越明显;当海气温差为负,气温低于海温时,此时会出现向下长波辐射小于向上长波辐射的现象。从通量数据上看,在海雾发生期间,动量通量同样一直维持在低值。感热通量基本以负值为主,量级一般在10W.m-2以内,表现为由大气向海洋输送热量,这与气温高于海温相吻合;当气温持续下降,出现气温低于海温时,感热通量以正值为主,此时表现为由海洋向大气输送热量。潜热通量的数据在轻雾时表现为低值:在海雾维持期间数据比较不规则,看不出其明显变化规律。
     (5)分析了海雾中近海面气温低于海温的原因。导致华南沿海海雾出现近海面气温低于海温的主要原因是近海面大气的混合机制:从东北方向来的冷湿空气与从上层通过机械湍流向下输送的暖湿空气发生混合,导致近海面气温低于海面温度。统计分析表明,华南沿海平流冷却雾中主要以近海面气温高于海温的个例居多,达到69%;而可能出现近海面气温低于海温的个例占28%。
     (6)近地层温差因子与海雾发生有着比较明确的对应关系:当台站出现海雾时,近地层温差一般处于某一时间段的高值区,近地层温差负值明显减小或转为正值。这反映出近地层气温与海面上2m温度相比较,是逐渐上升的,这是近地层暖湿空气平流逐渐加强的结果,因此存在海雾发生发展的可能;反之,当近地层温差的负值明显增大,说明该地区是受到冷空气平流影响,从而导致海雾趋于消散。GRAPES模式能够较好地引入近地层温差因子,引入该预报变量因子后,广东沿海2010、2011两个年度海雾区域预报的准确率以及Ts和Hss评分都有明显的提高,说明近地层温差因子确实是比较有效、关键的预报变量因子。
Some degree of difference exists in the formation mechanism and the structure of boundary layer of sea fog at different regions, because of the difference of the regional geography and climate. By using the data of the sea fog during winter and spring season in2007-2012obtained at the Science Experiment Base for Marine Meteorology (SEBMM) at Bohe, Maoming, Guangdong Province (the SEBMM is established by the Guangzhou Institute of Tropical and Marine and Meteorology (ITMM) of the China Meteorological Administration) and other meteorological data, This study is focused on two main points:one is the analysis of the boundary layer structure and air-sea interface exchange characteristics of the sea fog on the coast of southern China, the other is using a factor of temperature difference of surface layer to improve the regional prediction of sea fog on Guangdong coastland, after realized the key feature of the inversion and isothermal phenomenon at surface layer in the sea fog.
     The major contents and conclusions are present as follows:
     (1) The sea fog on the coast of southern China mainly occurred during January to April, the peak value is in Mar. sea fog usually occurred between two intrusions of cold air. Main relation to weather map types are the transformed cold high moved to the sea, the cold front and the southwest low. The background of the synoptic system of the region of the sea fog formation has some similar feature. When sea fog occurred, marine warm and wet air flow transported by southeast wind is prevailing at the low level on the coast of southern China. On the contrary, when the sea fog dissipated, cold and dry air flow transported by northeast wind is dominating at the low level.
     (2) According to the stability definition of saturated wet air, two properties of atmospheric stratification, potential stability and potential instability, have been revealed in the saturated wet air of sea fog. Consequently, the gradient of the potential pseudo-equivalent temperature was equal to zero ((?)θse/(?)z=0) and was defined as the thermal turbulence interface (The height of the thermal turbulence interface was observed between180m and380m). Two layers of turbulence were shown to exist in the sea fog. The thermal turbulence produced by the long-wave radiation was prevalent above the thermal turbulence interface, and the mechanical turbulence aroused by the wind shear was predominant below the interface. Formation, development, and dissipation are the three possible phases of the evolution of the boundary layer structure during sea fog events on the coast of southern China. The thermal turbulence interface was shown to play an important role in these phases. The interface is significant during the formation and the development of sea fog. Also, after sea fog has been elevated into the stratus layer, this interface is the main factor that maintains the layer.
     (3) On the coast of southern China, the emergence of sea fog was always accompanied by a low cloud layer. Furthermore, sometimes the formation of this low cloud layer was a result of the layered division of the sea fog into two parts. In addition, a close relationship exists between the tops of the fog and the clouds and the inversion layer:The inversion layer (or the isothermal layer) usually corresponds to the tops of the fog and the clouds. Three important factors have a close relationship with the development of the sea fog top on the coast of southern China:the horizontal advection of the water vapor, the long-wave radiation of the fog top, and the vertical turbulence mixing. As a result of long-wave radiation and the ample transportation of water vapor, fog developed in the upward direction. However, if the elevation of the fog top increased too quickly or if the transportation of water vapor decreased, the fog layer was divided by the turbulence and entrainment, resulting in a decrease in the height of the fog top.
