用户名: 密码: 验证码:
基于多酸材料的合成表征及其在燃油氧化脱硫中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染问题的加剧,降低燃油中硫含量的举措势在必行,燃油中硫化物的燃烧产物是大气污染中主要污染源之一。因此,世界各国均采用越来越严格的法规限制燃油中的硫含量。工业上采用的传统的加氢脱硫技术(HDS)对于脂肪族硫化物的脱除效果好,而对于芳香族有机硫化物(如二苯并噻吩和苯并噻吩)效果却不佳。因此,许多其它可以取代加氢脱硫的技术引起了广泛的关注。温和条件下深度脱除燃油中的有机硫一直是非常重要的研究课题,特别是以过氧化氢为氧化剂进行氧化脱硫的技术备受关注。本论文中合成了一系列基于多酸的复合材料,并将其应用于硫化物氧化脱除的反应中。采用XRD、IR、Raman、SEM、TEM、BET、DRS等测试手段对所合成材料的结构、形貌及其氧化脱硫性能与催化剂结构之间的构效关系进行了深入研究。
     合成了基于多酸的杂化材料HPW-CeO2,并采用XRD, TG-DSC, SEM, Raman, IR, DRS, BET等测试方法对所合成的材料进行了表征。所合成的材料在以[C8mim]BF4为萃取剂和H202为氧化剂的氧化脱硫体系中,具有良好的活性且反应条件温和,有机硫化物DBT的脱硫率可达99.4%。此外,还系统考察了催化剂用量、O/S摩尔比、反应时间和温度等因素对脱硫活性的影响,并根据活性数据作了不同底物反应的动力学计算,还对萃取氧化脱除DBT的反应机理进行了探讨。
     本文中,以[C16mim]3PW12040为原料通过溶胶-凝胶法直接合成了一系列钨含量不同的介孔WO3-SiO2,并将其应用在氧化脱硫反应中。并采用XRD, IR, Raman, BET, DRS, SEM等测试手段对所合成的材料进行了表征。表征结果说明W03均匀地分散在材料上,所合成的材料比表面积为434-713m2/g,孔体积为0.35-0.50cm3/g,孔径为2.98-4.00nm。实验中,还深入研究了催化剂用量、O/S摩尔比、反应时间和温度等因素对氧化脱硫活性的影响。所合成材料对于大分子有机硫化物DBT有良好的氧化脱除性能。在最优条件下(反应温度60℃,O/S摩尔比为2.5,反应时间30min),DBT氧化脱除率为100%,而且反应体系易于循环使用。
     采用[C16mim]Br和[C16mim]3PW12O40为共模板剂,一步法合成了一系列介孔分子筛WO3-SiO2,采用XRD、XPS、TEM、Raman、IR、 DRS、BET等表征手段,对所合成材料的介孔结构和钨的形态作了分析。研究表明,所合成的材料的孔体积为0.73-1.00cm3/g,孔径为4.00-5.36nm,比表面为630-930m2/g。钨物种在材料中的分散均匀,在没有其它溶剂的辅助下,对于硫化物有良好的氧化脱除活性。在温和条件下(反应温度60℃,O/S摩尔比为2.5),25mmin内DBT氧化脱除率为100%。此外,还深入研究了不同硫化物对于氧化脱硫效果的影响。催化剂在吸附氧化脱硫反应体系中可以循环使用9次,而且活性没有明显降低。并根据氧化产物的GC-MS分析,对DBT的吸附氧化反应机理进行了探讨。
     本文以[C16mim]3PMo12O40为原料,通过溶胶-凝胶法合成了高度有序的介孔材料MoO3-SiO2,并采用XRD、TEM、BET、IR、Raman、DRS等测试手段对所合成材料进行了表征。表征结果说明,Mo被引入介孔SiO2框架结构中,而且不影响其介孔结构的形成。所合成材料的孔体积为0.38-0.44cm3/g,孔径为2.79-4.19nm。在反应温度为60℃、O/S摩尔比为4的条件下,40min内DBT氧化脱除率可达99.7%,且催化剂易于循环利用。
     以[C16mim]Br和[C16mim]3PMo12O40为共模板剂,正硅酸四乙酯(TEOS)为硅源合成了介孔杂化材料MoO3-SiO2,并运用XRD, BET, TEM, SEM, DRS, IR, Raman等技术对所合成材料进行了表征。所合成材料的孔体积为0.91-1.31cm3/g,孔径为3.82-4.86nm,比表面为834-932m2/g。此外,所合成材料中MoO3的分散性很好,在无有机萃取剂的作用下对DBT有良好的氧化脱硫效果。在温度为60℃、O/S摩尔比为2.5的条件下,30min内DBT氧化脱除率为98.4%。
With increasing environmental pollution, the reduction of the sulfur content in diesel oil becomes an urgent requirement. Sulfur in transportation fuels is a major source of air pollution from automobiles, and the increasingly stringent fuel specifications worldwide also require reducing the sulfur content to a low level. The conventional process for the removal of most sulfur compounds in industry is known as hydrodesulfurization (HDS), which is highly efficient in removing aliphatic and acyclic sulfur-containing compounds, but less effective for aromatic organosulfur compounds such as dibenzothiophene (DBT), benzothiophene (BT). Therefore, alternative deep desulfurization technologies have attracted worldwide attention. Deep desulfurization of organic sulfur compounds in diesel under mild conditions has always been a rather significant subject in the past decades, especially oxidative desulfurization process with hydrogen peroxide.In this paper, a series of POM-based materials were synthesized and employed in the oxidative desulfurization process. These resulting materials were characterized by XRD, IR, Raman, SEM, TEM, BET, DRS and catalytic activity test, and the relationship between the structure of materials and the catalytic activities were also discussed in detail.
