用户名: 密码: 验证码:
榛子扦插生根机理与繁殖技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以平榛、杂交榛、欧榛为研究对象,通过硬枝和嫩枝扦插试验,研究了不同的扦插基质、不同生长素种类和浓度处理的榛子插条生根指标(生根率、根数、根长、生根指数)差异;用石蜡切片法研究了不定根发生的解剖学特性;追踪生根过程研究了扦插生根相关的中生理生化指标(氧化酶类、枝条的营养物质、以及内源激素)的动态变化;并对扦插苗年生长规律进行研究。旨在为榛子扦插生根和苗木培育提供理论依据和技术支撑。主要试验结果如下:
     榛子硬枝、嫩枝插穗刺激愈伤组织和自由愈伤组织均能生根,但绝大多数生根部位为刺激愈伤组织。榛子扦插生根过程可分为不定根诱导期、表达期和伸长期3个阶段。
     欧榛嫩枝生根解剖学研究表明,生根类型属于愈伤部位生根型。插穗扦插前不存在潜伏根原基,诱生的不定根原始体起源于木质部和韧皮部之间形成层薄壁细胞。
     3种氧化酶活性在欧榛硬枝和嫩枝扦插生根过程中总体呈现出“升高-降低”的变化趋势。生根期间POD活性出现2个高峰,在不定根诱导期和表达期上升,在伸长期下降。PPO和IAAO活性在不定根诱导期上升,在表达期和伸长期活性下降。IBA处理改变了生根过程中POD、PPO和IAAO的活性和其之间的相互关系,从而影响了插穗生根,表现出不同的生根效果。
     可溶性糖含量在硬枝扦插生根中呈现逐渐降低的趋势,在嫩枝扦插生根中呈现“降低-升高-降低”的变化趋势,经IBA处理的插穗可溶性糖含量显著高于对照。可溶性糖含量高,C/N比高,有利于硬枝插条生根,嫩枝插条相反,C/N比低有利于生根,C/N比理论不适用于榛子嫩枝扦插。
     3种内源激素(IAA、ABA、GA3)在生根过程中变化趋势不同。硬枝插穗中IAA绝对含量明显高于嫩枝插穗,但均表现出不定根表达期、伸长期下降趋势。ABA和GA3含量与生根负相关。IAA和ABA在生根过程中含量变化互为消长关系,IAA/ABA比值可以作为衡量树木嫩枝扦插生根难易的标准。
     扦插基质影响生根。不论是欧榛硬枝还是嫩枝扦插,在200mg·kg-1IBA处理条件下,3种基质(河沙、珍珠岩、蛭石和珍珠岩组成的混合基质)以混合基质生根效果最好。欧榛硬枝扦插在河沙或珍珠岩基质中不生根,在混合基质中生根率可达60%。嫩枝扦插在河沙或珍珠岩基质中生根率较低,分别为13.3%、9.17%,在混合基质中生根率为42.5%。
     生长素种类和浓度影响生根效果。混合基质条件下,用3种生长素(IBA、α-NAA、ABT1)、4种浓度(0、50、200、1000mg·kg-1)处理欧榛硬枝结果表明,生长素处理可提高插穗生根率,但生根率多在50%以下,而对照不生根。IBA处理效果好于α-NAA和ABT1,浓度以200mg·kg-1处理的生根率最高,达56.7%。
     不同种类榛子对IBA处理反应不同。经不同浓度(0、100、200、300、400、500、600mg·kg-1)IBA处理的榛子(平榛、杂交榛、欧榛)嫩枝扦插试验得出,500mg·kg-1IBA处理的平榛插条生根率最高,为20%,对照不生根;100和500mg·kg-1IBA处理的杂交榛插条生根率均为48.3%,对照生根率为20%。400mg·kg-1IBA处理的欧榛插穗生根率最高,可达73.3%,对照生根率仅为8.3%。3种榛子中平榛生根效果最差,杂交榛和欧榛生根效果较好,生产中育苗可用扦插繁殖。
     不同粗度(0.5~1.0cm、1.0~1.5cm)、不同部位(形态学上端、形态学下端)的欧榛嫩枝扦插(200mg·kg-1IBA处理,基质为河沙)生根率差异不显著。细枝条和粗枝条插穗生根率分别为8.3%和18.3%;上端、下端枝条的插穗生根率分别为10%和8.3%。插穗的粗度、部位不是影响插条生根的主要因素。
     欧榛扦插苗苗高生长曲线呈现“S”型。苗高净生长呈现“慢-快-慢-停”的生长节律。高生长和地径生长分别在7月和8月期间达到最大值,6~8月为苗木速生期,是加强栽培管理的关键时期。
Rooting mechanism and cutting propagation technique of Corylus such as herterophylla, hybrid hazelnut and avellana were studied with different auxins and concentrations on soft and hardwood cuttings under different media. The research including: Rooting capacities(rooting rate, root number, root length) of soft and hardwood cuttings; anatomical proerty of adventitious roots using paraffin section technology; dynamic changes of rooting-related physiological biochemical indexes(oxidases, nutriments, endogenesis hormones) and annual growth rules of cuttage seedlings. The aim of studies is to provide scientific basis and technological guide for Corylus propagation.
