用户名: 密码: 验证码:
小球藻CHLORELLA VULGARIS油脂积累特性及以污水为底物的油脂制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源危机和温室效应的挑战,可再生且不增加温室气体排放的微藻能源近年来得到了广泛关注。微藻作为生物能源的原料,具有生长速度快,能量转换效率高,潜在生产规模大的优势。但是微藻培养和收集过程的营养物和能量消耗,提高了生产成本,限制了微藻能源的工业化生产,利用污水作为微藻培养的底物可以有效的降低微藻培养成本,并且同时对污水进行处理。
     本论文以污水中常见的Chlorella vulgaris为研究对象,考察了C. vulgaris不同代谢类型时的生长特性,然后测定了藻细胞在不同培养条件下的脂含量变化,对C. vulgaris的混养代谢和油脂积累过程进行了分析。通过对化学混凝和电混凝的优化比较,确定了C. vulgaris的收集方法,并对C. vulgaris生物质在不同温度下的干燥结果进行了比较。在对以污水为底物的C. vulgaris油脂积累过程进行研究后,构建了C. vulgaris油脂制备系统,对系统运行的结果进行了分析和评价。
     以BG11为基础培养基,通过有机碳源和光照的调节使C. vulgaris分别进行自养、异养和混养代谢。未曝气时,自养和异养代谢的比生长速率分别仅为0.0018h~(-1)和0.0083h~(-1),而混养代谢则达到0.0204h~(-1)。与乙醇、乙酸钠相比,葡萄糖更适于作为C. vulgaris的有机碳源。曝气能够显著提高不同代谢类型的比生长速率,空气曝气时的混养代谢比生长速率提高到0.1008h~(-1),而以20%CO_2为气源时,比生长速率则下降到0.0930h~(-1)。对C. vulgaris不同代谢类型的生长特性分析表明,在C. vulgaris的混养代谢过程中,光合自养和有机异养同时发生,并且两种代谢途径互相影响,共同决定藻细胞的组成和比生长速率。
     调节培养液中的初始营养物浓度,考察了C. vulgaris的油脂积累特性。氮缺乏能够显著提高藻细胞的脂含量,3.75g/LNaNO_3时脂含量仅为7.59%,而0.1g/L NaNO_3时则达到22.58%。在氮缺乏基础上,磷含量对脂含量的影响不显著。葡萄糖对油脂的积累十分重要,5g/L葡萄糖的培养液,96h脂含量达到17.40%,此后由于葡萄糖不足,240h时脂含量下降到10.07%。对藻细胞在不同营养条件下脂含量变化的分析表明,当细胞由于营养限制而停止生长后,需要继续获取充足的光照或有机底物,才能够促进细胞油脂的积累。
     通过对搅拌速度、曝气量、电流密度、初始细胞密度和pH等因素的研究,建立了C. vulgaris的电混凝收集方法,当初始细胞密度为0.241g/L, pH5.0,电流密度0.42mA/cm~2,50rpm持续时,电混凝15min时收集率达到97%,能耗仅为0.610kWh/kg。对不同培养条件的C. vulgaris培养液收集结果显示,与硫酸铝混凝相比,电混凝在收集率和油脂回收率方面均较高,20min时的收集率达到99%~100%,油脂回收率为99%~100%,但是出水中Al3+含量是硫酸铝混凝的1.97~2.33倍。较高的干燥温度会改变C. vulgaris生物质的组成,与-70°C冻干相比,105°C烘干时C. vulgaris的干重、脂含量和油脂中的酯含量分别降低了3.30%、7.73%和26.30%,而40°C烘干所得到的C. vulgaris生物质各项性质与冻干相近。
     分别以人工配水和生活污水培养C. vulgaris,由于生活污水中污染物较为复杂,因此细胞密度由人工配水时的1.496g/L降低到生活污水的0.575g/L;灭菌后的生活污水中C. vulgaris生长较快,但是未灭菌组的污染物去除效率较高。曝气、光照和底物浓度均会对污水中C. vulgaris的油脂积累产生影响,适当提高CO_2浓度和曝气量能够提高C. vulgaris细胞密度和脂含量,光照强度和光照时间的增加也可以改善C. vulgaris的培养效果,通过向污水中投加葡萄糖提高培养液的COD:TN,能够显著的提高细胞密度和脂含量,当COD:TN为50:1时,细胞密度达到1.181g/L,脂含量为14.38%。
     根据以上研究的结果,构建了C. vulgaris油脂制备系统,对生活污水进行抽滤、稀释预处理后,投加适量KH_2PO_4和葡萄糖使其COD:TN:TP达到300:6:1,灭菌后用于C. vulgaris的培养,5%CO_2曝气。在2000lx和7000lx的光照强度下,藻细胞密度分别达到0.954g/L和1.203g/L,脂含量为14.49%和15.75%,污水中的COD、TN和TP的去除率分别达到70%,90%和96%以上。成本分析结果表明,以生活污水为底物时,C. vulgaris油脂制备成本明显低于缺氮培养基,2000lx光照时的成本为71.57元/kg,仅是缺氮培养基的58.29%。如果以高浓度有机废水代谢葡萄糖、利用自然光提供光照并考虑污水处理收益后,则C.vulgaris油脂成本还可以进一步降低到22.86元/kg。
Due to the challenge of energy crisis and greenhouse effect, microalgae energywhich renewable and do not increase the greenhouse gas emissions received lots ofattentions recently years. Microalgae has some advantages to be used as bioenergymaterial, such as higher growth rate and energy conversion ratio, larger potentialproduction scale. However, the expensive cost of nutrient in medium and energyconsumption in collection process restrict the commercial production of microalgaeenergy. The production cost of microalgae would be decreased significantly ifwastewater was used as medium, and wastewater was treated simultaneously.
     Chlorella vulgaris was used as model strain in this paper. The growthcharacteristics of C. vulgaris under various trophic mode were investigated.Thereafter, lipid content of algal cell with various nutrient concentration wasdetermined. Both mixotrophic mode and lipid accumulation of C. vulgaris wereanalyzed. Through the optimization and comparison of chemical coagulation andelectronical coagulation, the collection method for C. vulgaris was confirmed. Theeffect of drying temperature on biomass constitute was also investigated. Based onthe research of lipid accumulation in C. vulgaris with wastewater used as medium,C. vulgaris lipid production system was constituted. The results of system operationwas analyzed.
