用户名: 密码: 验证码:
金属表面防护性涂层评价及缓蚀剂技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料由于与其所处环境发生化学或电化学反应而引起变质和破坏,这种现象称为腐蚀,腐蚀给经济建设和人民生活带来了巨大的经济损失和危害。目前,防止金属腐蚀的主要方法包括正确选用耐腐蚀材料、腐蚀环境的控制(包括缓蚀剂)、电化学保护、表面涂覆层保护以及合理的防腐蚀设计。其中,涂层和缓蚀剂保护是最经济、应用最普遍的两种有效方法。
     在石油和天然气的开采中,酸化压裂是油气田常用的增产增注措施。但酸液注入地层的过程中会对地面管汇及井筒管壁产生严重的腐蚀,因此酸液中必须加入缓蚀剂。若缓蚀剂使用不当,可能会造成施工设备、油气井管材和井下金属工具的表面点蚀和氢脆等,有时还可能导致井下管材突发性破裂事故,造成严重经济损失。因此,研究和开发与高温酸化处理液配套的酸化缓蚀剂是解决腐蚀问题、保证深井酸化顺利进行的关键。
     CoNiFe软磁薄膜具有较高饱和磁感强度Bs和较低的矫顽力He,是电子电力软磁材料的有力竞争者。目前,电化学方法因其可以很好地调控镀层的组成、结构及性能,成为制备CoNiFe软磁薄膜最具发展前景的技术之一。然而,电沉积过电势与薄膜生长速率的关系尚未报道。
     本论文分为两部分,第一部分“防护性膜层的研究”得到了中石化塔河油田项目(GY-KY2009-16)的资助,第二部分“磁性膜层的研究”得到了国家自然科学基金(50741005)的资助。论文的研究内容主要包括:油气田涂料覆盖层防蚀效果评价,基于亚麻籽油的咪唑啉酸化缓蚀剂的制备、表征及其缓蚀行为研究,铜基苯并三氮唑缓蚀剂的表征及其缓蚀行为研究,沉积过电势与CoNiFe薄膜生长速率的关系模型研究。
     论文首先对油气田常用的几种涂料覆盖层进行了防蚀效果的评价及其防护原因分析,建立了一套筛选耐蚀涂层的方法体系。(a)提出在评价涂层耐蚀性能时,首先应该将单位面积单位厚度涂层电阻与单位面积单位厚度涂层电容作为涂层耐蚀性能评价的指标,并且优先考虑单位面积单位厚度涂层电阻的大小;然后主要采用保护效率、孔隙率等其它参数来判断涂层在服役期的防护性能。(b)采用电化学方法研究了多种常用油气田涂层的防腐性能,使用热重法评价了涂层的热稳定性,并分别对比了这几种涂层的附着力、耐磨性和硬度。实验发现"PH52-2弹性网络导静电重防腐涂料底漆+PH52-2弹性网络导静电重防腐涂料面漆”的防护效果最好,经济型"H06-4环氧富锌底漆+H52-1环氧云铁中间漆+BS52-2聚氨酯面漆”涂料可用。结构分析表明:“PH52-2弹性网络导静电重防腐涂料”是经过聚氨酯改性的环氧涂料,改性过程中生成了新的C-N键,由于其较高的键能而具有更优的耐化学药品性;且成膜后所形成的两种不同的网状结构互相贯穿,同时结构中氢键的作用导致链间相互连接,形成宏观上均匀一致、微观上可能分相的共混体系。这种共混体系兼具了聚氨酯树脂、环氧树脂的优势,大大提高了涂层的柔韧性、强度、附着力、抗渗透性的化学惰性。
     其次,论文通过亚麻籽油合成了新型的咪唑啉酸化缓蚀剂,并对其缓蚀行为进行了详细探讨。采用失重法测试了亚麻籽油咪唑啉酸化缓蚀剂的缓蚀效率,并与油田常用的缓蚀剂性能进行了对比;采用极化曲线法、电化学阻抗方法研究了亚麻籽油咪唑啉酸化缓蚀剂的缓蚀行为,极化曲线测试与电化学阻抗测试结果一致。结果表明:合成的亚麻籽油咪唑啉酸化缓蚀剂加量少、缓蚀效率高,其缓蚀效率随着缓蚀剂浓度的增大而增大、在Q235钢表面的化学吸附行为遵从Langmuir吸附等温式。
     再次,论文详细研究了苯并三氮唑(BTAH)在铜电极表面的吸附动力学行为,建立了两个吸附动力学数学模型。当BTAH在铜电极表面吸附达到平衡状态时,吸附行为遵从Langmuir吸附等温式;在假定溶液中BTAH浓度恒定不变(高BTAH浓度)的情况下,建立了其在铜电极表面的指数衰减吸附模型;在考虑溶液中BTAH浓度的变化,建立了其在铜电极表面的高阶吸附动力学模型。
     论文最后在国家自然科学基金(50741005)的资助下建立并验证了沉积过电势与CoNiFe薄膜生长速率的关系模型。首先从电极过程动力学导出了沉积过电势与薄膜生长速率之间关系的理论方程;然后,基于CoNiFe软磁薄膜在黄铜基底上的电沉积电化学阻抗(EIS)参数验证了理论方程的正确性,从而从理论上首次证明了阴极沉积过电势与CoNiFe合金薄膜电沉积生长速率之间的指数增长函数关系,即电沉积过程的电荷转移电阻与沉积过电势之间的指数衰减关系。
The deterioration and destruction of Metal materials caused by the chemical or electrochemical reaction with their service environment is known as corrosion. Corrosion is an extremely serious factor to the economic construction and people's life, which brought huge economic losses and harm to the human and society. At present, the main methods to prevent metal corrosion include:choosing the corrosion-resistant material; controlling the corrosive environment (inhibitor); electrochemical protection; protective surface coatings and rational design of corrosion prevention. Among them, the surface coating and inhibitor are considered to be one of the most efficient, economical and popular way.
     During the exploration of oil and gas resource, acidizing is commonly used in stimulation in oil and water well which may corroded the ground tube and wellhole seriously as well. Thus, the inhibitor must be added into the acid to prevent the concurrent corrosion. However, improper using of inhibitor may cause the surface pitting, hydrogen embrittlement and weightloss of the construction equipment, oil and gas well tubing and downhole metal tools, and sometimes may result in burst accident of downhole pipes, causing severe economic loss. Consequently, the research and development of corrosion inhibitor for high temperature and high concentration of acid is the key to solve the corrosion problem, to ensure the smooth conduction for acidification of deep oil wells.
     A strong candidate of soft magnetic materials in many MEMS applications is the CoNiFe soft magnetic film due to its capable of providing an extremely high Bs combined with reasonably low He. Right now, the electroplating method is one of the most promising technologies to prepare the CoNiFe soft magnetic film because of its ability to "tailor" deposit structure and properties and to form a high-aspect-ratio film. However, the relationship between the deposition overpotential and the film growth rate has not been reported.
     This paper was divided into two parts, one of the works on the protective films was supported by the project (GY-KY2009-16) from Sinopec Tahe oil field, and the other one on the magnetic films was supported by the National Natural Science Foundation of Chian (No.50741005). The concent of this paper mainly includes:evaluation of corrosion prevention effect of coatings used in oil-gas field; preparation and characterization of a new imidazoline inhibitor based on linseed oil and study on its inhibition mechanism on Q235electrode; characterization and inhibition behavior of benzotriazole on copper electrode and setting up and verifying a new model between the electrodeposition potential bias and growth rate of CoNiFe soft megnatic film.
     Firstly, the paper deals with the evaluation of corrosion prevention effect of coatings used in oil-gas field and establishs a systemic means to obtain the unticorrosive coatings,(a) firstly, the unit area and unit thickness of coating resistance and capacitance was taken to be evaluation index of unticorrosion properties, and the unit area and unit thickness of coating resistance was the priority; then the protective efficiency and porosity was used to determine their protective properties at their service period,(b) Electrochemical methods were used to evaluate the corrosion prevention property, thermogravi metric method was used to evaluate the thermostability, and the adhesion, wear resistance and hardness was compared. Results reveal that the coating "PH52-2elastic network conducting electrostatic anticorrosion coating primer+PH52-2elastic network conducting electrostatic anticorrosion topcoat" has the best protective properties; Economic type "1106-4zinc-rich epoxy primer+1152-1micaceous iron oxide epoxy paint+BS52-2polyurethane topcoat" is practicable. Meanwhile, the structure of "PH52-2elastic network conducting electrostatic anticorrosion coating primer+PH52-2elastic network conducting electrostatic anticorrosion topcoat" was analysed:new C-N bond was generated after the modification of epoxy coatings with polyurethane, which has excellent chemical resistance due to its high bond energy, and after consolidation, these two different kinds of networks run through each other to form a uniform at a macro and micro phase separation of blends, simultaneously as a result of the hydrogen bond function. This blend system conbines both the advantages of polyurethane and epoxy resin, which greatly enhance the flexibility, the intensity, the adhesion and penetration resistance.
