用户名: 密码: 验证码:
陇东黄土高原天然草地建群种枯落物水提液对植物生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯落物是生态系统物质与能量循环的关键中间形态,并影响植物个体生长、种群更新与群落演替。草地枯落物的产成与消失是系统的典型特征,是对放牧、封育、火烧、开垦等利用方式响应最敏感的指标之一。以往,相关的草地研究多集中于生物量或枯落物自身,对枯落物的生态功能关注不够。
     天然草地约占黄土高原土地总面积的1/3,是该区域作物/天然草地—家畜综合生产系统的关键组分之一,对于农业系统的形成与演变、结构优化与功能提升起着举足轻重的作用。本研究从室内到野外,从个体到系统,探索了黄土高原天然草地建群种植物的枯落物水提液对作物/天然草地—家畜综合生产系统主要植物的种子萌发、幼苗生长、种群以及群落的影响,分析了牧草枯落物对放牧的响应特征及其对植物的生态效应。
     1.枯落物水提液对种子萌发的作用
     以发芽率和发芽速率为指标。
     长芒草枯落物水提液对茵陈蒿、二裂委陵菜、小麦、紫花苜蓿等植物的发芽率在各处理间均差异显著(p<0.05);长芒草枯落物水提液在浓度为2.5%和5.0%时,对二裂委陵菜的发芽率有所促进,拟合方程表明,长芒草水提液1.94%时,二裂委陵菜发芽率最高可达16.70%。达乌里胡枝子水提液除对小麦在各处理间差异不显著之外,对其余的四种受体植物发芽率处理浓度间均差异显著(p<0.05),同样对其自身种子的发芽率在浓度为2.5%时有促进效应,回归方程显示水提液浓度为1.98%时,发芽率最大为27.96%。茵陈蒿枯落物水提液对受体植物的萌发均表现出了较为强烈的抑制作用(p<0.05)。
     同一受体植物对相同溶液的不同浓度的响应作用也不同,总体来看,趋势是随着施体溶液浓度的升高,受体植物的发芽率以及发芽速率均呈现明显的降低趋势,即受体植物收到的施体溶液的抑制作用强度为10.0%>5.0%>2.50%。综合对比三种施体植物,其对受体植物种发芽率以及发芽速率的影响作用强度为:茵陈蒿>达乌里胡枝子>长芒草;在供试的五种受体植物中,对施体溶液响应最不敏感的是小麦,而最敏感的是茵陈蒿。
     2.枯落物水提液对幼苗生长的作用
     以幼苗的株高、地上部分干重、根长、根干重为指标。相同水提液浓度,各施体植物对幼苗株高抑制作用的强弱综合排序为:茵陈蒿>长芒草>达乌里胡枝子;综合比较各施体植物对地上部分干重影响排序为:茵陈蒿>长芒草>达乌里胡枝子;对根长无确定排序,各施体植物对受体均表现不同;对根干重影响排序为:茵陈蒿>长芒草>达乌里胡枝子
     从受体植物来分析,总体趋势为幼苗高度随施体溶液浓度的升高而降低,受到明显的抑制作用,与对照相比均未表现出促进株高生长现象。对于不同的受体植物的幼苗及根干重的影响来分析:地上部分重受抑制程度:紫花苜蓿>达乌里胡枝子>小麦;株高受抑制程度:达乌里胡枝子>小麦>二裂委陵菜>紫花苜蓿;根干重受抑制程度为:小麦>达乌里胡枝子>紫花苜蓿;根长受抑制程度:小麦>紫花苜蓿>达乌里胡枝子
     3.枯落物水提液对植物种群的作用
     长芒草的枯落物水提液对达乌里胡枝子、长芒草的株高和生长点(或分蘖)数量作用显著(p<0.05)。茵陈蒿枯落物水提液对达乌里胡枝子的株高有明显影响(p<0.05),但只有10.0%水提液对长芒草的分蘖数量影响显著(p<0.05)。达乌里胡枝子的枯落物水提液对茵陈蒿的株高有显著影响(p<0.05),5.0%和10.0%的水提液对其自身的株高的作用与对照差异显著;在枯落物水提液浓度2.50%时,三种受体植物株高呈现促进趋势;当浓度≥5.0%时,株高呈现抑制趋势。受体种群对施体溶液敏感较强的达乌里胡枝子,较弱的是长芒草。
     4.枯落物水提液对群落的作用
     在群落水平上,三种施体溶液对伴生种的植株高度以及植株生长点数有抑制的趋势。3种建群种相互之间的枯落物水提液的作用,茵陈蒿水提液的作用强度最大,使得群落植物的株高及分蘖、生长点数较其他两种建群种促进作用最弱。这与种子萌发实验以及幼苗生长实验的结果一致;长芒草则对其它2个建群种没有显著的抑制作用,但两者都对伴生种的株高及生长点数有抑制作用的趋势。分析群落内Shannon-Wiener多样性指数发现,施入长芒草枯落物水提液使得群落Shannon-Wiener多样性指数随施体溶液的增加而逐渐降低,茵陈蒿以及达乌里胡枝子枯落物水提液对Shannon-Wiener多样性指数的影响在浓度小于10.0%时逐渐降低。
     5.枯落物对放牧的响应