     BG11was used as basal medium, C. vulgaris was cultivated underphototrophic, heterotrophic and mixotrophic mode with various organic carbon andlight condition. The specific growth rates of autotrophic and heterotrophic with noaeration were only0.0018h~(-1)and0.0083h~(-1), respectively. As for mixotrophic, itincreased to0.0204h~(-1). Compare to ethanol and sodium acetate, glucose was moresuitable to be used as organic carbon source for C. vulgaris cultivation. The specificgrowth rates could promote significantly by aeration. It increased to0.1008h~(-1)undermixotrophic with air aeration, while slightly decreased to0.0930h~(-1)when20%CO_2used as air source. Analysis of various trophic mode of C. vulgaris indicated thatphotosynthetic metabolism and heterotrophic metabolism were occurredsimultaneously in algal cell under mixotrophic mode. The pathways were interacteach other, and codetermine the constitute and specific growth rate of algal cell.
     The characteristic of C. vulgaris lipid accumulation was investigated withvarious nutrient concentration in medium. Nitrogen deficiency would enhance lipidcontent significantly. The lipid content of algal cell increased from7.59%in3.75g/LNaNO_3to22.58%in0.1g/L NaNO_3. Phosphate limitation play a lessimportant role in lipid accumulation than nitrogen. Glucose play a very important role in lipid accumulation. When C. vulgaris was cultivated with5g/L glucose, thelipid content achieved17.40%at96h. However, only10.58%of lipid content wasobtained at240h due to glucose had been exhausted. The analysis of lipidaccumulate process under various nutrient condition indicated that nutrientdeficiency would restrict the growth rate of microalgae. If organic carbon and lightenergy were abundant in nutrient deficiency culture, then the major part ofmetabolic flux was converted into lipid accumulation, therefore lipid contentincreased.
     Based on the optimization of string rate, aeration rate, current density, initialcell density and pH, electronical coagulation (EC) for C. vulgaris collection wasestablished. The97%of collection efficiency was achieved at15min by EC, withinitial cell density0.241g/L, pH5.0, current density0.42mA/cm~2and string rate50rpm. The energy consumption was only0.610kWh/kg. The C. vulgaris cultureunder different nutrient condition were collected by optimized aluminum sulfatecoagulation and EC, respectively. EC achieved higher collection efficiency and lipidrecovery efficiency than aluminum sulfate coagulation.99%~100%of collectionefficiency and99%~100%of lipid recovery efficiency were obtained by EC in20min. However, the Al3+concentration in effluent of EC was1.97~2.33times higherthan chemical coagulation. Constitute of algal cell would be changed under variousdrying temperature. Dry weight, lipid content and ester content of algal cell dryingin105°C decreased by3.30%,7.73%and26.30%compare to-70°C freeze drying.As for40°C drying, the constitute of algal cell was similar with freeze drying.
     C. vulgaris was cultivated in artificial wastewater and domestic wastewater,respectively. Due to the pollutants in domestic wastewater were more complex, thecell density decreased from1.496g/L in artificial wastewater to0.575g/L indomestic wastewater. The specific growth rates of C. vulgaris in sterilized domesticwastewater was higher than in non-sterilized wastewater, while pollutant removalefficiency was contrary. The lipid accumulation of C. vulgaris would be effect byaeration, light and nutrient concentration in wastewater. Cell density and lipidcontent of C. vulgaris would enhance with suitable CO_2concentration and aerationrate. Moreover, the increase of light intensity and time were also improved C.vulgaris cultivation. Cell density and lipid content of C. vulgaris also increasedalong with the increase of COD:TN. When COD:TN was50:1,1.181g/L of celldensity and14.38%of lipid content was obtained.
     Based on the results of previous research, the C. vulgaris lipid productionsystem was consisted. The domestic wastewater was pretreatment by filtration anddiluted, and then COD:TN:TP was adjusted to300:6:1by KH_2PO_4and glucoseaddition. After sterilization, the culture was used for C. vulgaris cultivation with5%CO_2aeration. When2000lx and7000lx light intensity was supplied, cell density reached0.954g/L and1.203g/L respectively, lipid content achieved14.49%and15.75%. As for COD, TN and TP, the removal efficiency were over70%,90%and96%, respectively. Cost analysis of the system indicated that the production cost ofC. vulgaris lipid with domestic wastewater used as medium was significantly lowerthan N-deficient medium. It was71.57yuan/kg with2000lx light intensity, only58.29%of N-deficient medium. If glucose was replaced by high organicconcentration wastewater, and sunlight used as light source, the profit of wastewatertreatment also calculated, the cost of C. vulgaris lipid could reduce to22.86yuan/kg.
引文
[1] Smith V. H., B. S. M. Sturm, F. J. Denoyelles, S. A. Billings. The ecology ofalgal biodiesel production [J]. Trends in Ecology&Evolution,2010,25(5):301-309.
    [2] Chisti Y. Biodiesel from microalgae beats bioethanol [J]. Trends Biotechnol,2008,26(3):126-31.
    [3] Dismukes G. C., D. Carrieri, N. Bennette, G. M. Ananyev, M. C. Posewitz.Aquatic phototrophs: efficient alternatives to land-based crops for biofuels [J].Curr Opin Biotechnol,2008,19(3):235-40.
    [4] Brennan L., P. Owende. Biofuels from microalgae-A review of technologiesfor production, processing, and extractions of biofuels and co-products [J].Renewable&Sustainable Energy Reviews,2010,14(2):557-577.
    [5] Zhang Y., Ma Dube, Dd Mclean, M. Kates. Biodiesel production from wastecooking oil:2. Economic assessment and sensitivity analysis [J]. BioresourceTechnology,2003,90(3):229-240.
    [6] Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances,2007,25(3):294-306.
    [7] Energy The Editior of Bp Statistical Review of World. BP世界能源统计年鉴2011[R]. London,2012.