     Secondly, a new imidazoline inhibitor based on linseed oil was synthesized. The inhibition efficiency of this inhibitor has been tested through weight loss method, and the inhibition effect was compared with other inhibitor commonly used in the oil field, results indicate that the synthesized linseed oil inhibitor has high inhibition efficiency with smaller amount. Tafel and electrochemical impedance technique were used to study the inhibition behavior of linseed oil based imidazoline inhibitor on Q235steel.Results obtained from Tafel test agree well with the EIS measurements, the inhibition efficiency increases with increasing the concentration of inhibitor, the adsorption behavior of linseed oil imidazoline inhibitor on Q235steel follows Langmuir adsorption, and it is chemisorptions.
     Additionally, the adsorption behavior of benzotriazole on copper electrode was also studied. Three models were established to analyze the adsorption dynamics at different conditions. Adsorption of BTAH followed Langmuir adsorption isotherm when adsorption-desorption reached steady-state. BTAH film growth can be best represented by exponential decay law assuming the concentration of BTAH in the solution was constant over time. Higher-order model was established to evaluate adsorption dynamics considering the variation of BTAH concentration in the bulk solution. The adsorption rate constant and desorption rate constant were different while different modles were used to analyze the adsorption process.
     At last, the electrodepostion behavior of CoNiFe soft magnetic film on brass substrate was studied mainly by electrochemical impedance which was supported by National Natural Science Foundation of Chian (No.50741005). Functional relationships between deposition rate and cathodic potential bias was established theotically for the first time that the charge transfer resistance of the deposition process decreases exponentially with the applied potential bias.
引文
[1]王菁,师华,于一川,岳文华,无溶剂液体环氧涂层耐磨性的研究,上海涂料,2011,49(9)21-24
    [2]喻林,程珏,热固性树脂,新工艺合成低黏度双酚A型液态环氧树脂,2010,25(3)31-34
    [3]庄宏清,提高液体环氧树脂主要性能的方法探讨,热固性树脂,2008,23(4)30-32
    [4]范亚平,任天斌,黄艳霞,朱立华,顾国芳,任杰,水性环氧树脂涂料及其固化机理的研究,涂料工业,2006,36(7)17-20
    [5]陶永忠,陈铤,顾国芳,Ⅰ型水性环氧树脂固化剂及其涂料性能,建筑材料学报,2000,3(4)349-354
    [6]V.B. Miskovic-Stankovic, J.B. Zotovic, Z. Kacarevic-Popovic, M.D. Maksimovic, Corrosion behavior of epoxy coatings electrodeposited on steel electrochemically modified by Zn-Ni alloy, Electrochimica Acta,44 (1999) 4269-4277
    [7]J.B. Bajat, V.B. Miskovie-Stankovic, Z. Kacarevic-Popovic, Electrochemical and sorption characteristics and thermal stability of epoxy coatings electrodeposited on steel modified by Zn-Co alloy, Progress in Organic Coatings,45(2002) 379-387
    [8]V.B. Miskovic-Stankovic, M.D. Maksimovic, Z. Kacarevic-Popovic, J.B. Zotovic, The sorption characteristics and thermal stability of epoxy coatings electrodeposited on steel and steel electrochemically modified by Fe-P alloys, Progress in Organic Coatings,33(1998)68-75
    [9]乔军平,钢质管道内外环氧粉末喷涂一次成型新工艺,油气储运,2009,28(7)76-78
    [10]骆素珍,郑玉贵,李劲,李京,姚治铭,柯伟,环氧粉末涂层的抗冲蚀性能,材料研究学报,2000,14(5)517-523
    [11]代孟元,童乃斌,潘向东,郑德宝,汪鹏,孙毅,三层聚乙烯防腐涂层和双层熔结环拉粉末涂层防护性能比较,第五届全国腐蚀大会论文集,2009,1-9
    [12]孙成,李洪锡,高立群,周晓晔,韩恩厚,一种环氧粉末涂层的土壤腐蚀 研究,腐蚀科学与防护技术,2001,13(6)330-332
    [13]H.J. Yu, L. Wang, Q. Shi, G.H. Jiang, Z.R. Zhao, X.C. Dong, Study on nano-CaCO3 modified epoxy powder coatings, Progress in Organic Coatings,55(2006) 296-300
    [14]H.F. Wang, W.J. Han, H.B. Tian, Y.M. Wang, The preparation and properties of glass powder reinforced epoxy resin, Materials Letters,59(2005) 94-99
    [15]Y.J. Zhai, Z.C. Wang, W. Huang, J.J. Huang, Y.Y. Wang, Y.Q. Zhao, Improved mechanical properties of epoxy reinforced by low content nanodiamond powder, Materials Science and Engineering A,528(2011)7295-7300
    [16]D. Piazza, N.P. Lorandi, C.I. Pasqualm L.C. Scienza, A.J. Zattera, Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating, Materials Science and Engineering A,528(2011)6769-6775
    [17]陈建斌,王武生,曾俊,王爱东,亚麻油改性水性聚氨酯涂料,涂料工业,2006,36(6)33-36
    [18]顾国芳,柳丽君,李晓明,水性聚氨酯涂料的合成,建筑材料学报,2002,5(2)160-165
    [19]方冉,耿志远,张兴辉,高敬民,陈延辉,梁义芳,双组分高固体丙烯酸聚氨酯涂料的研究,涂料工业,2005,35(1)7-11
    [20]李晓云,姚建春,孙振荣,李万捷,单组分热固化聚氨酯涂料的合成及性能研究,聚氨酯工业,2012,27(4)24-26
    [21]剂斌,李瑛,林海潮,曹楚南,丙烯酸聚氨酯涂料防腐蚀性能研究,中国腐蚀与防护学报,2003,23(2)89-91
    [22]Y.F. Zhu, J.P. Xiong, Y.M. Tang, Y. Zuo, EIS study on failure process of two polyurethane composite coatings, Progress in Organic Coatings,69(2010) 7-11
    [23]D.E. Fiori, Two-component water reducible polyurethane coatings, Progress in Organic Coatings,32(1997) 65-71
    [24]T.S. Velayutham, W.H. Abd Majid, A.B. Ahmad, G.Y. Kang, S.N. Gan, Synthesis and characterization of polyurethane coatings derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Progress in Organic Coatings,66(2009) 367-371
    [25]张利,吴庆余,魏铭,何松林,李淑柱,醇溶性无机富锌涂料及其电化学行为的研究,涂料工业,2002,32(8)6-7
    [26]李焱,富锌涂料的研究及进展动态,上海涂料,2009,47(1)36-38
    [27]杨振波,杨忠林,郭万生,宋广成,鳞片状富锌涂层耐蚀机理的研究,中国涂料,2006,21(1)19-20
    [28]于晓辉,朱晓去,郭忠诚,龙晋明,鳞片状锌基环氧富锌重防腐涂料的研制,表面技术,2005,34(1)53-55
    [29]王盼,杨巧,陈小媛,钠水玻璃富锌涂料固化机理的探讨,应用化工,2007,36(11)1076-1080
    [30]H. Marchebois, S. Joiret, C. Savall, J. Bernard, S. Touzain, Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy, Surface and Coatings Technology,157(2002) 151-161
    [31]H. Marchebois, C. Savall, J. Bernard, S. Touzain, Electrochemical behavior of zinc-rich powder coatings in artificial sea water, Electrochimica Acta,49(2004) 2945-2954
    [32]H. Marchebois, S. Touzain, S. Joiret, J. Bernard, C. Savall, Zinc-rich powder coatings corrosion in sea water:influence of conductive pigments, Progress in Organic Coatings,45(2002) 415-421
    [33]W.B. Chen, Peter Chen, H.Y. Chen, Jack Wu, W.T. Tsai, Development of Al-containing zinc-rich paints for corrosion resistance, Applied Surface Science, 187(2002) 154-164
    [34]H.W. Shi, F.C. Liu, E.H. Han, The corrosion behavior of zince-rich paints on steel:influence of simulated salts deposition in on offshore at mosphere at the steel/paint interface, Surface and Coatings Technology,205(2011) 4532-4539
    [35]杨骁,成品油储罐内涂层技术,石油化工腐蚀与防护,2001,18(2)43-45
    [36]付丽萍,成品油储罐内涂层技术分析与应用,沧州师范专科学校学报,2005,21(3)68-69
    [37]刘剑锋,卢鹉,李晨光,孙伟华,抗高热流防静电涂层性能,宇航材料工艺, 2011,41(5)60-62
    [38]宋广成,石油罐防静电涂料应用概述,石油化工安全环保技术,2010,26(6)39-42
    [39]N.A. Dahoudi, H. Bisht, C. Gobbert, T. Krajewski, M.A. Aegerter, Transparent conducting, anti-static and anti-static-anti-glare coatings on plastic substrate, Thin Solid Films,392(2001) 299-304
    [40]金鼎铭,曾琛,杨世元,张立基,竺栋荣,段宏义,单因素轮换法在聚丙烯涂层树脂研发中的应用,石化技术与应用,2006,24(1)14-16
    [41]宗少彬,石荣满,林志伟,埋地钢管外防腐复合涂层的生产工艺,工业涂装,2006,9(8)31-34