     (4) Air-sea interface exchange characteristics have been analyzed. New results have been investigated from the air-sea temperature difference, the sea surface radiation and the turbulent flux. In2011, three of four process of sea fog appear the phenomenon of the surface air temperature (SAT) is lower than the sea surface temperature (SST). When the SAT is higher than the SST, the downward long-wave radiation (DLR) is higher than the upward long-wave radiation (ULR), the air-sea temperature difference is larger and the phenomenon is more manifest. Conversely, while the SAT is lower than the SST, the DLR is lower than the ULR, too. According to the flux data, momentum flux remains a low value in the sea fog. The sensible flux is mainly the negative value within an order of10W·m-2, which represents a heat transport from the atmosphere to the sea and coincided with the SAT higher than the SST. While the SAT is lower than the SST because of the continuously descent of the SAT, Sensible flux turn into the positive value, which indicates a heat transport from the sea to the atmosphere. The latent flux has a negative value in the mist, while no change rule has been found during the sea fog because of the irregular data.
     (5)The reason of the SAT is lower than the SST has been explained. The main reason is the mixing mechanism at the sea surface atmospheric layer:the mixing between the northeasterly cold-wet air and the warm-wet air come from the upper level transported by the mechanical turbulence. According to the statistic data of the sea fog at the SEBMM, the cases with the SAT higher than the SST is69%, while the possible cases with the SAT lower than the SST is28%.
     (6) There is an explicit congruent relationship between the factor of temperature difference of surface layer and the occurrence of sea fog:while sea fog exists, the temperature difference of surface layer has always been a high value during the nearby period. The value of the factor acts as a diminished of the negative value or turn to positive value, which means the SAT is slightly less than or higher than the2m-tempreture above sea surface. This indicates the warm-wet air advection is enhanced and suitable for sea fog to develop. On the contrary, the increasing negative value represents the affect of the cold air advection and result in the dissipation of the sea fog. GRAPES model proved to be good at simulate the factor. Consequently, the accuracy, threat score and Heidke skill score of the sea fog regional prediction are all promoted after using it, which prove the factor is effective and important.
引文
[1]陈子通,万齐林,沈学顺,等GRAPES区域模式水汽平流方案的比较与改进[J].热带气象学报,2010,26(1):1-6.
    [2]丁伟钰,万齐林,闫敬华,等.华南地区中尺度模式预报的初值影响分析[J].热带气象学报,2006,22(1):10-17.
    [3]傅刚,王菁茜,张美根,等.一次黄海海雾事件的观测与数值模拟研究--以2004年4月11日为例[J].中国海洋大学学报(自然科学版),2004,(05):720-726.
    [4]傅刚,张涛,周发琇.一次黄海海雾的三维数值模拟研究[J].青岛海洋大学学报(自然科学版),2002,(06):859-867.
    [5]广东省气象局《广东省天气预报技术手册》编写组.广东省天气预报技术手册[M].北京:气象出版社,2006.
    [6]郭秀英,縻若夫,谢炯光.华南沿海春季海雾与天气型关系的统计分析及预报[J].广东气象,1991,(1):25-28.
    [7]何晖,郭学良,刘建忠,等.2009.北京一次大雾天气边界层结构特征及生消机理观测与数值模拟研究[J].大气科学,33(6):1174-1186.
    [8]何云开,黄健,贺志刚,等.南海北部近岸春季海雾的年际变化[J].热带海洋学报,2008,(05):6-11.
    [9]胡基福,郭可彩,鄢利农.应用模式输出统计作海雾出现判别预报[J].青岛海洋大学学报,1996,(04):53-59.
    [10]胡瑞金,董克慧,周发琇.海雾生成过程中平流、湍流和辐射效应的数值试验[J].海洋科学进展,2006,(02):156-165.
    [11]胡瑞金,周发琇.海雾过程中海洋气象条件影响数值研究[J].青岛海洋大学学报,1997,27(3):282-290.
    [12]胡松青,陈亿署,陈厚映.粤东海域海雾特征分析及预报[J].广东气象,1989,(1):2-4.
    [13]黄彬,陈涛,陈炯,等.黄渤海海雾数值预报系统及检验方法研究[J].气象科技,2009,(03):271-275.
    [14]黄辉军,黄健,刘春霞,等.茂名地区海雾的微物理结构特征[J].海洋学报(中文版),2009,(02):17-23.
    [15]黄辉军,黄健,刘春霞,等.用GRAPES模式输出变量因子作广东沿海海雾预报[J].热带气象学报,2010a,(01):31-39.
    [16]黄辉军,黄健,毛伟康,等.茂名地区海雾含水量的演变特征及其与大气水平能见度的关系[J].海洋学报(中文版),2010b,(02):40-53.
    [17]黄健,王斌,周发绣,等.华南沿海暖海雾过程中的湍流热量交换特征[J].大气科学,2010,(04):715-725.
    [18]黄健.海雾的天气气候特征与边界层观测研究[D];中国海洋大学,2008.
    [19]简月宽.广东沿海的雾[J].海雾资料7期,1978.