    [8] Global B.P., BP Statistical review of world energy2011.2011.
    [9]中华人民共和国2011年国民经济和社会发展统计公报[R].北京:中华人民共和国国家统计局,2012.
    [10]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社.2010.
    [11] Pachauri R.K. Climate Change2007: Synthesis Report. Contribution ofWorking Groups I, II and III to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change [M]. Vol.446: IPCC.2007.
    [12] Rittmann B. E. Opportunities for renewable bioenergy using microorganisms[J]. Biotechnology and Bioengineering,2008,100(2):203-212.
    [13] R sch C., J. Skarka. The European biofuels policy and sustainability [J].International Association for Energy Economics,2009:31-35.
    [14] Harwood J. L., I. A. Guschina. The versatility of algae and their lipidmetabolism [J]. Biochimie,2009,91(6):679-84.
    [15] Richmond A. Microalgal biotechnology at the turn of the millennium: Apersonal view [J]. Journal of Applied Phycology,2000,12(3-5):441-451.
    [16] Demirbas A. Biomass resource facilities and biomass conversion processing forfuels and chemicals [J]. Energy Conversion and Management,2001,42(11):1357-1378.
    [17] Mckendry P. Energy production from biomass (part2): conversion technologies[J]. Bioresource Technology,2002,83(1):47-54.
    [18] Tsukahara K., S. Sawayama. Liquid fuel production using microalgae [J].Journal of the Japan Petroleum Institute,2005,48(5):251-259.
    [19] Wang B., Y. Q. Li, N. Wu, C. Q. Lan. CO2bio-mitigation using microalgae [J].Applied Microbiology and Biotechnology,2008,79(5):707-718.
    [20] Sialve B., N. Bernet, O. Bernard. Anaerobic digestion of microalgae as anecessary step to make microalgal biodiesel sustainable [J]. Biotechnol Adv,2009,27(4):409-16.
    [21] Phang S. M., M. S. Miah, B. G. Yeoh, M. A. Hashim. Spirulina cultivation indigested sago starch factory wastewater [J]. Journal of Applied Phycology,2000,12(3-5):395-400.
    [22] Yen Hong-Wei, David E. Brune. Anaerobic co-digestion of algal sludge andwaste paper to produce methane [J]. Bioresource Technology,2007,98(1):130-134.
    [23] Hirano A., R. Ueda, S. Hirayama, Y. Ogushi. CO2fixation and ethanolproduction with microalgal photosynthesis and intracellular anaerobicfermentation [J]. Energy,1997,22(2-3):137-142.
    [24] Ueno Y., N. Kurano, S. Miyachi. Ethanol production by dark fermentation inthe marine green alga, Chlorococcum littorale [J]. Journal of Fermentation andBioengineering,1998,86(1):38-43.
    [25] Clark J.H., F. Deswarte. Introduction to chemicals from biomass [M]. Vol.14:Wiley.2011.
    [26] Ghirardi M.L., L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A.Melis. Microalgae: a green source of renewable H2[J]. Trends inBiotechnology,2000,18(12):506-511.
    [27] Melis A., T. Happe. Hydrogen production. Green algae as a source of energy[J]. Plant physiology,2001,127(3):740-748.
    [28] Melis A. Green alga hydrogen production: progress, challenges and prospects[J]. International Journal of Hydrogen Energy,2002,27(11):1217-1228.
    [29] Miura Y., T. Akano, K. Fukatsu, H. Miyasaka, T. Mizoguchi, K. Yagi, I. Maeda,Y. Ikuta, H. Matsumoto. Hydrogen production by photosyntheticmicroorganisms [J]. Energy Conversion and Management,1995,36(6):903-906.
    [30] Fouchard S., J. Pruvost, B. Degrenne, J. Legrand. Investigation of H2production using the green microalga Chlamydomonas reinhardtii in a fullycontrolled photobioreactor fitted with on-line gas analysis [J]. InternationalJournal of Hydrogen Energy,2008,33(13):3302-3310.
    [31]乔洪金.具有异养和厌氧特性的小球藻光合机制和代谢产物的定向优化
    [D].2010.
    [32] Czernik S., A. V. Bridgwater. Overview of applications of biomass fastpyrolysis oil [J]. Energy&Fuels,2004,18(2):590-598.
    [33] Bridgwater A. V., D. Meier, D. Radlein. An overview of fast pyrolysis ofbiomass [J]. Organic Geochemistry,1999,30(12):1479-1493.
    [34] Chiaramonti David, Anja Oasmaa, Yrjo Solantausta. Power generation usingfast pyrolysis liquids from biomass [J]. Renewable&Sustainable EnergyReviews,2007,11(6):1056-1086.
    [35] Lv Pengmei, Zhenhong Yuan, Chuangzhi Wu, Longlong Ma, Yong Chen,Noritatsu Tsubaki. Bio-syngas production from biomass catalytic gasification[J]. Energy Conversion and Management,2007,48(4):1132-1139.
    [36] Iliopoulou E. F., E. V. Antonakou, S. A. Karakoulia, I. A. Vasalos, A. A. Lappas,K. S. Triantafyllidis. Catalytic conversion of biomass pyrolysis products bymesoporous materials: Effect of steam stability and acidity of Al-MCM-41catalysts [J]. Chemical Engineering Journal,2007,134(1-3):51-57.
    [37] Ginzburg B. Z. Liquid fuel (oil) from halophilic algae: a renewable source ofnonpolluting energy [J]. Renewable Energy,1993,3(2-3).
    [38] Miao X. L., Q. Y. Wu. High yield bio-oil production from fast pyrolysis bymetabolic controlling of Chlorella protothecoides [J]. Journal of Biotechnology,2004,110(1):85-93.
    [39] Goyal H. B., Diptendu Seal, R. C. Saxena. Bio-fuels from thermochemicalconversion of renewable resources: A review [J]. Renewable&SustainableEnergy Reviews,2008,12(2):504-517.
    [40] Kadam Kl. Environmental implications of power generation viacoal-microalgae cofiring [J]. Energy,2002,27(10):905-922.