     Most adventitious roots of Corylus cuttings(hard or softwood cuttings) came from stimulated callus. Both stimulated and free callus could root. The adventitious roots developmental process can be divided into 3 distinct phases, i.e., induction, expression and elongation.
     The anatomical observation on softwood cuttings showed that the rooting type of avellana originated from callus. There was no induced root primordium in cuttings. The induced root primorbium which originated from the parenchyma cell of cambium between xylem and phloem developed into adventitious roots.
     The activities of POD, PPO and IAAO appeared tendency of“enhancing-descending”. The activity of POD had two peaks during rooting process. The activity of POD increased up during induction and expression phase and declined at the elongation phase. The activities of PPO and IAAO increased up during induction and declined at the expression elongation phase. IBA could change the activities of the oxidases and promoted rooting process.
     The contents of soluble sugar, total N and the ratio of C/N appeared different change laws. The content of soluble sugar decreased gradually during hardwood cutting rooting. The content of soluble sugar in cuttings treated by IBA had significant differences in contrast with control. The higher content of soluble sugar and ratio of C/N of hardwood cuttings was favorable to root. On the contrary, the lower ratio of C/N was benefit to softwood cuttings root. The content of soluble sugar in cuttings by IBA treatment is lower than that of control. So the theory of C/N was inapplicabe in Corylus softwood cutting.
     IAA, ABA and GA3 had different change rules during rooting process. The content of IAA in hardwood cutting had significant differences in contrast with that of softwood cutting. The content of IAA in both hard and softwood declined at the expression and elongation phase. Both ABA and GA3 restrained cutting rooting. The changes of IAA content were contrary to ABA. The ratio of IAA and ABA can be as a scale estimating softwood cutting rooting capacities.
     The media can affect cutting rooting. The results showed that only mixed media could enhance the percentage of hardwood cuttings rooting by IBA treatment in media experiment with river sand, perlite and mixed media. The hardwood cuttings of avellana could not root under river sand or perlite media. Rooting percentage of cutting by 200mg·kg-1IBA treatment under mixed media reached 60%. The rooting rate of softwood cutting in both river sand and perlite only reached 13.3% and 9.7%, and 42.5% in mixed media.
     The kinds and concentrations of auxin affected rooting. Auxin treatment could increase rooting percentage, but the rooting rate was below 50% and control could not root. IBA had the most significant effect on rooting rate of cuttings in avellana thanα-NAA and ABT1, and the rooting rate could reach 56.7% by 200mg·kg-1IBA treatment.
     Different Corylus varieties had different reaction to IBA treatment. The rooting rate reached the maximum 20% by 500mg·kg-1IBA treatment in Heterophylla, and control could not root. The rooting rate reached the maximum 48.3% by 100 or 500mg·kg-1IBA treatment in hybrid hazelnut, and the rooting percentage of cutting only reached 20% in control. Avellana reached the maximum percentage of 73.3% by 400mg·kg-1IBA treatment, and control only reached 8.3%. Heterophylla had the worst results among three varieties. Hybrid hazelnut and Avellana can be propagated by cutting.
     The rooting percentage of cutting in different ends(upper and under end in morphology) and diameters(0.5~1.0cm and 1.0~1.5cm) by IBA treatment had not significant difference in Avellana. The rooting rate reached 8.3% and 18.3% in leptos and stout stress espectively, and the rooting rate reached 10% and 8.3% in upper and under end in morphology. Diameters and ends were not primary influenced factors.