    [42]高晓静,聂旋,失水山梨醇脂酸酯对聚丙烯透光率的影响,包装学报,2012(4)1-4
    [43]陈亚萍,余自力,倪海鹰,李祝,欧阳国海,宋之敏,有机物涂覆金属表面疏水性探讨,塑料工业,2009,37(2)67-70
    [44]G.P. Guidetti, G.L. Rigosi, R. Marzola, The use of polypropylene in pipeline coatings, Progress in Organic Coatings,27(1996) 79-85
    [45]孙晶,廖有为,周庆军,李维绪,李健,低温管道改性聚脲补口涂料的研制,上海涂料,2008,46(6)1-3
    [46]廖有为,车轶才,赵舒超,曹树印,贺光辉,聚脲弹性涂料在皮卡车车厢内表面的应用,材料保护,2004,37(2)59-61
    [47]董玉婷,聚脲防腐涂料概述,上海涂料,2006,44(10)22-24
    [48]李荣光,刘明辉,汤兵,高强,聚脲涂层的耐阴极剥离性能研究,油气储运,2008,27(3)33-35
    [49]刘明辉,李志勇,阿拉坦夫,刘敬童,聚脲涂料喷涂设备及工艺,管道技术与设备,2012(1)35-37
    [50]梁根选,王琪,王惠,聚脲涂料在埋地钢制管道防腐及补口中的应用探索,焊管,2009,32(10)30-32
    [51]刘小平,郑超,聚脲涂料在长输管道上应用的可能性,涂料技术与文摘,2011(11)28-31
    [52]杨惠康,张力,石光,可UV固化的超支化聚脲涂料的合成,广东化工,2009,36(9)104-105
    [53]马晓燕,贺军会,王军委,贾虎昌,贺少鹏,宋朝辉,纳米改性聚脲涂料的研制与施工应用,中国涂料,2012,27(12)26-30
    [54]廖有为,曹树印,钟萍,李健,雷磊,喷涂聚脲涂料在混凝土结构表面保护领域的应用研究,上海涂料,2008,46(8)22-25
    [55]H. Ni, W.J. Simonsick Jr, A.D. Skaja, J.P. Williams, M.D. Soucek, Polyurea/polysiloxane creamer coatings, Progress in Organic Coatings,38(2000) 97-110
    [56]H.A. Toutanji, H. Choi, D. Wong, J.A. Gilbert, D.J. Alldredge, Applying a polyurea coating to high-performance organic cementitious materials, Construction and Building Materials,38(2013) 1170-1179
    [57]D. Fragiadakis, R. Gamache, R.B. Bogoslovov, C.M. Roland, Segmental dynamics of polyurea:Effect of stoichiometry, Polymer,51(2010) 178-184
    [58]王巍,薛富津,钛纳米聚合物涂料在酸性水罐的应用,管道技术与设备,2005(1)26-28
    [59]王巍,钛纳米聚合物涂料在炼油厂设备防腐蚀中的应用,石油化工设备技术,2007,28(2)34-37
    [60]W.S. Tait, K.A. Handrich, S.W. Tait, J.W. Martin, Electrochemical Impedance Analysis and Interpretation. ASTM STP 1188
    [61]J.R. Scully, D.C. Silverman, M.W. Kendig (Philadelphia, PA:ASTM.1993):428
    [62]H. Leidheiser, Electrical and electrochemical measurements as predictors of corrosion at the metal-organic coating interface, Progress in Organic Coatings, 7(1979)79-104
    [63]R. Scully, Electrochemical Impedance of organic coated steel:correlation of impedance parameters with long-term coating deteroioration, Journal of Electrochemical Society,136(1989) 979-990
    [64]Potvin, E. Brossard, L. Larochelle, G, Corrosion protective performances of commercial low-VOC expoy/urethane coatings on hot-rolled 1010 mild steel, Progress in Organic Coatings,31(1997) 363-373
    [65]F. Deflorian, L. Fedrizzi, D. Lenti, P.L. Bonora, On the corrosion protection properties of fluoropolymer coatings, Progress in Organic Coatings,22(1993) 39-63
    [66]I. Thompson and D. Campbell, Corrosion Science,36(1994) 187-198
    [67]J. Kittel, N. Celati, M. Keddamb, H. Takenouti, Influence of the coating-substrate interactions on the corrosion protection:characterization by impedance spectroscopy of the inner and outer parts of a coating, Progress in Organic Coatings,46(2003) 135-147
    [68]U. Rekners, M. Kalnins. Evaluation of the protective properties of organic coatings by using tape and blistering tests, Progress in Organic Coatings,38(2000) 35-42
    [69]F. Deflorian, L. Fedrizzi, P. L. Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corrosion Science,38(1996) 1697-1708
    [70]K.M. Yin, H.Z. Wu, Electrochemical impedance study of the degradation of organic-coated copper, Surface and Coatings Technology,106(1998) 167-173
    [71]T. Pajkossy, Impedance of rough capacitive electrodes, Journal of Electroanalytical Chemistry,364(1994) 111-125
    [72]D.M. Brasher, A.M. Kingsbury, Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake, Journal of Applied Chemistry, 4(1954)62-69
    [73]H. Yasuda, Q.S. Yu, M. Chen, Interfacial factors in corrosion protection:an EIS study of model systems, Progress in Organic Coatings,41(2001) 273-279
    [74]G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings:electrochemical mechanism and novel methods of investigation, Electrochimica Acta,45(2000) 2515-2533
    [75]L. Fedrizzi, F.J. Rodriguez, S. Rossi, F. Deflorian, R. Di Maggio. The use of electrochemical techniques to study the corrosion behavior of organic coatings on steel pretreated with sol-gel zirconia films, Electrochimica Acta,46(2001) 3715-3724
    [76]J.E.G. Gonzalez and J.C. Mirza Rosca, Determination of the adhesion properties of an alkyd pigmented coating by electrochemical impedance spectroscopy, Journal of Adhesion Science and Technology,13(1999) 379-388
    [77]F. Mansfeld, C.H. Tsai, Determination of coating deterioration with EIS:Basic relationships, Corrosion,47(1991) 958-963
    [78]F. Deflorian, L.Fedrizzi, and S.Rossi, Degradation of protective organic coatings after cupping test, Corrosion,55(1999) 1003-1011
    [79]W. K. Loh, A. D. Crocombe, M. M. Abdelwahab, J. F. Watts and I. A. Ashcroft, The effect of moisture on the failure locus and fracture energy of an epoxy-steel interface, Journal of Adhesion Science and Technology,16(2002) 1407-1429
    [80]D, L.Oliveira, C. Fernandes, J.C.S.Ferreira, EIS on plasma-polymerised coatings used as pre-treatment for aluminium alloys, Electrochimica Acta,47(2002) 2253-2258
    [81]F. Deflorian, L. Fedrizzi, Adhesion characterization of protective organic coatings by electrochemical impedance spectroscopy, Journal of Adhesion Science and Technology,13(1999) 629-645
    [82]S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, A new corrosion protection coating with polyaniline-TiO2, Electrochimica Acta,52 (2007) 2068-2074
    [83]J.B. Bajat, V.B. Midkovic-Stankovic, J.P. Popic, D.M. Drazic, Adhesion characteristics and corrosion stability of epoxy coatings electrodeposited on phosphated hot-dip glavanized steel, Progress in Organic Coatings,63(2008) 201-208
    [84]F. Deflorian, S. Rossi, An EIS study of ion diffusion through organic coatings, Electrochimica Acta,51(2006) 1736-1744
    [85]N. Scharnagl. C. Blawert, W. Dietzel, Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PEI), Surface and Coatings Technology,203 (2009) 1423-1428
    [86]C.J. van Oss, R.J. Good, M.K. Chaudhury, The role of van der waals forces and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy surfaces, Journal of Colloid and Interface Science,111(1986) 378-390
    [87]C.J. van Oss, R.J. Good, Surface tension and the solubility of polymers and biopolymers:the role of polar and apolar interfacial free energies, Journal of Macromolecular Science:Part A-Chemistry,26 (8) (1989) 1183-1203
    [88]王连成,李明朗,程万庆,江国胜,酸化压裂方法在碳酸盐岩热储层中的应用,水文地质工程地质,2010,5(37)128-132
    [89]韩演涛,张永国,岳翰林,酸化压裂技术在油气田开发中的现状及应用,中国石油和化工标准与质量,2011,31(11)175-177
    [90]陈生辉,酸化压裂的研究现状分析和在现场中的应用,价值工程,2010,29(14)146-147
    [91]刘德新,邱广敏,赵修太,高温酸化缓蚀剂的合成与筛选,钻采工艺,2007,30(4)119-124
    [92]熊颖,陈大钧,张磊,吴文刚,王君,一种咪唑啉类抗高温酸化缓蚀剂的制备与性能评价,钻采工艺,2007,30(4)141-146
    [93]王宝峰,胡恩安,低伤害高温酸化缓蚀剂AI-811的开发及机理,腐蚀科学与防护技术,2001,13(5)294-296.