    [41] Scragg A. H., J. Morrison, S. W. Shales. The use of a fuel containing Chlorellavulgaris in a diesel engine [J]. Enzyme and Microbial Technology,2003,33(7):884-889.
    [42] Demirbas A. Recent developments in biodiesel fuels [J]. International Journalof Green Energy,2007,4(1):15-26.
    [43] Meher L. C., D. V. Sagar, S. N. Naik. Technical aspects of biodiesel productionby transesterification-a review [J]. Renewable&Sustainable Energy Reviews,2006,10(3):248-268.
    [44] Birur D.K., T.W. Hertel, W.E. Tyner. The biofuels boom: implications for worldfood markets [J]. The Food Economy,2007:61.
    [45] Sheehan J. A look back at the US department of energy's aquatic speciesprogram: biodiesel from algae [M]. Vol.328: National Renewable EnergyLaboratory Golden, CO.1998.
    [46]互动百科.微型曼哈顿计划[EB/OL].http://www.hudong.com/wiki/%E5%BE%AE%E5%9E%8B%E6%9B%BC%E5%93%88%E9%A1%BF%E8%AE%A1%E5%88%92.
    [47]人民网.英国启动世界最大的藻类生物燃料项目[EB/OL].http://www.newenergy.org.cn/html/00810/10300822509.html.
    [48]钱伯章.埃克森美孚公司的新能源和节能减排战略[N].国际新能源网,2010年3月
    [49]高长安.新奥以微藻为原料为飞机研制生物燃油[N].科学时报,2011年11月
    [50]俞陶然.国家973微藻能源项目启动微藻将成为中国减排油田[N].新闻晚报,2011年2月22日
    [51]中国科学院高技术研究与发展局.中科院——中国石化联合召开“微藻生物柴油成套技术”项目启动会[EB/OL].http://www.bht.cas.cn/nykj/gzdtny/201003/t20100326_2807682.html.
    [52]王建高.中美可持续航空生物燃料实验室在青岛揭牌[N].科技日报,2010年9月
    [53] Schlesinger A., D. Eisenstadt, A. Bar-Gil, H. Carmely, S. Einbinder, J. Gressel.Inexpensive non-toxic flocculation of microalgae contradicts theories;overcoming a major hurdle to bulk algal production [J]. Biotechnol Adv,2012.
    [54] Lardon L., A. Helias, B. Sialve, J. P. Stayer, O. Bernard. Life-CycleAssessment of Biodiesel Production from Microalgae [J]. EnvironmentalScience&Technology,2009,43(17):6475-6481.
    [55] Xiong W., C. F. Gao, D. Yan, C. Wu, Q. Y. Wu. Double CO2fixation inphotosynthesis-fermentation model enhances algal lipid synthesis for biodieselproduction [J]. Bioresource Technology,2010,101(7):2287-2293.
    [56] Li Y., M. Horsman, N. Wu, C. Q. Lan, N. Dubois-Calero. Biofuels frommicroalgae [J]. Biotechnol Prog,2008,24(4):815-20.
    [57] Chiu S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen, C. S. Lin. Lipidaccumulation and CO2utilization of Nannochloropsis oculata in response toCO2aeration [J]. Bioresource Technology,2009,100(2):833-838.
    [58]李合生.现代植物生理学[M].高等教育出版社.2002.
    [59]李明春,杨文博.微生物学[M].第三版ed.北京.2010年6月.
    [60]刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响[D].2008.
    [61]王希成.生物化学[M].第一版ed.北京:清华大学出版社.2001年8月.
    [62] Meng X., J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, M. Xian. Biodieselproduction from oleaginous microorganisms [J]. Renewable Energy,2009,34(1):1-5.
    [63] Rosenberg Julian N., George A. Oyler, Loy Wilkinson, Michael J. Betenbaugh.A green light for engineered algae: redirecting metabolism to fuel abiotechnology revolution [J]. Current Opinion in Biotechnology,2008,19(5):430-436.
    [64] Burton T., H. Lyons, Y. Lerat, M. Stanley, M.B. Rasmussen. A review of thepotential of marine algae as a source of biofuel in Ireland [R]. Dublin:Sustainable Energy Ireland-SEI,2009.
    [65] Matsunaga T., M. Matsumoto, Y. Maeda, H. Sugiyama, R. Sato, T. Tanaka.Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024toward biofuel production [J]. Biotechnol Lett,2009,31(9):1367-72.
    [66] Dunahay T. G., E. E. Jarvis, S. S. Dais, P. G. Roessler. Manipulation ofmicroalgal lipid production using genetic engineering [J]. AppliedBiochemistry and Biotechnology,1996,57-8:223-231.
    [67]陈锦清郎春秀胡张华刘智宏黄锐之.反义pep基因调控油菜籽粒蛋白质/油脂含量比率的研究[J].农业生物技术学报,1999(04).
    [68]侯李君,施定基,蔡泽富,宋东辉,王学魁.蓝藻正反义pepcA基因导入对大肠杆菌中脂类合成的调控[J].中国生物工程杂志,2008(05):52-58.
    [69]宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报,2008(03):341-348.
    [70] Leon-Banares R., D. Gonzalez-Ballester, A. Galvan, E. Fernandez. Transgenicmicroalgae as green cell-factories [J]. Trends in Biotechnology,2004,22(1):45-52.
    [71] Li Y. Q., M. Horsman, B. Wang, N. Wu, C. Q. Lan. Effects of nitrogen sourceson cell growth and lipid accumulation of green alga Neochloris oleoabundans[J]. Applied Microbiology and Biotechnology,2008,81(4):629-636.
    [72] Griffiths M. J., S. T. L. Harrison. Lipid productivity as a key characteristic forchoosing algal species for biodiesel production [J]. Journal of AppliedPhycology,2009,21(5):493-507.
    [73] Yamaberi K., M. Takagi, T. Yoshida. Nitrogen depletion for intracellulartriglyceride accumulation to enhance liquefaction yield of marine microalgalcells into a fuel oil [J]. Journal of Marine Biotechnology,1998,6(1):44-48.