     随着放牧率增加,草地植物生长季与非生长季枯落物量呈现逐渐降低的趋势,2007年放牧干扰下的枯落物量无论是在植物生长季还是非生长季都显著高于2006年。当放牧率分别2.67,5.33,8.67 sheep/ha时,生长季枯落物量分别与对照减少12.9%,16.7%,21.6%,差异显著(P<0.05)。长芒草、茵陈蒿和达乌里胡枝子3种植物的枯落物盖度占整个草地枯落物盖度的80.0%以上,在不同放牧率下长芒草枯落物所占比例平均达到30.7%。当放牧强度为2.67sheep/ha时,建群种盖度均略有增加,这与适度放牧促进植物再生有关。当枯落物量为22.1g/m~2时,长芒草以及茵陈蒿的高度达到最大,且当枯落物量为22.0g/m~2时,长芒草的分蘖数达到最大,说明枯落物在一定量的范围内对植株生长是有益的,但是存在作用的阈值。综合不同放牧强度下枯落物的盖度、组成以及对植物生长的影响,推测5.33sheep/ha的放牧强度在本研究中为适宜的放牧强度。
     研究结果可为理解草地退化与恢复机理、开发草地健康管理技术、评估“退耕还林还草”和“天然草地保护”工程的效果、控制农田杂草等提供科学依据或技术支撑。
Standing dead and litter(residue)is the midst form between matter and energy,and have significance influence on individual growth、population renewal and community succession.The grassland residue's form and disappear process are difference from forest system and crop system,it is one of the most sensitive index to grazing,fenced,fire,assart et al.Anciently,the research almost focus on the biomass and itself,haven't pay more attention to its ecology function.
     The grassland account for 1/3 area of Loess Plateau,it is the key parts of crop/grassland -livestock production system,to the agriculture system's succession, perfect the structure and improve the function play a key role in this area.This research from laboratory to field,from individual to system,do a research on the effect of Loess Plateau dominants species' aqueous extract on the crop/grassland -livestock production system plants' germination、seedling growth、population and community,make a analysis on residue answer to the grazing also with its ecology effect.
     1.The effect of plants' aqueous extract on seed germination
     Use germination rate and germination speed as index.
     Bunge needle grass's residue aqueous extract have significant difference to the receptors,and at the concentration of 2.50%and 5.0%,it shows the promote effect to bifurcate ginquefoil,the equation shows that at the concentration of 1.94%,Bifurcate ginquefoil's germination rate can achieve 16.7%.Dahurian bushclover's aqueous extract have significant difference to receptors except wheat,and also shows the promote effect at 2.5%to itself,when at the concentratio0n of 1.98%,whose germination can achieve to 27.96%.The effect also shows with capillary wornlwood.