    [20]李冉,高山红,王永明.直接同化卫星辐射数据的黄海海雾数值试验研究[J].中国海洋大学学报:自然科学版,2012,42(3):10-20.
    [21]李晓娜,黄健,申双和,等.一次高压型海雾中的液态含水量演变特征[J].热带气象学报,2010,(01):79-85.
    [22]李一,张国正,濮梅娟,等.2006年南京冬季浓雾雾水的化学组分.中国环境科学2008,28(5):395-400.
    [23]李永平,刘晓波,葛伟强,等.一种基于卫星遥感和数值预报产品的雾预报方法[J].应用气象学报,2012,23(3):340-347.
    [24]李子华.中国近40年来雾的研究[J].气象学报,2001,(05):616-624.
    [25]林钢,卢山,薛登智.华南沿岸雾的气候特征及影响系统[R].2007.
    [26]刘栋,高守亭.饱和湿大气Brunt-Vaisala频率及修正的相当位温[J].气象学报,2003,61(3):379-383.
    [27]刘端阳,濮梅娟,杨军,等.2006年12月南京连续4天浓雾的微物理结构及演变特征[J].气象学报,2009,67(1):147-157.
    [28]屈凤秋,刘寿东,易燕明,等.一次华南海雾过程的观测分析[J].热带气象学报,2008,(05):490-496.
    [29]任兆鹏,张苏平.黄海夏季海雾的边界层结构特征及其与春季海雾的对比[J].中国海洋大学学报(自然科学版),2011,(05):23-30.
    [30]沈忱,黄健,刘寿东.海雾的准周期振荡特征[J].热带气象学报,2010,(01):71-78.
    [31]宋润田,金永利.一次平流雾边界层风场和温度场特征及其逆温控制因子分析.热带气象学报,2001,17(4):443-451.
    [32]宋亚娟.北太平洋海雾发生频率的气候学特征[D];中国海洋大学,2009.
    [33]苏鸿明.台湾海峡海雾的气候分析[J].台湾海峡,1998,(01):25-28.
    [34]孙安健,黄朝迎,张福春.海雾概论[M].北京:气象出版社,1985.
    [35]王彬华.海雾[M].北京:海洋出版社,1983.
    [36]王彬华.中国近海海雾持续和消散问题的探讨[J].山东海洋学院学报,1980a,(02):20-30.
    [37]王彬华.中国近海海雾的几个特征[J].海洋湖沼通报,1980b,(03):9-20.
    [38]王冠岚.北大西洋海雾发生频率的气候学特征[D];中国海洋大学,2010.
    [39]王婷,潘蔚娟,谌志刚,等.珠江口持续性雾生消的环流特征和成因分析[J].气象,2010,36(6):13-20.
    [40]王鑫,黄菲,周发赝.黄海沿海夏季海雾形成的气候特征[J].海洋学报(中文版),2006, (01):26-34.
    [41]吴兑,邓雪娇,叶燕翔,等.南岭大瑶山浓雾雾水的化学成分研究[J].气象学报,2004,62(4):476-485.
    [42]徐静琦,张正,魏皓.青岛海雾雾滴谱与含水量观测与分析[J].海洋湖沼通报,1994,(02):174-178.
    [43]徐玉貌,刘红年,徐桂玉.大气科学概论[M].南京:南京大学出版社,2000.
    [44]许金镜.海峡西岸海雾的统计分析[J].海洋预报,1990,(03):58-63.
    [45]阎俊岳,陈乾金,张秀芝,等.中国近海气候[M].北京:科学出版社,1993.
    [46]杨彩福,吴阳,张佃波.湛江港雾的统计分析[J].海洋通报,1998,17(5):34-39.
    [47]杨军,谢玉静,石春娥,等.南京冬季辐射雾和平流辐射雾的化学特征差异[J].大气科学学报,2009,32(6):776-782.
    [48]杨连素.青岛近海海雾微物理结构的初步观测[J].海洋科学,1985,(04):49-50.
    [49]杨帅,高守亭,王东海.湿饱和流中的Richardson数和不稳定的研究[J].地球物理学报,2007,50(2):377-386.
    [50]杨长新译,Stull R B著.边界层气象学导论[M].北京:气象出版社,1991.
    [51]杨中秋,许绍祖,耿骠.舟山地区春季海雾的形成和微物理结构[J].海洋学报(中文版),1989,(04):431-438.
    [52]于润玲,王亚男,李永平.黄海和东海海雾短期客观预报业务系统[J].大气科学研究与应用,2007,(02):28-37.
    [53]袁金南,黄健.珠江口附近春季一次海雾的观测分析及三维数值模拟[J].气象学报,2011,(05):847-859.
    [54]战淑芸,林玉英.华南沿海海雾的气候特征及其与赤道东太平洋海温的关系[J].海洋预报,1988,(01):23-32.
    [55]张朝锋.粤东海区海雾的气候特征分析[J].广东气象,2002,(02):20-21.