     Height growth curve of Avellana cutting seedling could be fitted into‘S’curve. Net height growth appeared tendency of“slow-fast-slow-stopping”. The growth of height and ground diameter reached the maximum on July and August. The cutting seedling should be managed intensively during June to August.
引文
1.敖红,王昆,陈一菱,等.长白落叶松插穗内的营养物质及其对扦插生根的影响[J].植物研究, 2002, 22(3): 301~304
    2.敖红,王昆,冯玉龙.长白落叶松插穗的内源激素水平及其与扦插生根的关系[J].植物研究, 2002, 22(2):190~195
    3.曹帮华.有序聚类和数学模拟法在刺槐苗年生长规律研究中的应用[J].山东农业大学学报, 1998, 29(4):487~494
    4.陈素传,肖正东,吴浩,等.欧洲榛子嫩枝压条试验研究[J].经济林研究, 2001, 19(1):45~47
    5.迟彦,侯义龙,于亚军,等.芽变毛白杨及其亲缘种扦插生根过程中内源激素含量的动态变化[J].安徽农业科学, 2007, 35(27):8438~8439, 8442
    6.杜春花,陆斌,陈芳,等.欧洲榛子埋条繁殖试验[J].林业科技, 2005, (4): 62~64
    7.谷建田,范双喜,赵福宽. ABT生根粉对花椒硬枝扦插成活率的影响[J].中国农学通报, 2002, 18(5):80-84
    8.郭素娟,凌宏勤,李凤兰.白皮松插穗生根的生理生化基础研究[J].北京林业大学学报, 2004, 26(2):43~47
    9.郭素娟,凌宏勤,潘万春,等.白皮松插穗的生根特性与其解剖构造的关系[J].北京林业大学学报, 2004, 26(5):43~46
    10.郭素娟.林木扦插生根的解剖学及生理学研究进展[J].北京林业大学学报, 1997, 19(4):64~69
    11.哈特曼HT.植物繁殖的原理和技木[M].郑邢文等译,北京:中国林业出版社, 1985
    12.胡炳荣,宋秀柏,赵丽毅,植物激素对赤柏松扦插生根影响的研究[J].现代化农业,2000, (6):14~15
    13.黄焱,季孔庶,方彦,等.珍珠黄杨春季扦插生根性状差异及内源激素变化[J].浙江林学院学报, 2007, 24 (3): 284~289
    14.黄运平,万佐玺,胡孝枝,等.杜仲嫩枝扦插生根解剖特征研究[J].湖北林业科技, 1997,100(2):10~12
    15.黄卓烈,李明,詹福建,等.不同生长素处理对桉树无性系插条氧化酶活性影响的比较研究[J].林业科学, 2002, 38(4):46~52
    16.季孔蔗,王章荣,王明庥,等.针叶树种扦插繁殖的研究进展及起对策[J].世界林业研究, 1996, 9(4):18~22
    17.金国庆,秦国峰,储德裕,等.杂种马褂木扦插繁殖技术的研究[J].林业科学研究, 2006, 19(3):370~375
    18.李焕秀,王乔春,李春秀.梨芽和茎尖多氧化酶活性和总含量的初步研究[J].四川农业大学学报, 1994, 2(2):218~22
    19.李明,黄卓烈,谭绍满,等.吲哚乙酸处理桉树插条后氧化酶活性及同工酶变化与生根关系的比较研究[J].林业科学研究, 2001, 14(2):131~140
    20.李正理.植物组织制片学[M].北京:北京大学出版社, 1996, 130~139
    21.梁玉堂,龙庄如主编.树木营养繁殖原理和技术[M].北京:中国林业出版社, 1993, 12. 24~25
    22.刘桂丰,杨传平,曲冠正,等.落叶松杂种插穗生根过程中4种内源激素的动态变化[J].东北林业大学学报, 2001, 29(6):1~3