     POM-based hybrid materials HPW-CeO2have been synthesized and characterized by XRD, TG-DSC, SEM, Raman, IR, DRS, and BET analysis. Combined with [C8mim]BF4, the catalyst was very efficient on the removal of DBT by using H2O2as the oxidant under mild Reaction conditionss, which could reach a sulfur removal of99.4%. The amount of catalyst, O/S molar ratio, reaction time and temperature were evaluated in detail, and the favorable operating condition was obtained as well as the kinetic study of substrates. A mechanism was proposed to investigate the oxidation process of DBT.
     Mesoporous materials WO3-SiO2with different W contents were prepared from [C16mim]3PW12O40by direct sol-gel method and used in the oxidative desulfurization process. The materials were characterized by XRD, FT-IR, Raman, BET, DRS and SEM. The characterization results reveal that WO3was highly dispersed into silica matrix. The materials possessed high surface area (434-713m2/g), pore volume (0.35-0.50cm3/g), and pore size (2.98-4.00nm). The amount of catalyst, O/S molar ratio, reaction time and temperature on catalytic activity were evaluated in detail. Under the optimal conditions (temperature=60℃, O/S=2.5, time=30min), the desulfurization for of dibenzothiophene could reach100%. These materials were found to be highly active and reusable for oxidative desulfurization of bulky organosulfur compound DBT.
     A series of tungsten-containing mesoporous WO3-SiO2have been successfully synthesized using [C16mim]3PW12O40and [C16mim]Br as co-templates by one-pot and dual-template procedure. The mesostructure and local environment of tungsten species were characterized by XRD, XPS, TEM, FT-Raman, FT-IR, DRS, and BET analysis. The materials possessed high surface area (630-930m2/g), pore volume (0.73-1.00cm3/g), and pore size (4.00-5.36nm). These materials presented a high dispersion of tungsten species and excellent catalytic activity on the removal of sulfur compounds without any organic solvents as extractants. The catalytic performance on different sulfur compounds was also investigated in detail. Under the suitable conditions (temperature=60℃O/S=2.5, time=25min), the desulfurization for of dibenzothiophene could reach100%. The absorptive oxidative desulfurization system could be recycled for nine times without significant decrease in activity. According to the GC-MS analysis of the oxidized products, a mechanism was proposed for the absorptive oxidative process of DBT.
     Highly ordered mesoporous materials MoO3-SiO2was prepared from [C16mim]3PMo12O40by direct sol-gel method and characterized by XRD, TEM, BET, FT-IR, Raman and DRS. The characterization results revealed that Mo species were introduced into the meso-SiO2framework without effecting its mesoporous structure. These materials exhibited pore volume (0.38-0.44cm3/g) and pore diameter (2.79-4.19nm). The material was found to be highly active and reusable catalyst for oxidative desulfurization (ODS) of organosulfur compounds and desulfurized 99.7%of dibenzothiophene in40min under the mild reaction conditions of temperature=60℃and O/S=2.5.
     Mesoporous hybrid materials MoO3-SiO2were synthesized by using [C16mim]Br and [C16mim]3PMo12O40as co-templates coupled with hydrolysis tetraethoxysilane (TEOS). XRD, BET, TEM, DRS, FT-IR and Raman were employed to characterize the mesoporous hybrid materials. These materials exhibited reflections corresponding to a pore volume of0.91-1.31cm3/g, a uniform pore size of3.82-4.86nm and large surface areas of834-932m2/g. These materials presented a high dispersion of Mo species and excellent catalytic activity on the removal of sulfur compounds DBT without any organic solvents as extractants. The desulfurization for of dibenzothiophene could reach98.4%in30min under the reaction conditions of temperature=60℃and O/S=2.5.