    [56]张福春.西北太平洋海雾的统计分析[J].海洋学报(中文版),1982,(02):157-168.
    [57]张苏平,鲍献文.近十年中国海雾研究进展[J].中国海洋大学学报(自然科学版),2008,(03):359-366.
    [58]张苏平,刘敬武,任兆鹏.L波段探空雷达对黄海海雾的新观测--日变化和季节变化;proceedings of the中国气象学会2008年年会第二届研究生年会分会场,中国北京,F,2008a[C].
    [59]张苏平,杨育强,王新功,等.低层大气季节变化及与黄海雾季的关系[J].中国海洋大学学报(自然科学版),2008b,(05):689-698.
    [60]张苏平,任兆鹏.下垫面热力作用对黄海春季海雾的影响——观测与数值试验[J].气象学报,2010,68(4):439-449.
    [61]赵鸣.大气边界层动力学[M].北京:高等教育出版社,2006.
    [62]郑新江.黄海海雾的卫星云图特征分析[J].气象,1988,14(6):7-9.
    [63]周发琇,刘龙太.海雾[J].山东海洋学院学报,1986,(01):114-131.
    [64]周发琇,王鑫,鲍献文.黄海春季海雾形成的气候特征[J].海洋学报(中文版),2004,(03):28-37.
    [65]周发琇.雾[M].北京:海洋出版社,1981.
    [66]周红妹,葛伟强,柏桦,等.气象卫星大雾遥感自动识别技术研究[J].热带气象学报,2011,27(2):152-160.
    [67]Ahn M H, Sohn E H, Hwang B J. A new algorithm for sea fog/stratus detection using GMS-5 IR data [J]. Advances in Atmospheric Sciences,2003,20 (6):899-913.
    [68]Anderson J B. Observations from airplanes of cloud and fog conditions along the southern California coast [J]. Monthly Weather Review,1931,59264-59270.
    [69]Anthis A I, Cracknell A P. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas [J]. International Journal of Remote Sensing,1999,20 (6):1107-1124.
    [70]Ballard S P, Golding B W, Smith R N B. Mesoscale model experimental forecasts of the Haar of northeast Scotland [J]. Monthly Weather Review,1991,119 (9):2107-2123.
    [71]Barker E H. A maritime boundary-layer model for the prediction of fog [J]. Boundary-Layer Meteorology,1977,11 (3):267-294.
    [72]Bendix J, Thies B, Cermak J, et al. Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study [J]. Weather Forecasting,2005,20:989-1005.
    [73]Bergot T, Carrer D, Noilhan J, et al. Improved site-specific numerical prediction of fog and low clouds:A feasibility study [J]. Weather and Forecasting,2005,20 (4):627-646.
    [74]Bergot T, Guedalia D. Numerical forecasting of radiation fog 1. Numerical-model and sensitivity tests [J]. Monthly Weather Review,1994,122 (6):1218-1230.
    [75]Bergot T. Quality assessment of the Cobel-Isba numerical forecast system of fog and low clouds [J]. Pure and Applied Geophysics,2007,164 (6-7):1265-82.
    [76]Blake D. Temperature inversions at San Diego, as deduced from aerographical observations by airplane [J]. Monthly Weather Review,1928, (56):221-224.
    [77]Cermak J, Bendix J. Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data-a feasibility study [J]. Pure and Applied Geophysics,2007,164:1179-1192.
    [78]Cermak J, Bendix J., A Novel Approach to Fog/Low Stratus Detection using Meteosat 8 Data [J]. Atmospheric Research,2008,87:279-292.
    [79]Cermak J, Eastmann R M, Bendix J, et al. European climatology of fog and low stratus based on geostationary satellite observations [J]. Quarterly Journal of the Royal Meteorological Society,2009,135:2125-2130.
    [80]Cermak J. Low Clouds and Fog Along the South-Western African Coast-Satellite-Based Retrieval and Spatial Patterns [J]. Atmospheric Research,2012,116:15-21.
    [81]CEWCOM. Cooperative Experiment in West Coast Oceanography and Meteorology (CEWCOM):Multi-platform marine fog study [J]. Bulletin of the American Meteorological Society,1977,58 (11):1226-1227.
    [82]Cho Y K, Kim M O, Kim B C. Sea fog around the Korean peninsula [J]. Journal of Applied Meteorology,2000,39 (12):2473-2479.
    [83]Choi H, Speer M S. The influence of synoptic-mesoscale winds and sea surface temperature distribution on fog formation near the Korean western peninsula [J]. Meteorological Applications,2006,13 (4):347-360.
    [84]Chylek P. Extinction and liquid water content of fogs and clouds [J]. Journal of the Atmospheric Sciences,1978,35:296-300.
    [85]Clark P A, Hopwood W P. One-dimensional site-specific forecasting of radiation fog. Part I: Model formulation and idealised sensitivity studies [J]. Meteorological Applications,2001,8 (3):279-286.