     Different residue aqueous extract have different response:bunge needle grass's residue aqueous extract made the receptors germination inhibited except the dahurian bushclover and alfalfa,but these two plants' germination speed were delayed significantly, and the germination speed is a more sensitivity index to judge this function,dahurian bushclover and capillary wornlwood's aqueous extract shows the germination inhibition effect on receptors except wheat.As a whole,the intensity of aqueous extract concentration is 10.0%>5.0%>2.50%;the intensity of donor plants is:capillary wornlwood>dahurian bushclover>bunge needle grass.Among the receptors,the most sensitive plant is capillary wornlwood,and the weakest plant is wheat.
     2.The influence of residue aqueous on seedling growth.
     Use the seedling height,dry weight of seedling,root length,and dry weight of root as index.At the same concentration the intensity of donor residue aqueous extract to seedling height is:capillary wornlwood>bunge needle grass>dahurian bushclover.And the intensity to dry weight of seedling is:capillary wornlwood>bunge needle grass> dahurian bushclover.The aqueous have no sequence to root length,the effect on dry weight of root is:capillary wornlwood>bunge needle grass>dahurian bushclover.
     See from the receptors,the trend is as the increasing of concentration,the seedling height inhibited.And for the different receptors,the inhibition intensity of dey weight of seedling is:alflfa>dahurian bushclover>wheat.To the seedling height:dahurian bushclover>wheat>bifurcate ginquefoil>alfalfa,to the dry weight of root,wheat>dahurian bushclover>alfalfa,to the root length,wheat>alfalfa>dahurian bushclover.
     3 The effect of residue aqueous to population
     Under the residue aqueous extract of bunge needle grass,only the receptors'height and growth point of dahurian bushclover and itself were declined when compared with control significantly(p<0.05);under the solution of capillary wornlwood,dahurian bushclover's height were declined significantly and the growth point of bunge needlegrass were declined at 10.0%.The solution of capillary wornlwood has more strong effect to receptors.Also with under the solution of dahurian bushclover,capillary wornlwood's height were reduced significantly(p<0.05),to itself only at the concentration of high level were inhibited;bunge needlegrass's growth point were inhibited at high concentration; analysis from relative height and growth point,at the concentration of 2.50%,the height of receptor populations show the trends of promotion,and if the concentration>5.0%,all were inhibited.Among the population,dahurian bushclover is the most sensitive one,and bunge needlegrass is the weakest one.
     4 The effect of residue aqueous to community
     These three dominants have no significance effect on companion species' height and growth point,and among these dominant plants,the residue aqueous extract of capillary wornlwood shows the strongest function to other plants,this result correspond with germination and seedling experiments,and the influence of bundge needle grass on other dominant plants not seriously,but the common ground is have the trend of inhibiting the plant height and growth point.Anaylsis the Shannon-Wiener diversity index,under the bunge needlegrass aqueous extract,the diversity index was declined as the increase of concentration,and under the aqueous of capillary wornlwood and dahurian bushclover, when the concentration below 10.0%,the diversity index shows the same trend.
     5 The effect of grazing on residue
     The results shows:as the increasing of grazing intensity,the quantity of residue declined.The residue biomass of 2007 in grow season or ungrown season are higher than 2006 significantly,and each grazing intensity(2.67,5.33,8.67 sheep/ha)reduced 12.9%, 16.7%,21.6%when compared with control respectively in grow season.Through the investigation,found that the three dominant plants' coverage(80%)accounts for the main proportion in the grazing land,and the bunge needle grass account for 30.7%.At the grazing intensity of 2.67sheep/ha,bunge needle grass,dahurian bushclover,capillary wornlwood's coverage were increased,that may be correlated with grazing moderately can promote regrowth of plant。When the biomass of residue at 22.1g/m~2 and 22.0g/m~2,the height of bunge needlegrass and capillary wornlwood also with the growth points of bunge needlegrass can reach the max respectively,that means if the residue can be limited in a threshold,it is befinit for the growth of plants.According to the residue's coverage, constitute and its effect on dorminate plants,we confer that the grazing intensity of 5.33sheep/ha may be is the moderate intensity in this research.