引文
[1]Eber J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids [J]. Green Chem.,2004,6,316-322
    [2]Wang F, Zhang Z Q, Yang J, Wang L P, Lin Y, Wei L. Immobilization of room temperature ionic liquid (RTIL) on silica gelfor adsorption removal of thiophenic sulfur compounds from fuel [J]. Fuel,2013,107,394-399
    [3]Damste J S S, Kohnen M E L,de Leeuw J W. Thiophenic biomarkers for palaeoenvironmental assessment and molecular stratigraphy [J]. Nature,1990,345,609-611
    [4]Ramirez-Verduzco L F, Torres-Garria E, Gomez-Quintana R, Gonzalez-Pcna V, Murrieta-Guevara F. Desulfurization of diesel by oxidation/extraction scheme:Influence of the extraction solvent [J]. Catal. Today,2004,98,289-294
    [5]Song C, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and dearomatization [J]. Appl. Catal. B:Environ.,2003,41,207-238
    [6]Farag H, Whitehurst D D, Sakanishi K, Mochida L. Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel [J]. Catal. Today, 1999,50,9-17
    [7]周亚松,范小虎.纳米TiO2-SiO2复合氧化物的制备与性质[J].高等学校化学学报,2003,24,1266-1270
    [8]柳云骐,刘晨光,阙国和.合成大比表面积γ-Mo2N的新方法[J].无机化学学报,1999,15,541-544
    [9]Wanner S, Hilaire L, Wehrer P, Hindermann J P, Maire G. Obtaining tungsten carbides from tungsten bipyridine complexes via low temperature thermal treatment [J]. Appl. Catal. A:Gen., 2000,203,55-70
    [10]Rao B G, Matte H S S R, Chaturbedy P, Rao C N R. Hydrodesulfurization of Thiophene over Few-Layer MoS2 Covered with Cobalt and Nickel Nanoparticles [J]. ChemPlusChem,2013,78, 419-422
    [11]Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review [J]. Fuel,2003,82,607-631
    [12]Song C S, Ma X L. Ultra-deep desulfurization of liquid hydrocarbon fuels:chemistry and process [J]. Int. J. Green Energy,2004,1,167-191
    [13]Baeza P, Aguila G, Gracia F, Araya P. Desulfurization by adsorption with copper supported on zirconia [J]. Catal. Commun.,2008,9,751-755
    [14]孔令艳,李钢,王祥生.液体燃料催化氧化脱硫[J].化学通报,2004,3,178-183
    [15]Irvine R L, Benson B A, Varraverto D M. Irvad process-low cost breakthrough for low sulfur gasoline [A]. NPRA, AM-99-42, San Antonio,1999
    [16]Khare G P, Engebert D R, Cass B W. Transport desulfurization process utilizing a sulfur sorbent that is both fluidiable and circulatable and a method of making such sulfur sorbent [P]. US5914292,1999
    [17]Ma X L, Schobert H H. Molecular simulation on hydrodesulfurization of thiophenic compounds over MoS2 using ZINDO [J]. J. Mol. Catal. A:Chem.,2000,160,409-427
    [18]Donald R. Sorbent Compositions [P]. US6350422,2002
    [19]Khare G P. Desulfurization process and novel bimetallic sorbents systems for same [P]. US6274533,2001
    [20]刘玉娇,杨新萍,张德伟,王世梅.pH、接种量及固形物含量对氧化亚铁硫杆菌LX5煤炭生物脱硫的影响[J].环境工程学报,2013,7,759-764
    [21]Kilbane J J. Desulfurization of coal:the microbial solution [J]. Trends Biotechnol,1989,7, 97-101
    [22]Kulkarni P S, Afonso C A M. Deep desulfurization of diesel fuel using ionic liquids:current status and future challenges [J]. Green Chem.,2010,12,1139-1149
    [23]Horri Y, Onuki H, Doi S, Mori T, Takatori T, Sato H. Desulfurization and denitrogenation of light oil by extraction [P]. US5494572,1996
    [24]Funakoshi I, Aida T. Process for recovering organic sulfur compounds from fuel oil [P]. US5753102,1998
    [25]Otsuki S, Nonaka T, Takasjima N, Qian W H, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy Fuels,2000,14,1232-1239
    [26]杨丽娜,由宏君,王强.萃取法脱除催化裂解柴油中酸性硫化物[J].辽宁化工,2003,32,489-491
    [27]Bosmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids [J]. Chem. Commun.,2001,23,2494-2495
    [28]王坤,刘大凡,何爱珍,刘红光,袁莉,张玥.离子液体萃取脱硫的研究[J].石油化工,2010,39,675-680
    [29]胡松青,张军,刘冰,付殿岭.离子液体萃取脱硫的探索性研究[J].石油学报,2007,23,100-103
    [30]BP Amoco Corporation, Sulfur removal process [P]. US6048451,2000
    [31]BP Corporation North America Inc. Multiple stage process for removal of sulfur from components for blending of transportation fuels [P]. US6736963,2004
    [32]Zannikos F, Lios E, Stournas S. Desulfurization of petroleum eractions by oxidation and solvent extraction [J]. Fuel. Process. Technol.,1995,42,35-45
    [33]Gore W L, Bonde S, DolebearG E, Skov E R. Method of desulfurization and dearomatization of petroleum liquids by oxidation and solvent extraction [P]. US6596914,2003
    [34]Yazu K, Makino M, Ukegawa K. Oxidative desulfurization of diesel oil with hydrogen peroxide in the presence of acid catalyst in diesel oil/acetic acid biphasic system [J]. Chem. Lett., 2004,33,1306-1307
    [35]赵地顺,马四国,刘翠微,任红威.相转移催化应用于催化裂化汽油氧化脱硫的研究[J].高等学校化学学报,2006,27,144-146
    [36]Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems [J]. Appl. Catal. A:Gen.,2001,219, 267-280
    [37]Collins F M, Andrew R L, Christopher S. Oxidative desulfurization of oils via hydrogen peroxide and heteropolyanion catalysis [J]. J. Mol. Catal. A,1997,117,397-403