    [86]Clark P A, Hopwood W P. One-dimensional site-specific forecasting of radiation fog. Part II: Impact of site observations [J]. Meteorological Applications,2001,8 (3):287-296.
    [87]Croft P J, Pfost R L, Medlin J M, et al. Fog forecasting for the southern region: A conceptual model approach [J]. Weather and Forecasting,1997,12 (3):545-556.
    [88]DE LA Fuente L, Delage Y, Desjardins S, et al. Can sea fog be inferred from operational GEM forecast fields? [J]. Pure and Applied Geophysics,2007,164 (6-7):1303-1325.
    [89]Deardorff J W. Cloud top entrainment instability [J]. Journal of the Atmospheric Sciences, 1980,37(1):131-147.
    [90]Deardorff J W. Entrainment rate of stratocumulus-topped mixed layer [J]. Quarterly Journal of the Royal Meteorological Society,1976,102 (433):563-582.
    [91]Dickson D R and Hales J V. Computation of visual range in fog and low clouds [J]. Journal of Applied Meteorology,1963,2,281-285.
    [92]Douglas C. Cold fogs over the sea [J]. Meteorological Magazine,1930, (65):133-135.
    [93]Dudis J J. The Stability of a Saturated, Stably-Stratified Shear Layer [J]. Journal of the Atmospheric Sciences,1972,29:774-778.
    [94]Durran D R, Klemp J B. On the effects of moisture on the Brunt-Vaisala frequency [J]. Journal of the Atmospheric Sciences,1982,39:2152-2158.
    [95]Duynkerke P G. Radiation fog:A comparison of model simulation with detailed observations [J]. Monthly Weather Review,1991,119:324-341.
    [96]Eldridge R G. A Few Fog Drop-Size Distributions [J]. Journal of the Atmospheric Sciences, 1961,18(5):671-676.
    [97]Eldridge R G. Haze and fog aerosol distributions [J]. Journal of the Atmospheric Sciences, 1966,23,605-613.
    [98]Eldridge R G. The Relationship Between Visibility and Liquid Water Content in Fog [J]. Journal of the Atmospheric Sciences,1971,28,1183-1186.
    [99]Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery [J]. Weather Forecasting,1995,10:606-619.
    [100]Ernst J A. Fog and Stratus "Invisible" in Meteorological Satellite Infrared (IR) Imagery [J]. Monthly Weather Review,1975,103:1024-1026.
    [101]Eyre J R, Brownsombe J L, Allam R J. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery [J]. Meteorological Magazine,1984,113:266-271.
    [102]Findlater J, Roach W T, Mchugh B C. The Haar of northeast Scotland [J]. Quarterly Journal of the Royal Meteorological Society,1989,115 (487):581-608.
    [103]Fisher E L, Caplan P. An experiment in numerical prediction of fog and stratus [J]. Journal of the Atmospheric Sciences,1963,20 (5):425-437.
    [104]Fitzgerald J W. A Numerical Model of the Formation of Droplet Spectra in Advection Fogs at Sea and Its Applicability to Fogs off Nova Scotia [J]. Journal of the Atmospheric Sciences, 1978,35(8):1522-1535.
    [105]Foken T, G□ckede M, Mauder M, et al. Post-field data quality control. In:Handbook of micrometeorology:a guide for surface flux measurement and analysis. [M]. Dordrecht: Kluwer Academic Publishers,2004.
    [106]Frankenfield H C. Fog forecasting in United States [J]. Monthly Weather Review,1915, (43): 607-608.
    [107]Fraser A B, Easter R C, Hobbs P V. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain:Part I. Airflow model [J]. Journal of the Atmospheric Sciences,1973,30:801-812.
    [108]Fu G, Guo J T, Xie S P, et al. Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea [J]. Atmospheric Research,2006,81 (4):293-303.
    [109]Fu G, Li P Y, Crompton J G, et al. An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003 [J]. Meteorology and Atmospheric Physics,2010,107 (3-4):149-159.
    [110]Gao S H, Lin H, Shen B, et al. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling [J]. Advances in Atmospheric Sciences,2007,24 (1): 65-81.
    [111]Gao S H, Wu W, Zhu L L, et al. Detection of nighttime sea fog/stratus over the Huanghai Sea using MTSAT-1R IR Data [J]. Acta Oceanologia Sinica,2009,28:23-35.
    [112]Goodman J. The microstructure of California coastal fog and stratus [J]. Journal of Applied Meteorology,1977,16,1056-1067.
    [113]Guedalia D, Bergot T. Numerical Forecasting of Radiation Fog. Part Ⅱ:A Comparison of Model Simulation with Several Observed Fog Events [J]. Monthly Weather Review,1994, 122(6):1231-1246.
    [114]Guidard V, Tzanos D. Analysis of fog probability from a combination of satellite and ground observation data. Pure and Applied Geophysics,2007,164:1207-1220.