    [94]于洪江,李善建,一种低毒酸化缓蚀剂的研制,腐蚀与防护,2005,26(11)161-163
    [95]张贵才,刘静静,王涛,阳离子型高温酸化缓蚀剂的合成,油气地质与采收率,2006,13(3)85-87
    [96]李谦定,王京光,于洪江,周佩,一种新型高效油气井酸化缓蚀剂的研制,天然气工业,2008,28(2)96-98
    [97]Be Miller J.N, Industrial Gums [M], New York:Academic,1993,234-237
    [98]Mazza. G, Biliaderis.C. G, Functional properties of flax seed mucilage, Jouranl of Food Science,54(1989) 1302-1305
    [99]吴艳霞,亚麻籽及亚麻籽油,陕西粮油科技,1994,(2)22-23
    [100]陈海华,许时婴,王璋,亚麻籽胶的研究进展与应用,食品与发酵工业, 2002,(9):64-68
    [101]陈海华,亚麻籽的营养成分及开发利用,中国油脂,2004,29(6)72-75
    [102]王钦文,亚麻油质量分析报告,中国油脂,1986,11(5)14-20
    [103]郭忠贤,赵毅,苏占明,赵萍,亚麻籽油的开发利用,农产品加工.学刊,2005(4)74-75
    [104]Patrick Muturi, Danqing Wang, Stoil Dirlikov, Epoxidized vegetable oils as reactive diluents. Comparison of vernonia, epoxidized soybean and epoxidized linseed oils, Progress in organic coatings,25(1994) 85-94
    [105]W.S. Araujo, I.C.P. Margarit, O.R. Mattos, F.L. Fragata, Corrosion aspects of alkyd paints modified with linseed and soy oils, Electrochimica Acta,55(2010) 6204-6211
    [106]P.P. Kundu, R.C. Larock, Effect of drying catalysts on the properties of thermal copolymers from conjugated linseed oil-styrene-divinylbenzene, Progress in Organic Coatings,65(2009) 10-18
    [107]Vinay Sharma, J.S. Banait, P.P. Kundu, Spectroscopic characterization of linseed oil based polymer nano-composites, Polymer Testing,27(2008) 916-923.
    [108]C. Suryanarayana, K. Chowdoji Rao, Dhirendra Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings, Progress in Organic Coatings,63(2008) 72-78
    [109]Manawwer Alam, S.M. Ashraf, Sharif Ahmad, Pyridine-poly(urethane ester amide) coatings from linseed oil, Journal of Polymer Research,15(2008) 343-350
    [110]E. Sharmin, M.S. Alam, R.K. Philip, S. Ahmad, Linseed amide diol/DGEBA epoxy blends for coating applications:Preparation, characterization, ageing studies and coating properties, Progress in Organic Coatings,67(2010) 170-179
    [111]S. Ahmad, F. Naqvi, K.L. Verma, S. Yadav, Studies on a newly developed linseed oil-based alumina-filled polyesteramide anticorrosive coating, Journal of Applied Polymer Science,72(1999) 1679-1687
    [112]Zhengang Zong, Jianyun He, Mark D. Soucek, UV-curable organic- inorganic hybrid films based on epoxynorbornene linseed oils, Progress in Organic Coatings, 53(2005) 83-90
    [113]N. Boquillon, C. Fringant, Polymer networks derived from curing of epoxidiscd linseed oil:influence of different catalysts and anhydride hardeners, Polymer, 41(2000)8603-8613
    [114]吴荫顺,郑家燊,电化学保护和缓蚀剂应用技术,北京:化学工业出版社,2005
    [115]袁郎白,李向红,木冠南,正丁胺和硝酸钠对铝的缓蚀协同效应,清洗世界,2004,20(7)6-8
    [116]袁郎白,刘晓轩,李向红,木冠南,盐酸介质中十二烷基磺酸钠和硝酸钠对铝的缓蚀协同效应,腐蚀与防护,2003,24(9)376-377
    [117]袁郎白,杨盛春,李向红,木冠南,二正丁胺和硝酸钠在盐酸介质中对铝缓蚀的影响,云南民族大学学报,2004,13(4)305-307
    [118]李相彪,何爱江,胡忠义,铬酸钾和亚硝酸钠复合阴锈性能研究,资源开发与市场,2010,26(5)393-394
    [119]匡飞,王佳,贾方,叶仲斌,亚硝酸钠微胶囊缓蚀剂研究,腐蚀科学与防护技术,2009,21(2)173-175
    [120]张敏,吴晋英,徐会武,黄长山,程玉山,刘荣江,薛勉,亚硝酸钠及其复合预膜剂缓蚀性能的评价,清洗世界,2010,26(9)13-16
    [121]李言涛,吴茂涛,姜信德,李再峰,羧甲基壳聚糖与其他缓蚀剂的协同缓蚀效能,装备环境工程,2010,7(1)1-5
    [122]柳松,钟燕,蒋荣英,冯自平,肖睿,苯并三氮唑和磷酸钠对锌的协同缓蚀,华南理工大学学报,2011,39(1)36-40
    [123]张大全,张万友,王嵬,周国定,国内外混凝土钢筋阻锈剂研究进展,腐蚀与防护,2007,28(2)55-57
    [124]韩成利,氢氧化钠介质中三聚磷酸钠对铝的缓蚀作用及吸附热,高师理科学刊,2009,29(5)69-71
    [125]李可彬,武玉飞,多元膦酸复合水处理剂的合成,化学研究与应用,2002,14(6)750-752
    [126]龚利华,环毅,钼酸盐水处理缓蚀剂复配研究,给水排水,2006,32(6)60-63
    [127]王晓伟,周柏青,李芹,循环冷却水处理中钼酸盐的无机协同缓蚀剂,工业用水与废水,2002,33(6)19-21
    [128]王昕,张春丽,钼酸钠和三乙醇胺对铜的缓蚀作用,腐蚀科学与防护技术,2004,16(1)44-46
    [129]木冠南,李向红,屈庆,周俊,稀土铈离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应,化学学报,2004,62(24)2386-2390
    [130]李建梅,李杨树,炼钢间冷闭式循环冷却水系统缓蚀剂的应用,冶金动力,2012,(2)58-60
    [131]李国敏,李爱魁,郭兴蓬,油气田开发中的CO2腐蚀及防护技术,腐蚀科学与防护技术,2004,16(3)125-128
    [132]张学元,余刚,韩恩厚,环己胺类气相缓蚀剂对锌在薄层液膜下的缓蚀机理研究,中国腐蚀与防护学报,2003,23(3)175-178
    [133]刘峥,刘二喜,王国瑞,醇胺类化合物对混凝土钢筋的阻锈作用研究,全面腐蚀控制,2007,21(4)15-19
    [134]苑权,李克华,李立峰,周珊珊,谢水祥,醛酮胺缩合物的合成及缓蚀性能研究,化工科技,2004,12(6)28-31
    [135]J.M. Costa, J.M. Lluch, The use of quantum mechanics calculations for the study of corrosion inhibitors, Corrosion Science,24(1984) 929-933
    [136]F. Bentiss, M. Traisnel, M. Lagrenee, The substituted 1,3,4-oxadiazoles:a new class of corrosion inhibitors of mild steel in acidic media, Corrosion Science, 42(2000) 127-146
    [137]M. Azhar, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic meida, Corrosion Science,43(2001) 2229-2238
    [138]M.S. Morad, An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions, Corrosion Science,42(2000) 1307-1326
    [139]M. Lagrenee, B. Mernari, N. Chaibi, M. Traisnel, H. Vezin, F. Bentiss, Investigation of the inhibitive effect of substituted oxadiazoles on the corrosion of mild steel in HCI medium, Corrosion Science,43(2001) 951-962
    [140]张英菊,王荣良,彭乔,王辉,含氮杂环季铵盐缓蚀剂在CO2-3% NaCl溶液体系中的电化学行为,材料保护,2003,36(8)26-27
    [141]陈言光,董泽华,含氮杂环双季铵盐在高温酸性溶液中的缓蚀性能,腐蚀与防护,2007,28(6)282-285
    [142]陈立庄,高延敏,张鑫,王鹏,孟祥玲,1,4-丁炔二醇缓蚀剂在环氧涂层中的缓蚀机理研究,中国腐蚀与防护学报,2006,26(6)332-335
    [143]张军,胡松青,王勇,郭文跃,刘金祥,1-(2-羟乙基)-2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究,化学学报,2008,22(66)2469-2475
    [144]陈敏,司荣,盖玉娟,张文钟,战风涛,王英,油酸基咪唑啉类缓蚀剂的合成及其缓蚀性能评价,石化技术与应用,2009,27(2)127-131
    [145]陈敏,战风涛,吕志凤,司荣,盖玉娟,单环咪唑啉衍生物分子结构对其缓蚀性能的影响,石油学报,2010,26(1)41-44
    [146]于洪江,王京光,吴艳,松香咪啉啉的合成及其缓蚀性能研究,材料保护,2008,41(6)75-77
    [147]沈长斌,薛钰芝,陶晓杰,杨怀玉,微胶囊技术制备缓释型咪唑啉类缓蚀剂,大连铁道学院学报,2004,25(1)89-92
    [148]S. Ramesh, S. Rajeswari, Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives, Electrochimica Acta.49(2004) 811-820