    [74] Alonso D. L., E. H. Belarbi, J. M. Fernandez-Sevilla, J. Rodriguez-Ruiz, E. M.Grima. Acyl lipid composition variation related to culture age and nitrogenconcentration in continuous culture of the microalga Phaeodactylumtricornutum [J]. Phytochemistry,2000,54(5):461-471.
    [75] Mandal S., N. Mallick. Microalga Scenedesmus obliquus as a potential sourcefor biodiesel production [J]. Applied Microbiology and Biotechnology,2009,84(2):281-291.
    [76] Rhee G.Y. Effects of N: P atomic ratios and nitrate limitation on algal growth,cell composition, and nitrate uptake [J]. Limnology and Oceanography,1978:10-25.
    [77] Guildford S. J., R. E. Hecky. Total nitrogen, total phosphorus, and nutrientlimitation in lakes and oceans: Is there a common relationship?[J]. Limnologyand Oceanography,2000,45(6):1213-1223.
    [78] Geider R. J., J. La Roche. Redfield revisited: variability of C: N: P in marinemicroalgae and its biochemical basis [J]. European Journal of Phycology,2002,37(1):1-17.
    [79] Richardson B, Dm Orcutt, Ha Schwertner, Cl Martinez, He Wickline. Effects ofnitrogen limitation on the growth and composition of unicellular algae incontinuous culture [J]. Applied and Environmental Microbiology,1969,18(2):245.
    [80] Smith V.H. The nitrogen and phosphorus dependence of algal biomass in lakes:An empirical and theoretical analysis [J]. Limnology and Oceanography,1982:1101-1112.
    [81] Liu Z. Y., G. C. Wang, B. C. Zhou. Effect of iron on growth and lipidaccumulation in Chlorella vulgaris [J]. Bioresource Technology,2008,99(11):4717-4722.
    [82] Miao X. L., Q. Y. Wu. Biodiesel production from heterotrophic microalgal oil[J]. Bioresource Technology,2006,97(6):841-846.
    [83] Sawayama S., S. Inoue, Y. Dote, S. Y. Yokoyama. CO2FIXATION AND OILPRODUCTION THROUGH MICROALGA [J]. Energy Conversion andManagement,1995,36(6-9):729-731.
    [84] Munoz R., B. Guieysse. Algal-bacterial processes for the treatment ofhazardous contaminants: a review [J]. Water Research,2006,40(15):2799-2815.
    [85] Van Harmelen T., H. Oonk. Microalgae biofixation processes: Applications andPotential Contributions to Greenhouse Gas Mitigation Options [J]. GrowthLakeland,2006(May2006):1-47.
    [86] Benemann J. R. CO2mitigation with microalgae systems [J]. EnergyConversion and Management,1997,38:S475-S479.
    [87]黄翔峰,池金萍,何少林,李旭东,杨殿海,周琪.高效藻类塘处理农村生活污水研究[J].中国给水排水,2006,22(5):35-39.
    [88] Martinez M. E., S. Sanchez, J. M. Jimenez, F. El Yousfi, L. Munoz. Nitrogenand phosphorus removal from urban wastewater by the microalga Scenedesmusobliquus [J]. Bioresource Technology,2000,73(3):263-272.
    [89] Hodaifa G., M. A. Martinez, S. Sanchez. Use of industrial wastewater fromolive-oil extraction for biomass production of Scenedesmus obliquus [J].Bioresour Technol,2008,99(5):1111-7.
    [90] Gomez-Villa H., D. Voltolina, M. Nieves, P. Pina. Biomass production andnutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae)in artificial wastewater, under the winter and summer conditions of Mazatlan,Sinaloa, Mexico [J]. Vie et milieu,2005,55(2):121-126.
    [91] Wang L., Y. C. Li, P. Chen, M. Min, Y. F. Chen, J. Zhu, R. R. Ruan. Anaerobicdigested dairy manure as a nutrient supplement for cultivation of oil-rich greenmicroalgae Chlorella sp.[J]. Bioresource Technology,2010,101(8):2623-2628.
    [92] Woertz I., A. Feffer, T. Lundquist, Y. Nelson. Algae Grown on Dairy andMunicipal Wastewater for Simultaneous Nutrient Removal and LipidProduction for Biofuel Feedstock [J]. Journal of EnvironmentalEngineering-Asce,2009,135(11):1115-1122.
    [93]潘辉,熊振湖,金勇威.光照对固定化菌藻反应器脱氮除磷效率的影响[J].水资源保护,2006,22(5):63-64.
    [94]潘辉,熊振湖,孙炜.共固定化菌藻对市政污水中氮磷去除的研究[J].环境科学与技术,2006,29(1):14-15.
    [95] Ruiz-Marin A., L.G. Mendoza-Espinosa, T. Stephenson. Growth and nutrientremoval in free and immobilized green algae in batch and semi-continuouscultures treating real wastewater [J]. Bioresource Technology,2010,101(1):58-64.
    [96] Gupta H., L. S. Fan. Carbonation-calcination cycle using high reactivitycalcium oxide for carbon dioxide separation from flue gas [J]. Industrial&Engineering Chemistry Research,2002,41(16):4035-4042.
    [97] Shi M., Y. M. Shen. Recent progresses on the fixation of carbon dioxide [J].Current Organic Chemistry,2003,7(8):737-745.
    [98] Lee J. S., J. P. Lee. Review of advances in biological CO2mitigationtechnology [J]. Biotechnology and Bioprocess Engineering,2003,8(6):354-359.
    [99] Kondili E. M., J. K. Kaldellis. Biofuel implementation in East Europe: Currentstatus and future prospects [J]. Renewable&Sustainable Energy Reviews,2007,11(9):2137-2151.
    [100] Ragauskas A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A.Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R.Murphy, R. Templer, T. Tschaplinski. The path forward for biofuels andbiomaterials [J]. Science,2006,311(5760):484-489.
    [101] De Morais Michele Greque, Jorge Alberto Vieira Costa. Biofixation of carbondioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stageserial tubular photobioreactor [J]. Journal of Biotechnology,2007,129(3):439-445.