    [38]Li H M, He L N, Lu J D, Zhu W S, Jiang X, Wang Y, Yan Y S. Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature [J]. Energy Fuels, 2009,23,1354-1357
    [39]Li C, Jiang Z, Gao J, Yang Y, Wang S, Tian F. Ultra-deep desulfurization of diesel:oxidation with a recoverable catalyst assembled in emulsion [J]. Chem. Eur. J.,2004,10,2277-2280
    [40]Lu H, Gao J, Jiang Z, Jing F, Yang Y, Wang G, Li C. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets [J]. J. Catal.,2006,239,369-375
    [41]Gao J, Wang S, Jiang Z, Lu H, Yang Y, Jing F, Li C. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets [J]. J. Mol. Catal. A:Chem.,2006,258,261-266
    [42]Luis C C, Jorge F, Navarro A, Aida G A. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅱ. Effect of oxidant and nitrogen-compounds on extraction.oxidation process [J]. Catal. Today,2006,116,562-568
    [43]Huang D, Wang Y J, Cui Y C, Luo G S. Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization [J]. Micropor. Mesopor. Mater.,2008,116,378-385
    [44]Zhang J, Wang A J, Li X, Ma X H. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12040[J]. J. Catal.,2011,279,269-275
    [45]Li B S, Ma W, Liu J J, Han C Y, Zuo S L, Li X F. Synthesis of the well-ordered hexagonal mesoporous silicate incorporated with phosphotungstic acid through a novel method and its catalytic performance on the oxidative desulfurization reaction [J]. Catal. Commun.,2011,13, 101-105
    [46]Kumar R, Mukherjee P, Bhaumik A. Enhancement in the reaction rates in the hydroxylation of aromatics over TS-1/H2O2 under solvent-free triphase conditions [J]. Catal. Today,1999,49, 185-191
    [47]Kumar R, Bhaumik A. Triphase, solvent-free catalysis over the TS-1/H2O2 system in selective oxidation reactions [J]. Micropor. Mesopor. Mater.,1998,21,497-504
    [48]Bhaumik A, Mukherjee P, Kumar R. Triphase catalysis over titanium-silicate molecular sieves under solvent-free conditions:I. Direct hydroxylation of benzene [J]. J. Catal.,1998,178, 101-107
    [49]Vasile H, Francois F, Jacques B. Mild oxidation with H2O2 over Ti-containing molecular sieves—A very efficient method for removing aromatic sulfur compounds from fuels [J]. J. Catal., 2001,198,179-186
    [50]Shiraishi Y, Naito T, Hirai T. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil [J]. Ind. Eng. Chem. Res.,2003,42,6034-6039
    [51]Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2 [J]. Catal. Today, 2004,93-95,341-345
    [52]Kong L Y, Li G, Wang X S. Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H2O2 under mild conditions [J]. Catal. Lett.,2004,92,163-167
    [53]Lo W H, Yang H Y, Wei G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids [J]. Green Chem.,2003,5,639-642
    [54]Lu L, Cheng H F, Gao J B, Gao G H, He M Y. Deep oxidative desulfurization of fuels catalyzed by ionic liquid in the presence of H2O2 [J]. Energy Fuels,2007,21,383-384
    [55]Zhao D S, Wang J L, Zhou E P. Oxidative desulfurization of diesel fuel using a BrOnsted acid room temperature ionic liquid in the presence of H2O2 [J]. Green Chem.,2007,9,1219-1222
    [56]Gao H S, Guo C, Xing J M, Zhao J M, Liu H Z. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brosted acidic ionic liquid at room temperature [J]. Green Chem.,2010, 12,1220-1224
    [57]Li H M, Zhu W S, Wang Y, Zhang J T, Lu J D, Yan Y S. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride [J]. Green Chem.,2009,11,810-815
    [58]Jiang Y Q, Zhu W S, Li H M, Yin S, Liu H, Xie Q J. Oxidative desulfurization of fuels catalyzed by fenton-like ionic liquids at room temperature [J]. ChemSusChem,2011,4,399-403
    [59]Hirai T, Ogavva K, Komasawa I. Desulfurization process for dibenzothiophenes from light oil by photochemical reaction and liquid-liquid extraction [J]. Ind. Eng. Chem. Res.,1996,35, 586-589
    [60]Hirai T, Shiraishi Y, Ogawa K, Komasawa I. Effect of photosensitizer and hydrogen peroxide on desulfurization of light oil by photochemical reaction and liquid-liquid extraction [J]. Ind. Eng. Chem. Res.,1997,36,530-533
    [61]韩雪松,赵德智,戴咏川,刘之豹.超声波作用下柴油深度氧化脱硫的研究[J].石油炼制与化工,2006,37,30-32
    [62]刘万楹,雷正兰.有机硫化物的等离子体液相氧化脱硫[J].应用化学,1997,14,83-85
    [63]Zhai L Z, Zhong Q, He C, Wang J. Hydroxyl ammonium ionic liquids synthesized by water-bath microwave:synthesis and desulfurization [J]. J. Hazard. Mater.,2010,177,807-813
    [64]Li Z, Li C P, Chi Y S, Wang A L, Zhang Z D, Li H X, Liu Q S, Welz-Biermann U. Extraction process of dibenzothiophene with new distillable amine-based protic ionic liquids [J]. Energy Fuels,2012,26,3723-3727
    [65]Asumana C, Yu G, Li X, Zhao J, Liu G, Chen X. Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids [J]. Green Chem.,2010,12,2030-2037
    [66]Li F T, Liu Y, Sun Z M, Chen L J, Zhao D S, Liu R H, Kou C G Deep extractive desulfurization of gasoline with xEt3NHCl·FeCl3 ionic liquids [J]. Energy Fuels,2010,24, 4285-4289.