    23.刘家宁,高遐虹,秦岭.平欧杂交榛的组织培养[J].果树学报, 2006,23(3):471~474
    24.刘家宁,高遐虹,秦岭.平欧杂交榛的组织培养与植株再生[J].植物生理学通讯, 2006, 42(2):260
    25.刘晓峰,陈红梅,徐兆忠,等.榛子母体枝条处理后进行嫩枝扦插育苗技术[J].内蒙古林业调查设计, 2006, 29(5):26,28
    26.刘玉芹,王震星,张磊.北海道黄杨扦插繁殖的研究[J].天津农学院学报, 2001,8(4):6~10
    27.刘玉艳,于凤鸣,于娟. IBA对含笑扦插生根影响出探[J].河北农业大学学报, 2003, 26(2):25~29
    28.刘云强.椴树扦插繁殖技术及生根机理的研究[D].保定:河北农业大学, 2004,11~12
    29.龙启德,张玉奇,朱忠荣.南方山区银杏无性系繁殖试验研究[J],贵州林业科技, 2000, 28(3):11~17
    30.龙应忠,艾文胜,吴际友,等.四川省湿地松、火炬松生长情况调查研究初报(一)[J], 1994, 21(4):15~19
    31.陆斌,陈芳,宁德鲁,等.欧洲榛子的扦插繁殖试验[J].云南林业科技, 2003,104(3):64~67
    32.吕明霞.梅花硬枝扦插繁殖与贮藏养分的关系[J].浙江农业科学, 2000, (4):200~202
    33.马惠玲.杜仲嫩枝扦插生根的生理生化分析[J],西北林学院学报, 1991,6(2):17~21
    34.茅林春,沈德绪,林伯年.梅插条生根的解剖和生理研究[J].园艺学报, 1988, 15(3):155~159
    35.欧建德.水竹无性繁殖育苗技术的研究[J].江苏林业科技, 2000, 27(5):26~28
    36.潘瑞炽,李玲.植物生长发育的调控[M].广东:广东高等教育出版社,1995
    37.潘志刚,陈贰,国外松(加勒比松、杂交松、湿地松、火炬松)扦插繁殖技术和采穗圃的营建[J].热带林业, 1999, 27(4):159~161
    38.潘志辉,胡晓静,余字平.三角叶杨扦插苗苗高的生长规律研究[J].石河子大学学报(自然科学版), 2007, 25(2):561~564
    39.朴楚炳等.促进红松插穗生根能力的研究[J].世界林业研究, 1996, 9(6):5~8
    40.乔静,廉守喜,李贵莲,等.紫椴扦插繁殖技术的研究[J].防护林科技, 2004, 61(4):16~17
    41.秦光华,姜岳忠,李善文,等.黑杨派新无性系苗期生长模型及灰色关联分析[J].北京林业大学学报, 2004, 26(2):52-57
    42.秦国峰.马尾松嫩枝扦插繁殖[J].林业科学研究, 1994, (7):91~101
    43.秦新民,梁倩华.白花泡桐不定根发生过程中内源激素和RNA的变化[J].热带亚热带植物学报, 1995, 4(1):52~56
    44. [日]森下义郎,大山郎雄著,李云森译.植物扦插理论与技术[M].李云森译.北京:中国林业出版社,1988, 11~12
    45.师晨娟,刘勇,胡长寿.清海云杉硬枝扦插繁殖研究[J].江西农业大学学报(自然科学版), 2002, 24(2):259~263
    46.师晨娟,刘勇,王春城,等.青海云杉扦插的年龄效应及其生根机理研究[J].西北农林科技大学学报(自然科学版), 2006, 34(12):101~104
    47.宋锋惠,史彦江,卡德尔.杂交榛子压条苗繁殖技术研究[J].经济林研究, 2004,22(4):56-58
    48.宋金耀,何文林,李松波,等.毛白杨嵌合体扦插生根相关理化特性分析[J].林业科学, 2001, 37(5):64~67
    49.宋丽红,曹帮华.光叶褚扦插生根的吲哚乙酸氧化酶、多氧化酶、过氧化物酶活性变化研究[J].武汉植物学研究, 2005. 23(4):347~350
    50.宋丽红.光叶禇微体快速技术与扦插生根机理研究[D].泰安:山东农业大学. 2005.