    [102] Skjanes Kari, Peter Lindblad, Jiri Muller. BiOCO2-A multidisciplinary,biological approach using solar energy to capture CO2while producing H-2and high value products [J]. Biomolecular Engineering,2007,24(4):405-413.
    [103] Huertas I. E., B. Colman, G. S. Espie, L. M. Lubian. Active transport of CO2by three species of marine microalgae [J]. Journal of Phycology,2000,36(2):314-320.
    [104] Merrett M. J., N. A. Nimer, L. F. Dong. The utilization of bicarbonate ions bythe marine microalga Nannochloropsis oculata (Droop) Hibberd [J]. PlantCell and Environment,1996,19(4):478-484.
    [105] Chinnasamy S., B. Ramakrishnan, A. Bhatnagar, K. C. Das. BiomassProduction Potential of a Wastewater Alga Chlorella vulgaris ARC1underElevated Levels of CO2and Temperature [J]. International Journal ofMolecular Sciences,2009,10(2):518-532.
    [106] Fan L.H., Y.T. Zhang, L. Zhang, H.L. Chen. Evaluation of amembrane-sparged helical tubular photobioreactor for carbon dioxidebiofixation by Chlorella vulgaris [J]. Journal of Membrane Science,2008,325(1):336-345.
    [107] Sakai N., Y. Sakamoto, N. Kishimoto, M. Chihara, I. Karube. Chlorella strainsfrom hot-springs tolerant to high-temperature and high CO2[J]. EnergyConversion and Management,1995,36(6-9):693-696.
    [108] Maeda K., M. Owada, N. Kimura, K. Omata, I. Karube. CO2fixation from theflue-gas on coal-fired thermal power-plant by microalgae [J]. EnergyConversion and Management,1995,36(6-9):717-720.
    [109] Chang E. H., S. S. Yang. Some characteristics of microalgae isolated inTaiwan for biofixation of carbon dioxide [J]. Botanical Bulletin of AcademiaSinica,2003,44(1):43-52.
    [110] Hsueh H. T., H. Chu, S. T. Yu. A batch study on the bio-fixation of carbondioxide in the absorbed solution from a chemical wet scrubber by hot springand marine algae [J]. Chemosphere,2007,66(5):878-886.
    [111] Doucha J., F. Straka, K. Livansky. Utilization of flue gas for cultivation ofmicroalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor [J].Journal of Applied Phycology,2005,17(5):403-412.
    [112] Murakami M., M. Ikenouchi. The biological CO2fixation and utilizationproject by rite (2)—Screening and breeding of microalgae with highcapability in fixing CO2[J]. Energy Conversion and Management,1997,38:S493-S497.
    [113] Vunjak-Novakovic G., Y. Kim, X. X. Wu, I. Berzin, J. C. Merchuk. Air-liftbioreactors for algal growth on flue gas: Mathematical modeling andpilot-plant studies [J]. Industrial&Engineering Chemistry Research,2005,44(16):6154-6163.
    [114] Iwasaki I., Q. Hu, N. Kurano, S. Miyachi. Effect of extremely high-CO2stress on energy distribution between photosystem I and photosystem II in a'high-CO2' tolerant green alga, Chlorococcum littorale and the intolerantgreen alga Stichococcus bacillaris [J]. Journal of Photochemistry andPhotobiology B-Biology,1998,44(3):184-190.
    [115] De Morais Michele Greque, Jorge Alberto Vieira Costa. Isolation andselection of microalgae from coal fired thermoelectric power plant forbiofixation of carbon dioxide [J]. Energy Conversion and Management,2007,48(7):2169-2173.
    [116] Yun Y. S., S. B. Lee, J. M. Park, C. I. Lee, J. W. Yang. Carbon dioxide fixationby algal cultivation using wastewater nutrients [J]. Journal of ChemicalTechnology and Biotechnology,1997,69(4):451-455.
    [117] Scragg A. H., A. M. Illman, A. Carden, S. W. Shales. Growth of microalgaewith increased calorific values in a tubular bioreactor [J]. Biomass&Bioenergy,2002,23(1):67-73.
    [118] Kishimoto M., T. Okakura, H. Nagashima, T. Minowa, S. Yokoyama, K.Yamaberi. CO2fixation and oil production using microalgae [J]. Journal ofFermentation and Bioengineering,1994,78(6):479-482.
    [119] Huntley M.E., D.G. Redalje. CO2mitigation and renewable oil fromphotosynthetic microbes: a new appraisal [J]. Mitigation and adaptationstrategies for global change,2007,12(4):573-608.
    [120] Gomez-Villa H., D. Voltolina, M. Nieves, P. Pina. Biomass production andnutrient budget in outdoor cultures of scenedesmus obliquus (chlorophyceae)in artificial wastewater, under the winter and summer conditions of Mazatlan,Sinaloa, Mexico [J]. Vie Et Milieu-Life and Environment,2005,55(2):121-126.
    [121] Uduman N., Y. Qi, M. K. Danquah, G. M. Forde, A. Hoadley. Dewatering ofmicroalgal cultures: A major bottleneck to algae-based fuels [J]. Journal ofRenewable and Sustainable Energy,2010,2(1):-.
    [122] Tenney M. W., W. F. Echelberger, Jr., R. G. Schuessler, J. L. Pavoni. Algalflocculation with synthetic organic polyelectrolytes [J]. Applied microbiology,1969,18(6):965-71.
    [123] Vlaski A., A. N. Vanbreemen, G. J. Alaerts. The role of particle size anddensity in dissolved air flotation and sedimentation [J]. Water Science andTechnology,1997,36(4):177-189.
    [124] Heasman M., J. Diemar, W. O'connor, T. Sushames, L. Foulkes. Developmentof extended shelf-life microalgae concentrate diets harvested bycentrifugation for bivalve molluscs-a summary [J]. Aquaculture Research,2000,31(8-9):637-659.
    [125] Grima E. M., E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, Y. Chisti.Recovery of microalgal biomass and metabolites: process options andeconomics [J]. Biotechnology Advances,2003,20(7-8):491-515.