    [67]Francisco M, Arce A, Sato A. Ionic liquids on desulfurization of fuel oils [J]. Fluid Phase Equilib.,2010,294,39-48
    [68]Alonso L, Arce A, Francico M, Sato A. Extraction ability of nitrogen-containing compounds involved in the desulfurization of fuels by using ionic liquids [J]. J. Chem. Eng. Data,2010,55, 3262-3267
    [69]Domanska U, Zawadzki M, Krolikowski M, Lewandrowska A. Phase equilibria study of binary and ternary mixtures of {N-octylisoquinoliniumbis {(trifluoromethyl)sulfonyl} imide+ hydrocarbon, or an alcohol, or water} [J]. Chem. Eng. J.,2012,181-182,63-71
    [70]Domanska U, Krolikowski M, Slesinska K. Phase equilibria study of the binary systems (ionic liquid+thiophene):Desulphurization process [J]. J. Chem. Thermodyn.,2009,41, 1303-1311
    [71]Kwon J M, Moon J H, Bae Y S, Lee D G, Sohn H C, Lee C H. Adsorptive desulfurization and denitrogenation of refinery fuels using mesoporous silicaadsorbents [J]. ChemSusChem,2008,1, 307-309
    [72]Srivastav A, Srivastava V C. Adsorptive desulfurization by activated alumina [J]. J. Hazard. Mater.,2009,170,1133-1140
    [73]Bian J J, Zhang S, Zhang J W, Min X, Li C H. Supported manganese dioxide catalyst for seawater flue gas desulfurization application [J]. Chem. Eng. J.,2012,189-190,57-61
    [74]Zhu W S, Li H M, Jiang X, Yan Y S, Lu J D, Xia J X. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids [J]. Energy Fuels, 2007,21,2514-2516
    [75]Zhu W S, Li H M, Gu Q Q, Wu P W, Zhu G P, Yan Y S, Chen G Y. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids [J]. J. Mol. Catal. A:Chem.,2011,336,16-22
    [76]Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, Fierro J L G. Oxidative processes of desulfurization of liquid fuels [J]. J. Chem. Technol. Biotechnol.,2010,85,879-890
    [77]Li F T, Liu R H, Wen J H, Zhao D S, Sun Z M, Liu Y. Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid [J]. Green Chem.,2009,11,883-888
    [78]Zhu W S, Zhu G P, Li H M, Chao Y H, Chang Y H, Chen G Y, Han C R. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids [J]. J. Mol. Catal. A: Chem.,2011,347,8-14
    [79]Li Y G, Li W L, Gao H S, Xing J M, Liu H Z. Integration of flocculation and adsorptive immobilization of Pseudomonas delafieldii R-8 for diesel oil biodesulfurization [J]. J. Chem. Technol. Biotechnol.,2011,86,246-250
    [80]Jia Y H, Li G, Ning G L. Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MOO3/γ-Al2O3 under mild and solvent free conditions [J]. Fuel Process. Techno!., 2011,92,106-111
    [81]Wang W H, Li G, Li W G, Liu L P. Synthesis of hierarchical TS-I by caramel templating [J]. Chem. Commun.,2011,47,3529-3531
    [82]Chi Y S, Li C P, Jiao Q Z, Liu Q S, Yan P F, Liu X M, Weiz-Biermann U. Desulfurization by oxidation combined with extraction using acidic room-temperature ionic liquids [J]. Green Chem., 2011,13,1224-1229
    [83]Tam P S, Kittrell J R, Eldridge J W. Desulfurization of fuel oil by oxidation and extraction. I Enhancement of extraction oil yield [J]. Ind. Eng. Chem. Res.,1990,29,321-324
    [84) Rao T V, Sain B, Kafola S, Nautiyal B R, Sharma Y K, Nanoti S M, Garg M O. Oxidative desulfurization of HDS diesel using the aldehyde/molecular oxygen oxidation system [J]. Energy Fuels,2007,21,3420-3424
    [85]Zaykina R F, Zaykin Y A, Yagudin S G, Fahruddinov I M. Specific approaches to radiation processing of high-sulfuric oil [J]. Radiat.Phys. Chem.,2004,71,467-470
    [86]Liu S Z, Wang B H, Cui B C, Sun L L. Deep desulfurization of diesel oil oxidized by Fe (VI) systems [J]. Fuel,2008,87,422-428
    [87]Ishihara A, Wang D, Dumeignil F, Amano H, Qian E W, Kabe T. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous How process [J]. Appl. Catal. A:Gen.,2005,279,279-287
    [88]Chica A, Corma A, Domine M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor [J]. J. Catal.,2006,242,299-308
    [89]Nisar A, Lu Y, Zhuang J, Wang X. Polyoxometalate nanocone nanoreactor:Magnetic manipulation and enhanced catalytic performance [J]. Angew. Chem. Int. Ed.,2011,50, 3187-3192
    [90]Gui J Z, Liu D, Sun Z L, Liu D S, Min D, Song B, Peng X L. Deep oxidative desulfurization with task-specific ionic liquids:An experimental and computational study [J]. J. Mol. Catal. A: Chem.,2010,331,64-70
    [91]Wilkes J S. Properties of ionic liquid solvents for catalysis [J]. J. Mol. Catal. A:Chem.,2004, 214,11-17
    [92]Welton T. Solvents for Synthesis and Catalysis [J]. Chem. Rev.,1999,99,2071-2084