    [115]Gultepe I, Milbrandt J A. Probabilistic Parameterizations of Visibility Using Observations of Rain Precipitation Rate, Relative Humidity, and Visibility [J]. Journal of Applied Meteorology and Climatology,2010,49 (1):36-46.
    [116]Gultepe Ⅰ, Muller M D, and Boybeyi Z. A new warm fog parameterization scheme for numerical weather prediction models [J]. Journal of Applied Meteorology,2006,45, 1469-1480.
    [117]Gultepe I, Pearson G, Milbrandt J A, et al. The fog remote sensing and modeling field project [J]. Bulletin of the American Meteorological Society,2009,90 (3):341-359.
    [118]Gultepe I, Tardif R, Michaelides S C, et al. Fog research:Areview of past achievements and future perspectives [J]. Pure and Applied Geophysics,2007,164 (6-7):1121-1159.
    [119]Gultepe I. Physical, radiative, and dynamical processes within a nighttime marine stratus cloud [J]. Pure and Applied Geophysics,1995,144 (2):321-350.
    [120]Heo K Y, Ha K J, Mahrt L, et al. Comparison of advection and steam fogs:From direct observation over the sea [J]. Atmospheric Research,2010a,98 (2-4):426-437.
    [121]Heo K Y, Ha K J. A Coupled Model Study on the Formation and Dissipation of Sea Fogs [J]. Monthly Weather Review,2010b,138 (4):1186-1205.
    [122]Huang H J, Liu H N, Jiang W M, et al. Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China [J]. Advances in Atmospheric Sciences,2011,28 (6): 1377-1389.
    [123]Huang J, Zhou F X. The cooling and moistening effect on the formation of sea fog in the Huanghai Sea [J]. Acta Oceanologica Sinica,2006,25 (2):49-62.
    [124]Hudson J G. Relationship between fog condensation nuclei and fog microstructure [J]. Journal of the Atmospheric Sciences,1980,37,1854-1867.
    [125]Jiusto J E. Fog Structure. Clouds, their Formation, Optical Properties, and Effects (eds. P.V. Hobbs and A. Deepak) [M]. Salt Lake City:Academic Press,1981,187-239.
    [126]Jyumonji M, Uchiyama H. Laser radar observation of the fog caused by "Yamase wind" from the Okhotsk Sea" [J]. Optical Review,1996,3 (3):221-225.
    [127]Kim C K, Yum S S. A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model [J]. Boundary-Layer Meteorology,2012a,143 (3):481-505.
    [128]Kim C K, Yum S S. Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea [J]. Advances in Atmospheric Sciences,2010,27 (4):761-776.
    [129]Kim C K, Yum S S. Marine Boundary Layer Structure for the Sea Fog Formation off the West Coast of the Korean Peninsula [J]. Pure and Applied Geophysics,2012b,169 (5-6): 1121-1135.
    [130]Kloesel K A. A 70-Year History of Marine Stratocumulus Cloud Field Experiments off the Coast of California [J]. Bulletin of the American Meteorological Society,1992,73 (10): 1581-1585.
    [131]Koracin D, Businger J, Dorman C, et al. Formation, evolution, and dissipation of coastal sea fog [J]. Boundary-Layer Meteorology,2005a,117 (3):447-478.
    [132]Koracin D, Leipper D F, Lewis J M. Modeling sea fog on the U.S. California coast during a hot spell event [J]. Geofizika,2005b, (22):59-82.
    [133]Koracin D, Lewis J, Thompson W T, et al. Transition of stratus into fog along the California coast: Observations and modeling [J]. Journal of the Atmospheric Sciences,2001,58 (13): 1714-1731.
    [134]Koziara M C, Renard R J, Thompson W J. Estimating Marine Fog Probability Using a Model Output Statistics Scheme [J]. Monthly Weather Review,1983,111 (12):2333-2340.
    [135]Kumai M.1973. Arctic fog droplet size distribution and its effect on light attenuation [J]. Journal of the Atmospheric Sciences,30,635-643.
    [136]Kunkel B A. Parameterization of Droplet Terminal Velocity and Extinction Coefficient in Fog Models [J]. Journal of Climate and Applied Meteorology,1984,23,34-41.
    [137]Lalas D P, Einaudi F. On the Correct Use of the Wet Adiabatic Lapse Rate in Stability Criteria of a Saturated Atmosphere [J]. Journal ofApplied Meteorology,1974,13:318-324.
    [138]Lamb H. Haars or North Sea fogs on the coasts of Great Britain [J]. Meteorology Office Publication,1943, M. O.50424.
    [139]Larson R E. Radon 222 measurements during marine fog events off Nova Scotia [J], Journal of Geophysical Research,1978,83(C1):415-418.
    [140]Lee J R, Chung C Y, Ou M L. Fog detection using geostationary satellite data:Temporally continuous algorithm [J]. Asia-pacific Journal of Atmospheric Sciences,2011,47(2):113-122.