    51.孙明荣,刘发邦,李克庆等.盐碱地林木生长规律的研究[J].河北林业科技, 2001, (2):10~13
    52.孙时轩主编.造林学[M].北京:中国林业出版社, 2000, 148~149
    53.涂炳坤,胡婉仪,袁凤群.板栗嫩枝扦插过程中插穗营养物质的研究[J].湖北林业科技, 1993, (3) 23~25
    54.汪杰.猕猴桃扦插生根的生理基础及调控机理研究[D].合肥:安徽农业大学, 2001.27
    55.王福森,许成启,温宝阳,等.银中杨扦插生根机理及无性繁殖技术研究[J].林业科技通讯, 2001, (7):5~8
    56.王关林,苏冬霞,吴海东.代谢调节剂对嫩枝扦插繁殖成活率的影响及其机理[J].园艺学报, 2006, 33(2):395~398
    57.王关林,吴海东,苏冬霞,等. NAA、IBA对樱桃砧木(Prunus pseudocerasus Colt)插条的生理、生化代谢和生根的影响[J].园艺学报, 2005, 32(4):691~694
    58.王景章,丁振芳.日本落叶松、杂种落叶松嫩枝全光喷雾扦插的研究[J].东北林业大学学报, 1990, 18(3):9~17
    59.王军辉,张建国,张守攻,等.青海云杉硬枝扦插的激素、年龄和位置效应[J].西北农林科技大学学报(自然科学版), 2006, 24(7):65~71
    60.王立.茶树扦插生根的理论与实践[J].中国茶叶, 1993, 15(5):2~4
    61.王申芳,欧洲榛子锯末围穴压条育苗试验[J].河北林业科技,2005(5):13,32
    62.王小蓉,曾伟光,熊庆娥. IBA促进日本晚樱绿枝扦插生根机制研究[J].西南农业大学学报(自然科学版)2004,26 (5):597~600
    63.王忠.植物生理学[M].北京:中国林业出版社, 2000
    64.韦小丽,殷建强,杨成华,等.窄冠速生刺槐扦插繁殖技术及苗期生长规律研究[J].种子, 2007, 26(8):70~72
    65.魏良民,李康.沙拐枣幼苗生长规律及与其抗旱性关系研究[J].干旱区研究,1994, 11(3):47~51
    66.肖关丽,杨清辉,李富生,等.甘蔗组培苗继代培养中内源激素与绿苗生根率关系研究[J].云南农业大学学报, 2001, 16(4):271~273
    67.肖正东,骆启斌,梁凤,等.欧洲榛子扦插试验初报[J].经济林研究, 1998,16(2):37~38
    68.徐继忠,陈四维.桃硬枝插条内源激素(IAA, ABA)含量变化对生根的影响[J].园艺学报, 1989, 16(4):275~278
    69.许鲲,张秦英,罗凤霞.榛子的离体培养研究[J].山东林业科技, 2005, 159(4):1~3
    70.杨丽.二色胡枝子扦插繁殖技术与生根机理研究[D].北京:北京林业大学, 2005
    71.杨青珍,王峰,季兰.榛子的繁殖技术[J].山西果树, 2006, 111(3):14~16
    72.杨青珍,王峰,李娟,等.榛子绿枝插条生根的解剖学观察[J].中国农学通报, 2006, 22(7):154~156
    73.尹成涛,孙满芝,韩爱平.欧洲榛子的组培快繁技术研究研究[J].山东林业科技, 2002,142(5): 14~15
    74.尹增芳,方炎明,洑香香,等.杂种马褂木插穗扦插生根过程的解剖学观察[J].南京林业大学学报, 1998, 22(1):27~30
    75.俞良亮.鹅掌楸扦插繁殖与植物生长物质的关系及苗期生长研究[D].南京:南京林业大学, 2005
    76.增田芳雄等著,辽宁铁岭农学院译,植物激素[M]。1976,科学技术出版社。
    77.詹亚光,杨传平,金贞福,等.白桦插穗生根的内源激素和营养物质[J].东北林业大学学报, 2001, 29(4):1~4
    78.张钢民,杨文利,贾玉彬,等.矮子杉插条生根的解剖研究[J].园艺学报, 1999, 26(3):201~203
    79.张俊生,刘建民,杨久廷,等.欧美杨类新无性系苗期生长模型及灰色关联度分析[J],辽宁林业科技, 1997,5:18-20
    80.张梅春,敖曼,孙万吉,等.紫杉扦插插穗生根机理的研究[J].辽宁林业科技, 2007, (2):33~34
    81.张芹,李保会,朵建国,等. IBA和发根农杆菌对糠椴嫩枝扦插的影响[J].园艺学报, 2007, 34(1):201~204
    82.张晓平,方炎明,黄绍辉.杂种鹅掌楸扦插生根过程中内源激素的变化[J].南京林业大学学报(自然科学版), 2004, 28(3):79~82
    83.张秀珍,邢世岩.榛子苗木几项生理生化指标的研究[J].山东林业科技, 2004, 152(3):13~15
    84.张应中,赵奋成,李宪政,等.杂种扦插繁殖试验初报[J].广东林业科技, 1999, 15(3):1~8
    85.张志良,瞿伟菁主编.植物生理学实验指导[M].北京:高等教育出版社, 2003. 123~124, 188~189
    86.赵晓敏,霍常富,沈海龙.影响林木插条生根的内部及环境因子研究综述[J].世界林业研究, 2007, 20(5):12~16
    87.赵勇刚,高克姝.论林木的无性繁殖及其应用[J].山西林业科技, 1996, (3):12~15
    88.郑均宝,刘玉军,裴保华,等.几种木本植物插穗生根与内源IAA, ABA的关系[J].植物生理学报, 1991, 17(3):313~316
    89.郑双全.红豆树在混交林(红豆×杉木)中的生长规律研究[J].福建林业科技, 2000, 27(4):28~30
    90.郑先武,田砚亭.金丝小枣插条中外源激素与内源激素的关系[J].北京林业大学学报, 1995, 17(4):44~49
    91.周彬,李莲海,张铁奇.山槐嫩枝无性繁殖技术的研究[J].辽宁林业科技, 1998, (1):4~7
    92.周永学,樊军锋,高建社.几种杨树无性系扦插苗苗高年生长规律的研究[J].西南林学院学报, 2004, 24(2):23~26
    93.周永学,高建社,樊军锋.黑杨无性系苗木年生长规律及抗病比较[J].中南林业科技大学学报, 2007, 27(4):81~84
    94.朱瑞强,高传勇,刘长中,等.美洲黑杨新无性系苗期年生长规律研究[J].湖北林业科技(增刊), 2003:8~12