    [126] Knuckey R. M., M. R. Brown, R. Robert, D. M. F. Frampton. Production ofmicroalgal concentrates by flocculation and their assessment as aquaculturefeeds [J]. Aquacultural Engineering,2006,35(3):300-313.
    [127] Gregory J. Fundamentals of flocculation [J]. Critical Reviews inEnvironmental Control,1989,19(3):185-230.
    [128] Pieterse A. J. H., A. Cloot. Algal cells and coagulation, flocculation andsedimentation processes [J]. Water Science and Technology,1997,36(4):111-118.
    [129] Lee S. J., S. B. Kim, J. E. Kim, G. S. Kwon, B. D. Yoon, H. M. Oh. Effects ofharvesting method and growth stage on the flocculation of the green algaBotryococcus braunii [J]. Letters in Applied Microbiology,1998,27(1):14-18.
    [130] Pushparaj B., E. Pelosi, G. Torzillo, R. Materassi. Microbial biomass recoveryusing a synthetic cationic polymer [J]. Bioresource Technology,1993,43(1):59-62.
    [131]俞文正.混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响[D].2010.
    [132] Briley D. S., D. R. U. Knappe. Optimizing ferric sulfate coagulation of algaewith streaming current measurements [J]. Journal American Water WorksAssociation,2002,94(2):80-90.
    [133] Folkman Yair, Alberto M. Wachs. Removal of algae from stabilization pondeffluents by lime treatment [J]. Water Research,1973,7(3):419-435.
    [134] Oh H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S.Kwon, B. D. Yoon. Harvesting of Chlorella vulgaris using a bioflocculantfrom Paenibacillus sp AM49[J]. Biotechnology Letters,2001,23(15):1229-1234.
    [135] Aragon A. B., R. B. Padilla, J. A. F. R. Deursinos. Experimental-Study of theRecovery of Algae Cultured in Effluents from the Anaerobic BiologicalTreatment of Urban Wastewaters [J]. Resources Conservation and Recycling,1992,6(4):293-302.
    [136] Azarian G. H., A. R. Mesdaghinia, F. Vaezi, R. Nabizadeh, D. Nematollahi.Algae removal by electro-coagulation process, application for treatment ofthe effluent from an industrial wastewater treatment plant [J]. Iranian Journalof Public Health,2007,36(4):57-64.
    [137] Alfafara C. G., K. Nakano, N. Nomura, T. Igarashi, M. Matsumura. Operatingand scale-up factors for the electrolytic removal of algae from eutrophiedlakewater [J]. Journal of Chemical Technology and Biotechnology,2002,77(8):871-876.
    [138] Canizares Pablo, Fabiola Martinez, Carlos Jimenez, Justo Lobato, Manuel A.Rodrigo. Coagulation and electrocoagulation of wastes polluted with dyes [J].Environmental Science&Technology,2006,40(20):6418-6424.
    [139] Ilhan Fatih, Ugur Kurt, Omer Apaydin, M. Talha Gonullu. Treatment ofleachate by electrocoagulation using aluminum and iron electrodes [J].Journal of Hazardous Materials,2008,154(1-3):381-389.
    [140] Mollah M. Y. A., P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, D. L.Cocke. Fundamentals, present and future perspectives of electrocoagulation[J]. Journal of Hazardous Materials,2004,114(1-3):199-210.
    [141] Poelman E., N. Depauw, B. Jeurissen. Potential of electrolytic flocculation forrecovery of micro-algae [J]. Resources Conservation and Recycling,1997,19(1):1-10.
    [142] Gao S. S., J. X. Yang, J. Y. Tian, F. Ma, G. Tu, M. A. Du.Electro-coagulation-flotation process for algae removal [J]. Journal ofHazardous Materials,2010,177(1-3):336-343.
    [143] Vandamme D., S. C. Pontes, K. Goiris, I. Foubert, L. J. Pinoy, K. Muylaert.Evaluation of electro-coagulation-flocculation for harvesting marine andfreshwater microalgae [J]. Biotechnol Bioeng,2011.
    [144] Chen Y. M., J. C. Liu, Y. H. Ju. Flotation removal of algae from water [J].Colloids and Surfaces B-Biointerfaces,1998,12(1):49-55.
    [145] Chung Y., Y. C. Choi, Y. H. Choi, H. S. Kang. A demonstration scaling-up ofthe dissolved air flotation [J]. Water Research,2000,34(3):817-824.
    [146] Petrusevski B., G. Bolier, A. N. Vanbreemen, G. J. Alaerts. Tangential flowfiltration-a method to concentrate fresh-water algae [J]. Water Research,1995,29(5):1419-1424.
    [147] Matis K. A., G. P. Gallios, K. A. Kydros. Separation of fines by flotationtechniques [J]. Separations Technology,1993,3(2):76-90.
    [148] Rubio J., M. L. Souza, R. W. Smith. Overview of flotation as a wastewatertreatment technique [J]. Minerals Engineering,2002,15(3):139-155.
    [149] Edzwald J. K. Algae, bubbles, coagulants, and dissolved air flotation [J].Water Science and Technology,1993,27(10):67-81.
    [150] Bare W. F., N. B. Jones, E. J. Middlebrooks. Algae removal using dissolvedair flotation [J]. Journal-Water Pollution Control Federation,1975,47(1):153-69.
    [151] Phoochinda W., D. A. White, B. J. Briscoe. An algal removal using acombination of flocculation and flotation processes [J]. EnvironmentalTechnology,2004,25(12):1385-1395.
    [152] Mulbry W., S. Kondrad, J. Buyer. Treatment of dairy and swine manureeffluents using freshwater algae: fatty acid content and composition of algalbiomass at different manure loading rates [J]. Journal of Applied Phycology,2008,20(6):1079-1085.
    [153] Gao S. S., M. A. Du, J. Y. Tian, J. Y. Yang, J. X. Yang, F. Ma, J. Nan. Effectsof chloride ions on electro-coagulation-flotation process with aluminumelectrodes for algae removal [J]. Journal of Hazardous Materials,2010,182(1-3):827-834.
    [154]杨佳.高油脂微藻的筛选及其在再生水中的产油特性研究[D].2009.