    [149]范洪波,新型缓蚀剂的合成与应用,北京:化学工业出版社,2004
    [150]J.G.N. Thomas, in:Proceedings of the Fifth European Symposium on Corrosion Inhibitors, Ann. Univ. Ferrara., Italy,1980-1981, p.453
    [151]Mohammed A. Amin, Mohammed A. Amin, Q. Mohsen, H.A. Ari. A study of the inhibition of iron corrosion in HCI solutions by some amino acids, Corrosion Science,52(2010) 1684-1695
    [152]A.Ouchrif, M. Zegmout, B. Hammouti, S. El-Kadiri, A. Ramdani. 1,3-Bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane as corrosion inhibitor for steel in 0.5 M H2SO4 solution, Applied Surface Science,252(2005) 339-344
    [153]M.S. Morad, A.M. Kamal El-Dean,2.2'-Dithiobis (3-cyano-4,6-dimethylpyridine):A new class of acid corrosion inhibitors for mild steel, Corrosion Science,48(2006) 3398-3412
    [154]Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Al Himidi, H. Hannache,2,3-Quinoxalinedione as a novel corrosion inhibitor for mild steel in 1 M HCI, Materials Chemistry and Physics,105(2007) 1-5.
    [155]M.A. Amin, S.S. Abd El-Rehim, E.E.F. E1-Sherbini, R.S. Bayoumi, The inhibition of low carbon steel corrosion in hydrochloric acid solution by succini acid: Part Ⅰ.Weight loss, polarization, EIS, PZC, EDX and SEM studies, Electrochimica Acta,52(2007) 3588-3600
    [156]G.N. Mu, X.H. Li, Inhibition of cold rolled steel corrosion by tween-20 in sulfuric acid:Weight loss, electrochemical and AFM approaches, Journal of colloid and interface science,289(2005) 184-192
    [157]M.A. Hegazy, A.M. Badawi, S.S. Abd El Rehim, W.M. Kamel, Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling, Corrosion Science,69(2013) 110-122
    [158]S.D. Deng, X.H. Li, Inhibition by Jasminum nudiflorum lindl-Leaves extract of the corrosion of aluminium in HCI solution, Corrosion Science,64(2012) 253-262
    [159]X.H. Li, S.D. Deng, H. Fu, Inhibition by tetradecylpyridinium bromide of the corrosion of aluminium in hydrochloric acid solution, Corrosion Science,53(2011) 1529-1536
    [160]A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution, Corrosion Science,51(2009) 2848-2856
    [161]D. Karthik, D. Tamilvendan, G.V. Prabhu, Study on the inhibition of mild steel corrosion by 1,3-bis-(morpholin-4-yl-phenyl-methyl)-thiourea in hydrochloric acid medium, Journal of Saudi Chemical Society, In Press
    [162]S.Z. Yao, X.H. Jiang, L.M. Zhou, Y.J. Lv, X.Q. Hu, Corrosion inhibition of iron in 20% hydrochloric acid by 1,4/1,6 bis(a-octylpyridinium) butane/hexane dibromide, Materials Chemistry and Physics,104(2007) 301-305
    [163]Q. Qu, S. Jiang, W. Bai, L. Li, Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid, Electrochimica Acta,52(2007) 6811-6820
    [164]M. Behpour, N. Mohammadi, Investigation of inhibition properties of aromatic thiol self assembled monolayer for corrosion protection, Corrosion Science,65(2012) 331-339
    [165]H.J. Flitt, D.P. Schweinsberg, Evaluation of corrosion rate from polarization curves not exhibiting a Tafel region, Corrosion Science,47(2005) 3034-3052
    [166]P. Lowmunkhong, D. Ungthararak, P. Sutthivaiyakit, Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution, Corrosion Science,52(2010) 30-36
    [167]C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Effect of cerium ions on corrosion inhibition of PANI for iron in 0.5 M H2SO4, Applied Surface Science, 253(2006) 432-438
    [168]M. Bouklah, A. Ouassini, B. Hammouti, A. El Idrissi, Corrosion inhibition of steel in sulphuric acid by pyrrolidine derivatives, Applied Surface Science,252(2006) 2178-2185
    [169]S.J. Garcia, T.A. Markley, J.M.C. Mol, A.E. Hughes, Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM-EDS, Corrosion Science,69(2013)346-358
    [170]A. Naglub, F. Mansfeld, Evaluation of corrosion inhibition of brass in chloride media using EIS and EN A, Corrosion Science,34(2001) 2147-2171
    [171]A.M. Simocs, J.C.S. Fermandes, Studying phosphate corrosion inhibition at the cut edge of coil coated galvanized steel using the SVET and EIS, Progress in Organic Coatings,69(2010)219-224
    [172]H. Ashassi-Sorkhabi, D. Seifzadeh, M.G. Hosseini, EN, HIS and polarization studies to evaluate the inhibition effect of 311-phenothiazin-3-one,7-dimethylamin on mild steel corrosion in 1 M HCI solution, Corrosion Science,50(2008) 3363-3370
    [173]A. Naglub, F. Mansfeld, Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA, Electrochimica Acta,47(2002) 2319-2333
    [174]Y. Zhang, D.G. Ivey, Electroplating of nanocrystalline CoFeNi soft magnetic thin films from a stable citrate-based bath, Chemistry of Materials,16(2004) 1189-1194
    [175]Y.H. Zhang, D.G. Ivey, Characterization of Co-Fe and Co-Fe-Ni soft magnetic films electrodeposited from citrate-stabilized sulfate baths, Materials Science and Engineering B-Solid,140(2007) 15-22
    [176]X.M. Liu, G. Zangari, L.Y. Shen, Electrodeposition of soft, high moment Co-Fe-Ni thin films, Journal of Applied Physics,87(2000) 5410-5412
    [177]H.S. Nam, T. Yokoshima, T. Nakanishi, T. Osaka, Y. Yamazaki, D.N. Lee, Microstructure of electroplated soft magnetic CoNiFe thin films, Thin Solid Films, 384(2001)288-293
    [178]P.C. Andricacos, N. Robertson, Future directions in electroplated materials for thin-film recording heads, IBM Journal of Research and Development,42(1998) 671-680.