    95.邹琦主编.植物生理学实验指导[M].北京:中国农业出版社, 2003, 129~130
    96. Bagatharia S B, Chanda S V. Changes in peroxidase and IAA oxidase activities during cell elongation in Phaseolus hypocotyls[J]. Acta Physiol Plant, 1998, 20(1):9~13
    97. Balakrishnamurthy G, Madhava Rao V N. Changes in phenols during rhizogenesis inrose(Rose bourboniana Desp) [J]. Curr Sci, 1988, 57(17):960~962
    98. Bassuk N L, Hunter L D, Howard B H. The apparent of polyphenol oxidase and phloridzin in the production of apple rooting cofactors[J]. J Hort Sci, 1981, 56(4):313~322
    99. Bhattacharya N C. Enzyme activities during adventitious rooting[A]. In: Davis T D, Haissig B E , Sankhla N , eds. Adventitious Root Formation on Cutting. Dioscorides: Portland, 1989, 88~101
    100. Calderon-Baltierra X V. Changes in peroxidase activity during root formation in Eucalyptus globulus shoots raised in vitro[J]. Plant Perox. Newslett, 1994, (4):27~29
    101. Carson M J. Asvantage of clonal forestry for Pinus radation-real or imagined [J]. N Z J Ror Sci, 1986, 16(3):403~415
    102. Devi S R, Prasad M N V. Ferulic acid mediated changes in oxidative enzymes of maize seedings implication in growth[J]. Biol Plant, 1996, 38(3):387~395
    103. Gaspar T et al. Practical uses of peroxidase activity as a predictive marker of rooting performance of micropropagated shoot. Agronomic, 1992(12): 757~765
    104. Gaspar T, Kevers C, Hausman J. Indissociable chief factors in the inductive phase of adventitious rooting [M] //Altman A, Waisel Y (Eds).Biology of root fomation and development New York Plenum Press, 1997
    105. Gyana R.R. Effects of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes[J]. Plant Growth Regulation, 2006, 48:111~117
    106. Habaguchi K. Alterations in polyphenol oxidase activity during organ redifferentiation from carrot calluses cultured in vitro[J]. Plant Cell Physiol, 1977, 18:181~189
    107. Haissif B.E. Metabolic processes in adventitious rooting of cuttings [A]. In: Jackson M B, ed. New Root Formation in Plant and Cuttings[C]. Lancaster: Martinus Nijhoff, 1986, 141~189
    108. Haissig B. E. Activity of some glycolytic and pentose phosphate pathway enzymes during the development of adventitious roots[J]. Physiol Plant, 1982:55
    109. Haissig BE. Influences of auxins and auxin synergists on adventitious primordiuminitiation and development[J]. N. Z. J For Sci, 1974, 4:311~323
    110. Hartmann H T, Kester D, Davies F, et al Plant propagation Principles and practices [M]. 7th edition. USA: Pearson Higher Education. USA, 2001
    111. Hartmann HT. Plant propagation principles and pracrices, 4th edition Prentice-Hall Inc, USA. 1983, p. 246
    112. Kieliszewska-Rokicha B. Effect of treating scots pine (Pinus sy lvestris L.) seedlings with phytohorm one on the growth of the root system and on the peroxidase and IAA oxidase enzyme activities in roots[J]. Arboretum-Kornckie, 1989, 32:207~219