    [155] Yang C., Q. Hua, K. Shimizu. Energetics and carbon metabolism duringgrowth of microalgal cells under photoautotrophic, mixotrophic and cycliclight-autotrophic/dark-heterotrophic conditions [J]. Biochemical EngineeringJournal,2000,6(2):87-102.
    [156] Suh I. S., C. G. Lee. Photobioreactor engineering: Design and performance [J].Biotechnology and Bioprocess Engineering,2003,8(6):313-321.
    [157]孙颖颖,王怀忠,阎斌伦.海洋微藻培养中的光衰减研究[J].淮海工学院学报(自然科学版),2008(02).
    [158]黄璐吴庆余Neil G. Grant.厌氧条件下小球藻细胞的异养转化和乳酸发酵(简报)[J].实验生物学报,1994(02).
    [159] Ogawa T., S. Aiba. Bioenergetic analysis of mixotrophic growth in Chlorellavulgaris and Scenedesmus acutus [J]. Biotechnology and Bioengineering,1981,23(5):1121-1132.
    [160] Ogbonna J.C., H. Tanaka. Cyclic autotrophic/heterotrophic cultivation ofphotosynthetic cells: a method of achieving continuous cell growth underlight/dark cycles [J]. Bioresource Technology,1998,65(1):65-72.
    [161] Endo H., M. Shirota. Studies on the heterotrophic growth of Chlorella in amass culture [C].Proceedings of the4th International FermentationSymposium, Fermentation Technology Today.1972. Kyoto:533-541.
    [162]刘世名陈峰梁世中. Researches on the heterotrophic culture of Chlorellavulgaris——Optimization of Carbon Sources,Nitrogen Sources,InoculumSize and Initial pH [J].华南理工大学学报(自然科学版),1999(04).
    [163] Chaumont D. Biotechnology of Algal Biomass Production-a Review ofSystems for Outdoor Mass-Culture [J]. Journal of Applied Phycology,1993,5(6):593-604.
    [164]许波,王长海.微藻的平板式光生物反应器高密度培养[J].食品与发酵工业,2003(1).
    [165]张大兵吴庆余.小球藻细胞的异养转化[J].植物生理学通讯,1996(02).
    [166] Shihira-Ishikawa I., E. Hase. Nutritional control of cell pigmentation inChlorella protothecoides with special reference to the degeneration ofchloroplast induced by glucose [J]. Plant and Cell Physiology,1964,5(2):227-240.
    [167] Ogbonna J.C., H. Tanaka. Night biomass loss and changes in biochemicalcomposition of cells during light/dark cyclic culture of Chlorella pyrenoidosa[J]. Journal of Fermentation and Bioengineering,1996,82(6):558-564.
    [168]桂林史贤明李琳胡松青刘国琴.蛋白核小球藻不同培养方式的比较[J].河南工业大学学报(自然科学版),2005(05).
    [169]陈峰,生物,姜悦.微藻生物技术[M].中国轻工业出版社.1999.
    [170] Jeong M. L., J. M. Gillis, J. Y. Hwang. Carbon dioxide mitigation bymicroalgal photosynthesis [J]. Bulletin of the Korean Chemical Society,2003,24(12):1763-1766.
    [171] Li Q., W. Du, D. H. Liu. Perspectives of microbial oils for biodieselproduction [J]. Applied Microbiology and Biotechnology,2008,80(5):749-756.
    [172]陈灏潘纲张明明.藻细胞不同生长阶段的海泡石凝聚除藻性能[J].环境科学,2004(06).
    [173] Zhu B. T., D. A. Clifford, S. Chellam. Comparison of electrocoagulation andchemical coagulation pretreatment for enhanced virus removal usingmicrofiltration membranes [J]. Water Research,2005,39(13):3098-3108.
    [174] Holt P. K., G. W. Barton, M. Wark, C. A. Mitchell. A quantitative comparisonbetween chemical dosing and electrocoagulation [J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2002,211(2-3):233-248.
    [175] Duan J. M., J. Gregory. Coagulation by hydrolysing metal salts [J]. Advancesin Colloid and Interface Science,2003,100:475-502.
    [176] Adhoum N., L. Monser, N. Bellakhal, J. E. Belgaied. Treatment ofelectroplating wastewater containing Cu2+, Zn2+and Cr(VI) byelectrocoagulation [J]. Journal of Hazardous Materials,2004,112(3):207-213.
    [177] Ono E., J.L. Cuello. Selection of optimal microalgae species for CO2sequestration [C].2003.1-7.
    [178] Lau Ps, Nfy Tam, Ys Wong. Effect of algal density on nutrient removal fromprimary settled wastewater [J]. Environmental Pollution,1995,89(1):59-66.
    [179] Babel S., S. Takizawa, H. Ozaki. Factors affecting seasonal variation ofmembrane filtration resistance caused by Chlorella algae [J]. Water Res,2002,36(5):1193-202.
    [180] Paralkar A., J.K. Edzwald. Effect of ozone on EOM and coagulation [J].Journal-American Water Works Association,1996,88(4):143-154.
    [181] Travieso Córdoba L., A.R. Domínguez Bocanegra, B. Rincón Llorente, E.Sánchez Hernández, F. Benítez Echegoyen, R. Borja, F. Raposo Bejines, M.F.Colmenarejo Morcillo. Batch culture growth of Chlorella zofingiensis oneffluent derived from two-stage anaerobic digestion of two-phase olive millsolid waste [J]. Electronic Journal of Biotechnology,2008,11(2):12-19.
    [182] Yoo C., S. Y. Jun, J. Y. Lee, C. Y. Ahn, H. M. Oh. Selection of microalgae forlipid production under high levels carbon dioxide [J]. BioresourceTechnology,2010,101:S71-S74.
    [183]严佳琦,黄旭雄,黄征征,胡盼,吕为群,林锋.营养方式对小球藻生长性能及营养价值的影响[J].渔业科学进展,2011,32(4):77-85.
    [184] Lehr F., C. Posten. Closed photo-bioreactors as tools for biofuel production[J]. Curr Opin Biotechnol,2009,20(3):280-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700