    [179]S.R. Brankovic, X.M. Yang, T.J. Klemmer, M. Seigler, Pulse electrodeposition of 2.4 T Co37Fe63 alloys at nanoscale for magnetic recording application, IEEE Transaction on Magnetics,42(2006) 132-139
    [180]E.E. Kalu, Properties of nanocrystalline electrodeposited CoFeP alloy with low phosphorus content, Journal of Solid State Electrochemistry,11(2007) 1145-1156
    [181]M. Takai, K. Hayashi, M. Aoyaki, T. Osaka, Electrochemical preparation of soft magnetic CoNiFeS film with high saturation magnetic flux density and high resistivity, Journal of Electrochemical Society,44(1997) L203-L204
    [182]N.C. Anderson, R.B. Chesnutt, (IBM), US Patent:4661216,1987
    [183]Tetsuya Osaka, Madoka Takai, Katsuyoshi Hayashi, Keishi Ohashi, Mikiko Saito and Kazuhiko Yamada, A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity, Nature,392(1998) 796-798
    [1]S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, A new corrosion protection coating with polyaniline-TiO2 composite for steel, Electrochimica Acta,52(2007) 2068-2074
    [2]Masayuki Itagaki, Akira Ono, Kunihiro Watanabe, Hideki Katayama, Kazuhiko Noda, Analysis on organic film degradation by dynamic impedance measurements, Corrosion Science,48(2006) 3802-3811
    [1]张平柱,胡石林,张伟国,硫性硫酸根离子介质中奥氏体不锈钢的应力腐蚀行为研究,原子能科技技术,2003,37(Z1)145-148
    [2]赵国仙,吕祥鸿,韩勇,流速对P110钢腐蚀行为的影响,材料工程,2008(8)5-8
    [3]李建平,赵国仙,郝士明,几种因素对油套管钢CO2腐蚀行为影响,中国腐蚀与防护学报,2005,25(4)241-244
    [4]劳家柽,土壤家化分析手册,农业出版社,1988
    [5]王凤平,张学元,杜元龙,大气腐蚀研究动态与进展,腐蚀科学与防护技术,2000,12(2)104-108
    [6]Electrochemistry and Corrosion:Overview and Techniques, Application Note CORR-4, EG and G, Princeton Applied Research:Oak Ridge, TN; p 8.
    [7]Operating Manual for CMS 100 Corrosion Measurement System, Gamry Instruments, Inc., PA, USA
    [8]V. Shinde, S.R. Sainkar, P.P. Patil, Electrochemical synthesis and corrosion protection properties of poly(o-toluidine) coaings on low carbon steel, Journal of Applied Polymer Science,96(2005) 685-695
    [9]J.O. Iroh, W.C. Su, Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process, Electrochimica Acta,46(2000) 15-24
    [10]Operating Manual for CMS 100 Corrosion Measurement System, Gamry Instruments, Willow Grove, PA.
    [11]W.C. Su, J.O. Iroh, Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates, Synthetic Metals,114(2000) 225-234
    [12]A. Yagan, N.O. Pekmez, A. Yildiz, Electropolymerization of poly(N-ethyl aniline) on mild steel:synthesis, characterization and corrosion protection, Electrochimica Acta,51(2006) 2949-2955
    [13]F. Mansfeld, The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition-a review, Materials and Corrosion,54(2003) 489-502
    [14]K. Aramaki, T. Shimura, An ultrathin polymer coating of carboxylate self-assembled monolayer adsorbed on passivated iron to prevent iron corrosion in 0.1 M Na2SO4, Corrosion Science,52(2010) 1-6
    [15]K. Aramaki, T. Shimura, Protection of passivated iron against corrosion in a 0.1M NaNO3 solution by coverage with an ultrathin polymer coating of carboxylate SAM, Corrosion Science,51(2009) 1887-1893
    [16]J. Creus, H. Mazille, H. Idrissi, Porosity evaluation of protective coatings onto steel, through electrochemical techniques, Surface and Coatings Technology, 130(2000) 224-232
    [17]B. Elsener, A. Rota, Impedance Study on the corrosion of PVD and CVD Titanium nitride coatings, Materials Science Forum,44-45(1989) 28-38
    [18]B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S.P. Hannula, A. Leyland, A. Matthews, Corrosion performance of some titanium-based hard coatings, Surface and Coatings Technology,49(1991) 489-495
    [19]S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, A new corrosion protection coating with polyaniline-TiO2 composite for steel, Electrochimica Acta,52(2007) 2068-2074
    [20]R.G. Duarte, A.S. Castela, M.G.S. Ferreira, A new model for estimation of water uptake of an organic coating by EIS:the tortuosity pore model, Progress in Organic Coatings,65(2009) 197-205
    [21]A. Miszczyk, K. Darowicki, Accelerated ageing of organic coating systems by thermal treatment, Corrosion Science,43(2001) 1337-1343
    [22]F. Deflorian, S. Rossi, An EIS study of ion diffusion through organic coatings, Electrochimica Acta,51(2006) 1736-1744
    [23]G.P. Bierwagen, D.E. Tallman, Choice and measurement of crucial aircraft coatings system properties, Progress in Organic Coatings,41(2001) 201-216
    [24]N. Scharnagl, C. Blawert, W. Dietzel, Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PHI), Surface and Coatings Technology, 203(2009) 1423-1428
    [25]A.S. Castela, A.M. Simoes, An impedance model for the estimation of water absorption in organic coatings, Part I:A linear dielectric mixture equation, Corrosion Science,45(2003) 1631-1646
    [26]S. Syed Azim, S. Sathiyanarayanan, G. Venkatachari, Anticorrosive properties of PANI-ATMP polymer containing organic coating, Progress in Organic Coatings, 56(2006) 154-158
    [27]Q. Su, K.N. Allahar, GP. Bierwagen, Application of embedded sensors in the thermal cycling of organic coatings, Corrosion Science,50(2008) 2381-2389
    [28]K. Darowicki, Application of the dynamic EIS to investigation of transport within organic coatings, Progress in Organic Coatings,52(2005) 306-310
    [29]L. Fedrizzi, A. Bergo, F. Deflorian, L. Valentinelli, Assessment of protective properties of organic coaings by thermal cycling, Progress in Organic Coatings, 48(2003)271-280
    [30]A.S. Castela, A.M. Simoes, Assessment of water uptake in coil coatings by capacitance measurements, Progress in Organic Coatings,46(2003) 55-61
    [31]J.L. Luo, C.J. Lin, Q. Yang, S.W. Guan, Cathodic disbanding of a thick polyurethane coating from steel in sodium chloride solution, Progress in Organic Coatings,31(1997) 289-295
    [32]S. Duval, Y. Camberlin, M. Glotin, M. Keddam, F. Ropital, H. Takenouti, Characterisation of organi coatings in sour media and influence of polymer structure on corrosion performance, Progress in Organic Coatings,39(2000) 15-22
    [33]S.J. Garcia, H.R. Fischer, P.A. White, J. Mardel, Y. Gonzalez-Garcia, J.M.C. Mol, A.E. Hughes, Self-healing anticorrosive organic coatings based on an encapsulated water reactive silyl ester:Synthesis and proof of concept, Progress in Organic Coatings,70(2011)142-149
    [34]R. Solmaz, Electrochemical synthesis of poly-2-aminothiazole on mild steel and its corrosion inhibition performance, Progress in Organic Coatings,70(2011)122-126[35]李红生,王文丽,高压无气喷涂工艺设备技术的应用,化工设备与防腐蚀, 2004,7(4)33-35
    [36]金晓鸿,防腐蚀涂料和涂装技术(Ⅸ),材料开发与应用,2002,17(3)44-45
    [37]杨国生,赵春英,文松林,喷涂和刷涂对预涂卷材修补再涂装的试验研究,表面技术,2007,36(5)36-38
    [38]陈中华,唐英,余飞,苏国徽,陈海洪,颜填料体积浓度对水性环氧导静电防腐蚀涂层性能的影响,化工学报,2008,59(10)2568-2572
    [1]D.X. Wang, S.Y. Li, Y.Ying, M.J. Wang, H.M. Xiao, Z.X. Chen, Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives, Corrosion Science,41(1999) 1911-1919
    [2]X.Y. Zhang, F.P. Wang, Y.F. He, Y.L. Du, Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iorn, Corrosion Science,43(2001) 1417-1431
    [3]J.M. Zhao, G.H. Chen, The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution, Electrochimica Acta,69(2012) 247-255
    [4]J. Zhang, X.L. Gong, H.H. Yu, M. Du, The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium, Corrosion Science, 53(2011)3324-3330
    [5]M. Heydari, M. Javidi, Corrosion inhibition and adsorption behavior of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions, Corrosion Science,61(2012) 148-155
    [6]B. Wang, M. Du, J. Zhang, C.J. Gao, Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion, Corrosion Science,53(2011) 353-361
    [7]J. Zhang, G.M. Qiao, S.Q. Hu, Y.G. Yan, Z.J. Ren, L.J. Yu, Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups, Corrosion Science,53(2011) 147-152
    [8]J. Zhang, J.X. Liu, W.Z. Yu, Y.G. Yan, L. You, L.F. Liu, Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline, Corrosion Science,52(2010)2059-2065
    [9]P.C. Okafor, Y.G. Zheng, Synergistic inhibition behavior of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions, Corrosion Science,51(2009) 850-859
    [10]P.C. Okafor, X. Liu, Y.G. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corrosion Science, 51(2009)761-768
    [11]X.Y. Liu, S.H. Chen, H.Y. Ma, G.Z. Liu, L.X. Shen, Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers, Applied Surface Science,253(2006) 814-820
    [12]A.S. Fouda, A.A. Al-Sarawy, F.Sh. Ahmed, H.M. El-Abbasy, Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds, Corrosion Science,51(2009)485-492
    [13]R. Slomaz, G. Kardas, B. Yazici, M. Erbil, Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 312(2008)7-17
    [14]H. Ashassi-Sorkhabi, M. Eshaghi, Corrosion inhibition of mild steel in acidic media by [BMIm]Br ionic liquid, Materials Chemistry and Physics,114(2009) 267-271
    [15]F. Touhami, A. Aouniti, Y. Abed, B. Hammouti, S. Kertit, A. Ramdani, K. Elkacemi, Corrosion inhibition of Armco iron in 1 M HCI media by new bipyrazolic derivatives, Corrosion Science,42(2000) 929-940