    113. Kleinschmit J. Concepts and Experiences in Cloned Plantation of Conifers Proceeding of 19th Meeting of the Canadian Tree Improvement Association, Toronto, Ontario, 1983:26~56
    114. Mason W L. Vegetative propagation of hybrid Larch (Larix×eurolepis Henry) Using Winter Cuttings. Forestry Supplement, 1989, 62:189~198
    115. Molnar J M, LaCroix L J. Studies of the rooting of cuttings of Hydrangea macrophylla: enzymes changes[J]. Can J Bot, 1972, 50:315~322
    116. Moncousin Ch. Peroxidase as a marker for rooting improvement of clones of Vitis cultured in vitro. IN: Molecular and Physiological Aspects of Plant Peroxidase. (H Greppin et al. Eds.) University of Geneva,Geneva, 1986, 379~385
    117. Nag S., Saha K. and Choudhuri M.A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting[J]. Plant Growth Regul. 2001, 20: 182~194
    118. Nordstrom A.C. and Eliasson J. Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings[J]. Physiol. Plant. 1991, 82: 599~605
    119. Pacheco P et al. Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raised in vitro[J]. Plant Perox. Newslett, 1995, (5): 9~12
    120. Palanisamy K, Kumar P. Effect of position size of cuttings andenvironmental factors on adventitious rooting in neem (Azadimchtu indica A. Juss)[J]. Forest Ecology an Management, 1997, 98:277~280
    121. Ruichi P, Zgijia Z. Synergistic effect of planf growth retardants and IBA on theformation ofadventitious roots in hypocotyls cuttings of mung bean[J]. Plant Growth Regul, 1994, (14):14~19
    122. Saxena , C., Samantaray, S., Rout, G.R., Das, P. Effect of auxins on in vitro rooting of Plumbago zeylanica: peroxidase activity as a marker for rooting induction[J]. Biol.Plant. 2000, 43:121~124
    123. Upadhyaya A, Davis T D, Sankhla N. Some biochemical changes associated with paclobutrazol-induced adventitious root formation on bean hypocotyl cuttings[J]. Ann Bot, 1986, 57:309~315
    124. Vietiez, E.1974, Special Issue on Vegetative Propagation. Part2. Techniques of Vegetative Propagation of Hard-woods. New Zealand Journal of Forestry Science, 4(2):167~252
    125. Wiesmann Z., Riov J. and Epstein E. Companrison of movement and metabolism of indole-3-acetic and indole-3-butyric acid in mung bean cuttings[J]. Physiol. Plant. 1988, 74: 556~560
    126. Wilkerson E G, Grates R S, Zolnier S, et al. Transpiration capacity in poinsettia cuttings at different rooting stages and the development of a cuttings coefficient for scheduling mist[J]. J Am Soc Hort Sci, 2005, 130:395~301
    127.ГоСуцзюань.Вегетативноеразмножениетрудноукореняемыхдревесныхикустарниковпород.Канд.дис.с.-х.наук.С.Пб.,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700