    [93]Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures—a review [J]. Fluid Phase Equilib.,2004,219,93-98
    [94]Ding Y X, Zhu W S, Li H M, Jiang W, Zhang M, Duan Y Q, Chang Y H. Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system [J]. Green Chem., 2011,13,1210-1216
    [95]Wang J L, Zhao D S, Li K X. Oxidative desulfurization of dibenzothiophene catalyzed by Bronsted acid ionic Liquid [J]. Energy Fuels,2009,23,3831-3834
    [96]Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters [J]. Coord. Chem. Rev.,1995,143,407-455
    [97]Hu J, Burns R C. Homogeneous-phase catalytic H2O2 oxidation of isobutyraldehyde using Keggin, Dawson and transition metal-substituted lacunary heteropolyanions [J]. J. Mol. Catal. A: Chem.,2002,184,451-464
    [98]Qiao Y X, Hou Z S. Polyoxometalate-based solid and liquid salts for catalysis [J]. Curr. Org. Chem.,2009,13,1347-1365
    [99]Lu H Y, Gao J B, Jiang Z X, Yang Y X, Song B, Li C. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis [J]. Chem. Commun.,2007, 150-152.
    [100]Wang R, Yu F L, Zhang G F, Zhao H X. Performance evaluation of the carbon nanotubes supported CS2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene [J]. Catal. Today,2010,150,37-41
    [101]Wang R, Zhang G F, Zhao H X. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil [J]. Catal. Today,2010,149,117-121
    [102]AbdallaZ E A, Li B S. Preparation of MCM-41 supported (Bu4N)4H3(PW11O39) catalyst and its performance in oxidative desulfurization [J]. Chem. Eng. J.,2012,200-202,113-121
    [103]Wan Q, Duan L, He K. B, Li J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas [J]. Chem. Eng. J.,2011,170, 512-517
    [104]Brigante M, Schulz P C. Cerium (IV) oxide:Synthesis in alkaline and acidic media, characterization and adsorption properties [J]. Chem. Eng. J.,2012,191,563-570
    [105]Zeng Y, Kaytakoglu S, Harrison D P. Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent [J]. Chem. Eng. Sci.,2000,55,4893-4900
    [106]Yi K B, Podlaha E J, Harrison D P. Ceria-zirconia high-temperature desulfurization sorbents [J]. Ind. Eng. Chem. Res.2005,44,7086-7091
    [107]Cai T J, Liao Y C, Peng Z S, Long Y F, Wei Z Y, Deng Q. Photocatalytic performance of TiO, catalysts modified by H3PW12O40, ZrO2 and CeO2 [J]. J. Environ. Sci.,2009,21,997-1004
    [108]Zhang Y N, Lu H Y, Wang L, Zhang Y L, Liu P. I Ian H X, Jiang Z X, Li C. The oxidation of benzothiophene using the Keggin-type lacuary polytungstophate as catalysts in emulsion [J]. J. Mol. Catal. A:Chem.,2010,332,59-64
    [109]Lin J, Li L, Huang Y Q, Zhang W S, Wang X I), Wang A Q, Zhang T. In situ calorimetric study:structural effects on adsorption and catalytic performances for CO oxidation over Ir-in-CeO2 and ir-on-CeO, catalysts [J]. J. Phys. Chem. C,2011,115,16509-16517
    [110]Caliman E, Dias J A, Dias S C L, Garcia F A C, De Macedo J J, Almeida L S. Preparation and characterization of H3PW12O40 supported on niobki[J]. Micropor. Mesopor. Mater.,2010,132, 103-111
    [111]Kukovecz A, Konya Z, Kiricsi I. An FT-IR and UV-VIS study on the structure and acidity of sol-gel derived silica foams [J]. J. Mol. Struct.,2001,563-564,409-412
    [112]Liu B, Li Q J, Du X B, Liu B B, Yao M G, Li Z P, Liu R, Liu D D, Zou X, Lv H, Li D M, Zou B, Cui T, Zou G T. Facile hydrothermal synthesis of CeO2 nanosheets with reactive exposure surface [J]. J. Alloys Compd.,2011,509,6720-6724
    [113]Hamad B, Lopes De Souza R O, Sapaly G, Rocha M G C, de Oliveira P G P, Gonzalez W A, Sales E A, Essayem N. Transesterification of rapeseed oil with ethanol over heterogeneous heteropolyacids [J]. Catal. Commun.,2008,10,92-97
    [114]Caero L C, Hernandez E, Pedraza F, Murrieta F. Oxidative desulfurization of synthetic diesel using supported catalysts Part I. Study of the operation conditions with a vanadium oxide based catalyst [J]. Catal. Today,2005,107-108,564-569
    [115]Komintarachat C, Trakarnpruk W. Oxidative desulfurization using polyoxometalates [J]. Ind. Eng. Chem. Res.,2006,45,1853-1856
    [116]Zhang B Y, Jiang Z X, Li J, Zhang Y N, Lin F, Liu Y, Li C. Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels [J]. J. Catal.,2012, 287,5-12
    [117]Zhang J T, Zhu W S, Li H M, Jiang W, Jiang Y Q, Huang W L, Yan Y S. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids [J]. Green Chem.,2009,11, 1801-1807