    [16]D.H. van der Weijde, E.P.M. van Westing, J.H.W.de Wit, Electrochemical techniques for delamination studies, Corrosion Science,36(1994) 643-652
    [17]P. Campestrini, E.P.M van Westing, J.H.W de Wit, Influence of surface preparation on performance of chromate conversion coatings on alclad 2024 aluminium alloy:EIS investigation, Electrochimica Acta,46(2001) 2631-2647
    [18]A.A. Mohammed, K.F. Khaled, Q. Mohsen,H.A. Arida, A study of the inhibition of iron corrosion in HCI solutions by some amino acids, Corrosion Science,52(2010) 1684-1695
    [19]C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Corrosion inhibition of pure iron in 0.5 M M2SO4 solutions by ethanolamincs, Applied Surface Science, 246(2005) 108-116
    [20]H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid, Applied Surface Science, 239(2005)154-164
    [21]H. Amar, J. Benzakour, A. Derja, D. Villemin, B. Moreau, A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution, Journal of Electroanalytical Chemistry,558(2003) 131-139
    [22]D. Gopi, K.M. Govindaraju, V. Collins Arun Prakash, D.M. Angeline Sakila, L. Kavitha, A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water, Corrosion Science,51(2009) 2259-2265
    [23]I. Dehri, M. Ozcan, The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds, Materials Chemistry and Physics,98(2006) 316-323
    [24]P. Li, J.Y. Lin, K.L. Tan, J.Y. Lee, Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine, Electrochimica Acta,42(1997) 605-615
    [25]Zhihua Tao, Shengtao Zhang, Weihua Li, Baorong Hou, Corrosion inhibition of mild steel solution by some oxotriazole derivatives, Corrosion Science,51(2009) 2588-2595
    [26]Ganesha Achary, Y. Arthoba Naik, S. Vijay Kumar, T.V. Venkatesha, B.S. Sherigara, An elecroactive co-polymer as corrosion inhibitor for steel in sulphuric acid medium, Applied Surface Science,254(2008) 5569-5573
    [27]R.J. Chin, K. Nobe, Electrochemical characteristics of Iron in H2SO4 containing benzotriazole, Journal of Electrochemical Society,118(1971) 545-548
    [28]H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, A. Outzourhit, Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media, Corrosion Science,49(2007) 2936-2945
    [29]L. Larabi, O. Benali, S.M. Mekelleche, Y. Harek,2-Mercapto-l-methylimidazole as corrosion inhibitor for copper in hydrochloric acid, Applied Surface Science, 253(2006)1371-1378
    [30]M.A. Quraishi, Hariom K. Sharma,4-Amino-3-butyl-5-mercapto-1,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid, Materials Chemistry and Physics,78(2002) 18-21
    [31]P.C. Okafor, X. Liu, Y.G. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corrosion Science, 51(2009)761-768
    [32]N.K. Allam. Thermodynamic and quantum chemistry characterization of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solution, Applied Surface Science,253(2007) 4570-4577
    [33]Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, H. Hannache, A novel azo dye,8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media, Desalination,237(2009) 175-189
    [34]I.B. Obot, N.O. Obi-Egbedi, N.W. Odozi, Acenaphtho [1,2-b] quinoxaline as a novel corrosion inhibitor for mild steel in 0.5 M H2SO4, Corrosion Science,52(2010) 923-926
    [35]V. Branzoi, Florentina Golgovici, Florina Branzoi, Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors, Materials Chemistry and Physics,78(2002) 122-131
    [36]I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCI, Corrosion Science,51(2009) 1868-1875
    [37]I.B. Obot, N.O. Obi-Egbedi,2,3-Diphenylbenzoquinoxaline:A new corrosion inhibitor for mild steel in sulphuric acid, Corrosion Science,52(2010) 282-285
    [38]S.A. Umoren, I.B. Obot, E.E. Ebenso, N.O. Obi-Egbedi, Studies on the inhibitive effect of exudates gum from dacroydes edulis on the acid corrosion of aluminium, Portugaliae Electrochimica Acta,26(2008) 199-209
    [39]S.A. Umoren, I.B. Obot, E.E. Ebenso, P.C. Okafor, Eco-friendly inhibitors from naturally occurring exudates gums for aluminium corrosion inhibition in acidic medium, Port. Electrochimica Acta,26(2008) 267-282
    [40]M. El Achouri, S. Kertit, H.M. Gouttaya, B. Nciri, Y. Bensouda, L. Perez, M.R. Infante, K. Elkacemi, Corrosion inhibition of iron in 1 M HCl by some Gemini surfactants in the series of alkanediyl-a,w-bis-(dimethyl tetradecyl ammonium bromide), Progress in Organic Coatings,43(2001) 267-273
    [41]H.L. Wang, H.B. Fan, J.S. Zheng, Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound, Materials Chemistry and Physics,77(2002)655-661
    [42]M.A. Quraishi, A. Singh, V.K. Singh, D.K. Yadav, A.K. Singh, Green approach to corrosion inhibition of mild stel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenijii leaves, Materials Chemistry and Physics, 122(2010)114-122
    [43]F. Touhami, A. Aouniti, Y. Abed, B. Hammouti, S. Kertit, A. Ramdani, K. Elkacemi, Corrosion inhibition of Armco iron in 1 M HCl media by new bipyrazolic derivatives, Corrosion Science,42(2000) 929-940
    [44]L. Larabi, Y. Harek, O. Benali, S. Ghalem, Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl, Progress in Organic Coatings,54(2005) 256-262
    [1]R. Ravichandran, N. Rajendran, Electrochemical behavior of brass in artificial seawater:effect of organic inhibitors, Applied Surface Science,241(2005) 449-458
    [2]M.M. Antonijevic, M. Petrovic, Copper corrosion inhibitors:A review, International Journal of Electrochemical Science,3(2008) 1-28
    [3]N.K. Allam, H.S. Hegazy, E.A. Ashou, Corrosion and inhibition of Cu-Zn alloys in NaCl solution by using permanganate and phosphate anions, International Journal of Electrochemical Science 2 (2007) 549-562
    [4]Y.N. Prasad, S. Ramanathan, Chemical mechanical planarization of copper in alkaline slurry with uric acid as inhibitor, Electrochimica Acta,52(2007) 6353-6358
    [5]D. Thierry, C. Leygraf, Simultaneous Raman Spectroscopy and electrochemical studies of corrosion inhibiting molecules on copper, Journal of the Electrochemial Society,132(1985) 1009-1014
    [6]M.R. Vogt, R.J. Nichols, O.M. Magnussen, R.J. Behm, Benzotriazole adsorption and inhibition of Cu (100) corrosion in HCI:A combined in Situ STM and in Situ FTIR spectroscopy study, Journal of Physical Chemistry B,102(1998) 5859-5865
    [7]C. Jin-Hua, L. Zhi-Cheng, C. Shu, N. Li-Hua, Y. Shou-Zhuo, An XPS and BAW sensor study of the structure and real-time growth behavior of a complex surface film on copper in sodium chloride solutions (pH=9), containing a low concentration of benzotriazole, Electrochimica Acta,43(1998) 265-274
    [8]R. Youda, H. Nishihara, K. Aramaki, Sers and impedance study of the equilibrium between complex formation and adsorption of benzotriazole and 4-hydrozybenzotriazole on a copper electrode in sulphate solutions, Electrochimica Acta,35(1990)1011-1017
    [9]G. Lewis, The corrosion inhibition of copper by benzimidazole, Corrosion Science,22(1982)579-584
    [10]G. Xue, J.F. Ding, Chemisorption of a compact polymeric coating on copper surfaces from a benzotriazole solution, Applied Surface Science,40(1990) 327-332
    [11]T.Y.B. Leung, M. Kang, B.F. Corry, A.A. Gewirth, Benzotriazole as an additive for copper electrodeposition influence of triazole ring substitution, Journal of the Electrochemical Society,147(2000) 3326-3337
    [12]M. Levin, P. Wiklund, H. Arwin, Adsorption and film growth of N-methylamino substituted triazoles on copper surfaces in hydrocarbon media, Applied Surface Science,254(2007) 1528-1533
    [13]Matjaz Finsgar, Antonija Lesar, Anton Kokalj, Ingrid Milosev, A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution, Electrochimica Acta, 53(2008) 8287-8297
    [14]D.H. van der Weijde, E.P.M. van Westing, J.H.W.de Wit, Electrochemical techniques for delamination studies, Corrosion Science,36(1994) 643-652
    [15]P. Campestrini, E.P.M van Westing, J.H.W de Wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy:EIS investigation, Electrochimica Acta,46(2001) 2631-2647
    [16]F. Touhami, A. Aouniti, Y, Abed, B. Hammouti, S. Kertit, A. Ramdani, K. Elkacemi, Corrosion inhibition of Armco iron in 1 M HCl media by new bipyrazolic derivatives, Corrosion Science,42(2000) 929-940
    [17]C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Corrosion inhibition of pure iron in 0.5 M H2SO4 solutions by ethanolamines, Applied Surface Science, 246(2005) 108-116
    [18]H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid, Applied Surface Science, 239(2005)154-164
    [19]H. Amar, J. Benzakour, A. Derja, D. Villemin, B. Moreau, A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution, Journal of Electroanalytical Chemistry,558(2003) 131-139
    [20]D. Gopi, K.M. Govindaraju, V. Collins Arun Prakash, D.M. Angeline Sakila, L. Kavitha, A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water, Corrosion Science,51 (2009) 2259-2265
    [21]L. Nyikos, T. Pajkossy, Fractal dimension and fractional power frequency dependent impedance of blocking electrodes, Electrochimica Acta,30 (1985) 1533-1540.