    [141]Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES-8-9 3.9 mm data [J]. Weather Forecasting,1997,12:664-677.
    [142]Leipper D F. Fog Forecasting Objectively in the California Coastal Area Using LIBS [J]. Weather and Forecasting,1995,10(4):741-762.
    [143]Leipper D F. Fog on the United States West Coast:a review [J]. Bulletin of the American Meteorological Society,1994,75 (2):229-240.
    [144]Leipper D F. Forecasting west coast marine fog [J]. Bulletin of the American Meteorological Society,1976,57 (1):150-150.
    [145]Lewis J M, Koracin D, Redmond K T. Sea fog research in the United Kingdom and United States-A historical essay including outlook [J]. Bulletin of the American Meteorological Society,2004,85 (3):395-408.
    [146]Lewis J, Koracin D, Rabin R, et al. Sea fog off the California coast:Viewed in the context of transient weather systems [J]. Journal of Geophysical Research-Atmospheres,2003, 108(D15),4457, doi:10.1029/2002JD002833.
    [147]Li J, Han Z G, Chen H B, et al. Fog Detection over China's Adjacent Sea Area by using the MTSAT Geostationary Satellite Data [J]. Atmospheric and Oceanic Science Letters,2012, 5(2):128-133.
    [148]Lilly D K. Models of cloud-topped mixed layers under a strong inversion [J]. Quarterly Journal of the Royal Meteorological Society,1968,94 (401):292-309.
    [149]Loeb N G, Coakley J A. Inference of marine stratus cloud optical depths from satellite measurements:Does ID theory apply [J]? Journal of Climate,1998,11:215-233.
    [150]Mack E, Katz U, Rogers C, et al. The microstructure of California coastal stratus and fog at sea. [M]. Calspan Corp.1974:Rep. CJ-5405-M-1,74 pp.
    [151]Mcilveen J F R, Lunken A C, Holmes N E. Acoustic sounding of a sea fog [J]. Meteorological Magazine,1976,105(1246):143-147.
    [152]Meyer W D, Rao G V. Radiation fog prediction using a simple numerical model [J]. Pure and Applied Geophysics,1999,155 (1):57-80.
    [153]Miao Y, Potts R, Huang X, et al. A Fuzzy Logic Fog Forecasting Model for Perth Airport [J]. Pure and Applied Geophysics,2012,169 (5-6):1107-1119.
    [154]Nicholls S. The dynamics of stratocumulus:aircraft observations and comparisons with a mixed-layer model [J]. Quarterly Journal of the Royal Meteorological Society,1984,110 (466):783-820.
    [155]Niu S J, Lu C S, Yu H Y, et al. Fog Research in China:An Overview [J]. Advances in Atmospheric Sciences,2010, (03):639-661.
    [156]Noonkester V R. Coastal marine fog in Southern-California [J]. Monthly Weather Review, 1979,107(7):830-851.
    [157]Nowak D, Ruffieux D, Agnew J L, et al. Detection of Fog and Low Cloud Boundaries with Ground-Based Remote Sensing Systems [J]. Journal of Atmospheric and Oceanic Technology,2008,25(8):1357-1368.
    [158]Ohshima K I, Wakatsuchi M, Fukamachi Y, et al. Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters [J]. Journal of Geophysical Research-Oceans,2002,107(C11),3195, doi:10.1029/2001JC001005.
    [159]Oliver D A, Lewellen W S, Williamson G G. The Interaction between Turbulent and Radiative Transport in the Development of Fog and Low-Level Stratus [J]. Journal of the Atmospheric Sciences,1978,35 (2):301-316.
    [160]Palmer A H. Fog along the California coast [J]. Monthly Weather Review,1917, (45): 496-499.
    [161]Peak J E, Tag P M. An Expert System Approach for Prediction of Maritime Visibility Obscuration [J]. Monthly Weather Review,1989,117 (12):2641-2653.
    [162]Pepper D W, Lee S C. Transport phenomena in thermally stratified boundary-layers [J]. Journal of Heat Transfer-Transactions of the ASME,1975,97 (1):60-65.
    [163]Petterssen S. On the causes and the forecasting of the California fog [J]. Bulletin of the American Meteorological Society,1938, (19):49-55.
    [164]Pilie R J, Mack E J, Rogers C W, et al. The formation of marine fog and the development of fog-stratus systems along the California coast [J]. Journal of Applied Meteorology,1979,18 (10):1275-1286.
    [165]Remy S, Bergot T. Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting [J]. Monthly Weather Review,2010,138 (5):1792-1810.
    [166]Rogers D P, Telford J W. Metastable Stratus tops [J]. Quarterly Journal of the Royal Meteorological Society,1986,112 (472):481-500.
    [167]Schulz H M, Thies B, Cermak J, et al.1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data [J], Atmospheric Measurement Techniques,2012, 5:2469-2480.
    [168]Slingo A, Brown R, Wrench C L. A field study of nocturnal stratocumulus:III. High resolution radiative and microphysical observations [J]. Quarterly Journal of the Royal Meteorological Society,1982,108(455):145-165.