    [118]Velu S, Ma X L, Song C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents [J]. Ind. Eng. Chem. Res.,2003,42,5293-5304
    [119]Duncan D C, Chambers R C, Hecht E, Hill C L. Mechanism and dynamics in the H3[PW12040]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3- [J]. J. Am. Soc. Chem.,1995,117,681-691
    [120]Zhang S J, Zhao G D, Gao S, Xi Z W, Xu J. Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12O40:Transform-and-retransform process between catalytic precursor and catalytic activity species [J]. J. Mol. Catal. A:Chem.,2008,289,22-27
    [121]Etemadi O, Yen T F. Aspects of selective adsorption among oxidized sulfur compounds in fossil fuels [J]. Energy Fuels,2007,21,1622-1627
    [122]Al-Shahrani F, Xiao T, Llewellyn S A, Barri S, Jiang Z, Shi H, Martinie G, Green M L H. Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst [J]. Appl. Catal. B:Environ.,2007,73,311-316
    [123]Bonhote P, Dias A P, Papageorgiou N, Kalyanasumdaram K, Gratzel M Hydrophobic, highly conductive ambient temperature molten salts [J]. Inorg. Chem.,1996,35,1168-1178
    [124]Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chem.,2001,3,156-164
    [125]Rajkumar T, Rao G R. Investigation of hybrid molecular material prepared by ionic liquid and polyoxometalate anion [J]. J. Chem. Sci.,2008,120,587-594
    [126]Li B S, Ma W, Liu J J, Zuo S L, Li X F. Preparation of MCM-41 incorporated with lacunary Keggin polyoxometalate and its catalytic performance in esterification [J]. J. Colloid Interface Sci., 2011,362,42-49
    [127]Chen H, Dai W L, Deng J F, Fan K N. Novel heterogeneous W-doped MCM-41 catalyst for highly selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 [J]. Catal. Lett., 2002,81,131-135
    [128]Yang X L, Dai W L, Gao R H, Fan K N. Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach [J]. J. Catal.,2007,249,278-288
    [129]Jimenez-Morales I, Santamaria-Gonzalez J, Maireles-Torres P, Jimenez-Lopez A. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol[J]. Appl. Catal. A:Gen.,2010,379,61-68
    [130]Zhao D, Rodriguez A, Dimitrijevic N M, Rajh T, Koodali R T. Synthesis, structural characterization, and photocatalytic performance of mesoporous W-MCM-48 [J]. J. Phys. Chem. C,2010,114,15728-15734
    [131]Gao R H, Yang X L, Dai W L, Li Y Y, Li H X, Fan K N. Novel efficient and green approach to the synthesis of glutaraldehyde over highly active W-doped SBA-15 catalyst [J]. J. Catal.,2008, 256,259-267
    [132]Xu D, Zhu W S, Li H M, Zhang J T, Zou F. Shi H, Yan Y S. Oxidative desulfurization of fuels catalyzed by V2O5 in ionic liquids at room temperature [J]. Energy Fuels,2009,23, 5929-5933
    [133]Gao G H, Cheng S F, An Y, Si X J, Fu X L, Liu Y M, Zhang H J, Wu P, He M Y. Oxidative desulfurization of aromatic sulfur compounds over titanosilicates [J]. ChemCatChem,2010,2, 459-466
    [134]Kim T W, Kim M J, Kleitz F, Nair M M, Guillet-Nicolas R, Jeong K E, Chae H J, Kim C U, Jeong S Y. Tailor-made mesoporous Ti-SBA-15 catalysts for oxidative desulfurization of refractory aromatic sulfur compounds in transport fuel [J]. ChemCatChem,2012,4,687-697
    [135]Yan X M, Mei P, Lei J H, Mi Y Z, Xiong L, Guo L P. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst [J]. J. Mol. Catal. A:Chem.,2009,304,52-57
    [136]Yan X M, Su G S, Xiong L. Oxidative desulfurization of diesel over Ag-modified mesoporous HPW/SiO2 catalyst [J]. J. Fuel Chem. Technol.,2009,37,318-323
    [137]Li B S, Liu Z X, Liu J J, Zhou Z Y, Gao X H, Pang X M, Sheng H T. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid [J]. J. Colloid Interface Sci.,2011,362,450-456
    [138]Abdalla Z E A, Li B S, Tufail A. Direct synthesis of mesoporous (C19H42N)4H3(PW11O39) /SiO2 and its catalytic performance in oxidative desulfurization [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2009,341,86-92
    [139]Wang R, Li Y H, Guo B S, Sun H W. Catalytic mechanism of MCM-41 supported phosphoric acid catalyst for FCC gasoline desulfurization by alkylation:Experimental and theoretical investigation [J]. Energy Fuels,2011,25,3940-3949
    [140]Li B S, Wu K, Yuan T H, Han C Y, Xu J Q, Pang X M. Synthesis, characterization and catalytic performance of high iron content mesoporous Fe-MCM-41 [J]. Micropor. Mesopor. Mater.,2012,151,277-281
    [141]Li X C, Huang S X, Xu Q R, Yang Y F. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst [J]. Tran. Met. Chem.,2009,34, 943-947.