    [22]J.B. Bates, Y.T. Chu, Electrode-electrolyte interface impedance:experiments and model, Annals of Biomedical Engineering,20(1992) 349-362
    [23]G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corrosion Science,46(2004) 387-403
    [24]F.M. Bayoumi, W.A. Ghanem, Corrosion inhibition of mild steel using naphthalene disulfonic acid, Materials Letters,59(2005) 3806-3809
    [25]S.S. El-Egamy, Corrosion and corrosion inhibition of Cu-20% Fe alloy in sodium chloride solution, Corrosion Science,50(2008) 928-937
    [26]R.J. Chin, K. Nobe, Electrochemical characteristics of iron in H2SO4 containing benzotriazole, Journal of Electrochemical Society,118(1971) 545-548
    [27]H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, A. Outzourhit, Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media, Corrosion Science,49(2007) 2936-2945
    [28]L. Larabi, O. Benali, S.M. Mekelleche, Y. Harek,2-Mercapto-l-methylimidazole as corrosion inhibitor of copper in hydrochloric acid, Applied Surface Science, 253(2006)1371-1378
    [29]Z.H. Tao, S.T. Zhang, W.H. Li, B.R. Hou, Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives, Corrosion Science,51(2009) 2588-2595
    [30]I.B. Obot, N.O. Obi-Egbedi, Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole:Experimental and theoretical investigation, Corrosion Science,52(2010) 198-204
    [31]M. Outirite, M. Lagrenee, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, F. Bentiss, Ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution, Electrochimica Acta,55(2010) 1670-1681
    [32]黄先球,柳长福,举元强,郭玉华,材料保护,酸蚀表面的原子力显微镜分析,41(2008)271-274
    [33]B.S. Fang, C.G. Olson, D.W. Lynch, A photoemission study of benzotriazole on clean copper and cuprous oxide, Surface Science.176(1986) 476-490
    [34]J.O. Nilsoon, C. Tornkvist, B. Liedberg, Photoelectron and infrared reflection absorption spectroscopy of benzotriazole adsorbed on copper and cuprous oxide surfaces, Applied Surface Science,37(1989) 306-326
    [35]M.A. Bratescu, D.B. Allred, N. Saito, M. Sarikaya, O. Takai, Attenuated total reflectance spectroscopy of simultaneous processes:corrosion inhibition of cuprous oxide by benzotriazole, Applied Surface Science,254(2008) 2960-2966
    [36]H. Shizuka, H. Hiratsuka, M. Jinguji, H. Hiraoka, Photolysis of benzotriazole in alcoholic glass at 77K, Journal of Physical Chemistry,91(1987) 1793-1797
    [1]B.Y. Yoo, S.C. Hernandez, D.Y. Park, N.V. Myung, Electrodeposition of FeCoNi thin films for magnetic-MEMS devices, Electrochim Acta,51(2006) 6346-6352
    [2]T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito, K. Yamada, A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity, Nature, 392(1998)796-798
    [3]T. Osaka, T. Sawaguchi, F. Mizutani, T. Yokoshima, M. Takai, Y. Okinaka, Effects of saccharin and thiourea on sulfur inclusion and coercivity of electroplated soft magnetic CoNiFe film, Journal of Eletrochemical Society,146 (1999) 3295-3299
    [4]Allen Bai, Chi-Chang Hu, Cyclic voltammetric deposition of nanostructured iron-group alloys in high-aspect ratios without using templates, Electrochemistry Communications,5(2003) 619-624
    [5]J.F. Li, Z. Zhang, J.Y. Yin, G.H. Yu, C. Cai, J.Q. Zhang, Electrodeposition behavior of nanocrystalline CoNiFe soft magnetic thin film, The Transactions of Nonferrous Metals Society of China,16(2006) 659-665
    [6]T. Nakanishi, M. Ozaki, H.S. Nam, T. Yokoshima, T. Osaka, Pulsed Electrodeposition of Nanocrystalline CoNiFe Soft Magnetic Thin Films, Journal of The Electrochemical Society,148(2001) C627-C631
    [7]M.H. Margarita, P.P. Manuel, B. Nikola, Identification of different silver nucleation processes on vitreous carbon surfaces from an ammonia electrolytic bath, Journal of Eletroanalytical Chemistry,443(1998) 81-93
    [8]P.P. Manuel, M.H. Margarita, G. Ignacio, B. Nikola, Detailed characterization of potentiostatic current transients with 2D-2D and 2D-3D nucleation transitions, Surface Science,399(1998) 80-95
    [9]B. Enrique, P.P. Manuel, B. Nikola, Formation mechanisms and characterization of black and white cobalt electrodeposition onto stainless steel, Journal of Electrochemical Society,147(2000) 1787-1796
    [10]P.P. Manuel, T.R. Ma, G. Ignacio, Silver electrocrystallization on vitreous carbon from ammonium hydroxide solutions, Journal of Electrochemical Society,143(1996) 1551-1546
    [11]M.H. Holzle, U. Retter, D.M. Kolb, The kinetics of structural changes in Cu adlayers on Au(111), Journal of Electroanalytical Chemistry,371(1994) 101-109
    [12]D.D. Macdonald, S. Real, S.I. Smedley, M. Urquidi-Macdonald, Evaluation of alloy anodes for aluminum-air batteries.4. Electrochemical impedance analysis of pure aluminum in 4M-KOH at 25-DEGREES-C, Journal of Electrochemical Society, 135(1988)2410-2414
    [13]Chi-Chang Hu, Allen Bai, The Inhibition of Anomalous Codeposition of Iron-Group Alloy Using Cyclic Voltammetry, Journal of Eletrochemical Society, 149(2002) C616-C622
    [14]王秋萍.纳米晶CoNiFe软磁薄膜的电化学制备及其结构、性能的研究.浙江大学硕士学位论文,2010.
    [15]Y. Chen, Q.P. Wang, C. Cai, Y.N.Yuan, F.H. Cao, Z. Zhang, J.Q. Zhang. Electrodeposition and characterization of nanocrystalline CoNiFe films. Thin Solid Films 520 (2012) 3553-3557
    [16]Z. Grubac, M. Metikos-Hukovic, Kinetics and mechanism of electrocrystallization of bismuth in oxide matrix, ElecTrochimica Acta,44(1999) 4559-4571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700