    [169]Stage S A, Businger J A. A model for entrainment into a cloud-topped marine boundary layer. Part I:Model description and application to a cold-air outbreak episode [J]. Journal of the Atmospheric Sciences,1981,38 (10):2213-2229.
    [170]Stull R B. An Introduction to Boundary Layer Meteorology [M]. dordrecht:Kluwer Academic Publishers,1988.
    [171]Tachibana Y, Iwamoto K, Ogawa H, et al. Observational Study on Atmospheric and Oceanic Boundary-Layer Structures Accompanying the Okhotsk Anticyclone under Fog and Non-Fog Conditions [J]. Journal of the Meteorological Society of Japan,2008,86 (5):753-771.
    [172]Tag P M, Peak J E. Machine learning of maritime fog forecast rules [J]. Journal of Applied Meteorology,1996,35 (5):714-724.
    [173]Tanimoto Y, Xie S P, Kai K, et al. Observations of Marine Atmospheric Boundary Layer Transitions across the Summer Kuroshio Extension [J]. Journal of Climate,2009,22 (6): 1360-1374.
    [174]Tardif R. The impact of vertical resolution in the explicit numerical forecasting of radiation fog:A case study [J]. Pure and Applied Geophysics,2007,164 (6-7):1221-40.
    [175]Taylor G I. The formation of fog and mist [J]. Quarterly Journal of the Royal Meteorological Society,1917, (43):241-268.
    [176]Telford J W, Chai S K. Inversions, and fog, stratus and cumulus formation in warm air over cooler water [J]. Boundary-Layer Meteorology,1984,29 (2):109-137.
    [177]Telford J W, Chai S K. Marine Fog and Its Dissipation over Warm Water [J]. Journal of the Atmospheric Sciences,1993,50 (19):3336-3349.
    [178]Telford J W, Keck T S, Chai S K. Entrainment at Cloud Tops and the Droplet Spectra [J]. Journal of the Atmospheric Sciences,1984,41 (21):3170-3179.
    [179]Tokinaga H, Xie S P. Ocean tidal cooling effect on summer sea fog over the Okhotsk Sea [J]. Journal of Geophysical Research-Atmospheres,2009,114, D14102, doi:100.1029/2008 JD011477.
    [180]Tremant M. The forecasting of sea fog [J]. Meteorological Magazine,1989,118 (1401): 69-75.
    [181]Turton J D, Nicholls S. A study of the diurnal variation of stratocumulus using a multiple mixed layer model [J]. Quarterly Journal of the Royal Meteorological Society,1987,113: 969-1009.
    [182]Wallace J M and Hobbs P V. Atmospheric Science, an Introductory Survey (Second Edition) [M]. New York: Elsevier Academic Press,2006.
    [183]Willett H C. Fog and haze, their causes, distribution, and forecasting [J]. Monthly Weather Review,1928, (56):435-468.
    [184]Woodcock A H, Blanchard D C, Jiusto J E. Marine Fog Droplets and Salt Nuclei. Part II [J]. Journal of the Atmospheric Sciences,1981,38,129-140.
    [185]Woodcock A H. Marine Fog Droplets and Salt Nuclei-Part I [J]. Journal of the Atmospheric Sciences,1978,35,657-664.
    [186]Yang D, Ritchie H, Desjardins S, et al. High-Resolution GEM-LAM Application in Marine Fog Prediction:Evaluation and Diagnosis [J]. Weather and Forecasting,2010,25 (2): 727-748.
    [187]Yoo J, Jeong M, Hur Y, et al. Improved fog detection from satellite in the presence of clouds [J]. Asia-pacific Journal of Atmospheric Sciences,2010,46 (1):29-40.
    [188]Yue Y Y, Niu S J, Zhao L J, et al., Chemical Composition of Sea Fog Water Along the South China Sea [J]. Pure and Applied Geophysics,2012,169(12):2231-2249.
    [189]Zhang S P, Li M, Meng X G, et al. A Comparison Study Between Spring and Summer Fogs in the Yellow Sea-Observations and Mechanisms [J]. Pure and Applied Geophysics,2012a, 169(5-6):1001-1017.
    [190]Zhang S P, Xie S P, Liu Q Y, et al. Seasonal Variations of Yellow Sea Fog:Observations and Mechanisms [J]. Journal of Climate,2009,22 (24):6758-6772.
    [191]Zhang S P. Recent observations and modeling study about sea fog over the Yellow Sea and East China Sea [J]. Journal of Ocean University of China,2012b,11 (4):465-472.
    [192]Zhou B B, Du J, Gultepe I, et al. Forecast of Low Visibility and Fog from NCEP:Current Status and Efforts [J]. Pure and Applied Geophysics,2012,169 (5-6):895-909.
    [193]Zhou B B, Du J. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System [J]. Weather and Forecasting,2010,25 (1):303-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700