     The research result can understanding the grassland degeneration and restoration mechanism,develop the thchnical about grassland management,evaluating the process about "return plantation to forest/grass project",and serve scientific thereunder to control weed.
引文
Aide T M. Patterns of development and herbivory in a tropical undestroyed community. Ecology, 1993,74(2): 455-466.
    Aleder P B, Lauenroth W K. Livestock exclusion increases the spatial heteroeneity of vegetation in Colorado short grass steppe. Applied Vegetation Science, 2000, 3: 213-222.
    Alsaadawi I S, Rice E L. Allelopathic effects of Polygonum aviculare L. I. vegetational patterning of Cynodon dactylon. Journal of Chemical Ecology, 1982, 8: 993-1009.
    Bais H P, Vepachedu R, Gilroy S, et al. Allelopathy and exotic p ant invasion: From molecules and genes to species interactions. Science, 2003,301:1377-1380.
    Barnes J P, Putman A R. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). Journal of Chemical Ecology, 1987,13: 899-906.
    Baziramakenga R, Simard R R, Leroux G D. Effects of benzoic and cinnamic acids on growth, mineral composition and chlorophyll content of soybean. Journal of Chemical Ecology, 1994,20(11): 2821-2833.
    Berendse F. Litter decomposability - a neglected component of plant fitness. Journal of Ecology, 1994,82:187-190.
    Blum U, Rebbeck J. Inhibition and recovery of cucumber roots given multiple treatment of ferulic acid in nutrient culture. Journal of Chemical Ecology, 1989,15: 917-928.
    Bode H R. Allelopathy in Some Juglandaceae. Planta, 1958,51:440-480.
    Chou C H, Lin H J. Autotoxication mechanism of Oryza sativa I: Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology, 1976,2: 353-367.
    Chon S U , Choi S K, J ung S , et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard. Crop Protection, 2002 ,21 :1077-1082.
    Clark P E, Krueger W C, Bryant L D, Thomas D R. Spring defoliation effects on bluebunch wheatgrass: I Winter forage quality. Journal Range Manage, 1998, 51:519-525.
    Dilday R H, Mattice J D, Moldenhauer K A. An overview of rice allelopathy in the USA. In: Kim K U. Rice Allelopathy. Taegu: Ililsa Press, 2000:15-26.
    Dyer A R, Fenech A, Rice K J. Accelerated seedling emergence in inter-specific competitive neighborhoods. Ecology letter, 2003, 3: 523-529.
    Escudero A, Albert M J, Pitta J M, et al. Inhibitory effects of Artemesia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecology, 2000, 148: 71-80.
    Fowler N. The role of competition in plant communities in arid and semi-arid regions. Annual Review of Ecological Systematic, 1986,17: 89-110.
    Friedman J, Orshan G, Ziger-Cfir Y. Suppression of annuals by Artemisia Herba-Alba in the negev desert of Israel. Journal of ecology, 1977,65: 413-426.
    Fuerst E P, Putman A R. Separating the competitive and allelopathic components of interference: theoretical principles. Journal of Chemical Ecology, 1983, 9: 937-944.
    Fujii. Y, Shibuqy, Yasuda T. Method for screening allelopathy activities by using the logistic function (Richards' function) fitted to lettuce seed germination and growth curves. Weed Research Japanese, 1990,35: 353-361.
    Funke G L. The Influence of Artemisia absinthium on neighborring plants. Blumea, 1943, 5: 281-293.
    Grice A C, Westoby M. Aspects of the dynamics of the seed-bank s and seedling populations of Acacia victoriae and Cassia spp. In arid Western New South Wales. Australian Journal of Ecology, 1987,12:209-215.
    Halligan J P. Toxicity of Artemisia californica to four associated herb species. American Midland Naturalist, 1976, 95: 406-421.