    [142]Adams C J, Bradley A E, Seddon K R. The synthesis of mesoporous materials using novel ionic liquid templates in water [J]. Aust. J. Chem.,2001,54,679-681
    [143]Mukhopadhuay K, Ghosh A, Kumar R. Heteropolyacids aided rapid and convenient syntheses of highly ordered MCM-41 and MCM-48:exploring the accelerated process by 29Si MAS NMR and powder X-ray diffraction studies [J]. Chem. Commun.,2002,2404-2405
    [144]Wang G J, Yu N Y, Peng L, Tan R, Zhao H H, Yin D H, Qiu H Y, Fu Z H, Yin D L. Immobilized chloroferrate ionic liquid:an efficient and reusable catalyst for synthesis of diphenylmethane and its derivatives [J]. Catal. Lett.,2008,123,252-258
    [145]Li B S, Mao H H, Li X, Ma W, Liu Z X. Synthesis of mesoporous silica-pillared clay by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternary ammonium surfactants as gallery templates [J]. J. Colloid Interface Sci.,2009,336,244-249
    [146]Sampanthar J, Xiao H, Dou J, Nah T, Rong X, Kwan W. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel [J]. Appl. Catal. B:Environ.,2006, 63,85-93
    [147]Ito E, Van Veen J A R. On novel processes for removing sulphur from refinery streams [J]. Catal. Today,2006,116,446-460
    [148]Mei H, Mei B, Yen T. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization [J]. Fuel,2003,82,405-414
    [149]Kozhevnikov 1. Heteropoly acids and related compounds as catalysts for fine chemical synthesis [J]. Catal. Rev.,1995,37,311-352
    [150]Diaz-Droguett D E, Far R E, Fuenzalida V M, Cabrera A L. In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2 [J]. Mater. Chem. Phys.,2012,134,63-638
    [151]张海荣,李哲,黄伟.纳米Mo-ZSM-5分子筛的合成与表征[J].石油学报,2009,25,587-590
    [152]Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Shams E, Salavati H. Hydrocarbon oxidation catalyzed by vanadium polyoxometalate supported on mesoporous MCM-41 under ultrasonic irradiation [J]. Ultrason. Sonochem.,2008,15,438-447
    [153]Bu W, Wu L, Tang A. Polyoxometalates matrixed into surfactants:synthesis, characterizations, and conformations of surfactants [J]. J. Colloid Interface Sci.,2004,269, 472-475.
    [154]Maayan G, Popovitz-Biro R, Neumann R. Micelle directed synthesis of polyoxometalate nanoparticles and their improved catalytic activity for the aerobic oxidation of sulfides [J]. J. Am. Chem. Soc.,2006,128,4968-4969
    [155]Stein A, Fendorf M, Jarvie T P, Mueller K T, Benesi A J, Mallouk T E. Salt-gel synthesis of porous transition-metal oxides [J]. Chem. Mater.,1995,7.304-313
    [156]He N Y, Woo C S, Kim H G, Lee H I. Catalytic formation of acetic anhydride over tungstophosphoric acid modified SBA-15 mesoporous materials [J]. Appl. Catal. A:Gen.,2005, 281,167-178
    [157]Kumar D, Landry C C. Immobilization of a Mo,V-polyoxometalate on cationically modified mesoporous silica:Synthesis and characterization studies [J]. Micropor. Mesopor. Mater.,2007,98,309-316
    [158]Yu X, Xu L, Yang X, Guo Y, Li K, Hu J, Li W, Ma F, Guo Y. Preparation ofperiodic mesoporous silica-included divacant Keggin units for the catalytic oxidation of styrene to synthesize styrene oxide [J]. Appl. Surf. Sci.,2008,254,4444-4451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700