    
    Hejl A M, Einhellig F A, Rasmussen J A. Effects of juglone on growth, photosynthesis and respiration. Journal of Chemical Ecology, 1993,19(3): 559-568.
    Hiroshi Nakano. Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regulation, 2006,48:215-219.
    Hugo G C, Ernsto G, Hermann M N. Defoliation affects chemical defenses in all plant parts of rye seedling. Journal of Chemical Ecology, 1999,25(3):491-499.
    Humphrey J W, Patterson G S. Effects of late summer cattle grazing on the diversity of riparian pasture vegetation in an up-land conifer forest. Journal of Applied Ecology, 2000,37:986-996.
    Jackson J R, Willensen R W. Allelopathy in the first stage of secondary succession on the piedmont of New Jersey. American Journal of Botany, 1976,63(7): 1015-1023.
    
    Jose S, Gillespie A R, Pallardy S G. Interspecific interactions in temperate agro forestry. Agro forestry System, 2004,61: 237-255.
    Kershaw H M. Earth Science Inventory Checklist: Dane Township Ice Margin Complex. 1989,2.
    Kil B S, Yun K W. Allelopathic effects of water extracts of Artemisia princeps var. orientalis on Selected Plant Species. Journal of Chemical Ecology, 1992,18(1): 39-51.
    Lamb E G. Direct and indirect control of grassland community structure by litter, resources, and biomass. Ecology. 2008, 89(1):216-25.
    Leather G R, Einhellig F A. Bioassays in the study of allelopathy. New York: John Wiley & Sons, 1986,133-145.
    
    Lee C E. Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 2002, 17:386-391.
    Lehman M E,Blum U,Gerig T M.Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments.Journal of Chemical Ecology,1994,20(7):1773-1782.
    Liu D L,Lovett J V.Biologically active secondary metabolites of barley Ⅱ:Phytotoxicity of barley allelochemicals.Joumal of Chemical Ecology,1993,19:2231-2244.
    Manley J T,Schuman G E,Reeder J D,et al.Rangeland soil carbon and nitrogen responses to grazing.Journal of Soil and Water Conservation,1995,50:294-298.
    Magurran A E.Ecological diversity and its measurement.Princeton:Princeton University Press.1988.
    Merlo L,李洪杰.腐殖质对玉米叶片糖代谢的影响.国外农学:杂粮作物.1992,5:24-27,53
    Muller C H,Hanawalt R B,Haines B L.Volatile growth inhibition produced by aromatic shrubs.Science,1964,143:471-473.
    Muller C H.The role of chemical inhibition(allelopathy)in vegetational composition.Bulletin of the Torrey Botanical Club,1996,93:130-137.
    Nell R L,Rice E L.Possible role of Abrosia psilostahya on pattern and succession in old-fields.The American Midland Naturalist,1971,86(2):344-358.
    Patterson D T.Effects of allelopathic chemicals on growth and physiological responses of soybean(Glycine max).Weed Science,1981,29(1):53-59.
    Politycka B.Free and glucogylated phenolies,phenol-(-glucosyl)transferase activity and member permability in cucumber roots affects by derivatives of eirmamie and benzoic acide.Aeta Physiology Plant,1997,19(3):311-317.
    Politycka B.Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cirmamic and benzoic acids.Acta Physiology Plant,1996,4:365-370.
    Politycka B.Phenolics and the activities of phenylalanine ammonia-lyase phenol-beta-glucosyl transferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals.Acta Physiology Plant,1998,20(4):405-410.
    Putnam A R,Duke W B.Biological suppression of weeds:Evidence for allelopathy in accessions of cucumber.Science,1974,185:370-372.
    Ragan M C,Wendy M R,Trevor L,et al.Natural selection for resistance to the allelopathic effects of invasive plants.Journal of Ecology,2005,93:576-583.
    Raymond L P,Falrbrothers D E.Reciprocal allelopathy between the gametophytes of Osmunda cinnamomea and Dryopteris intermedia.American Fern Journal,1980,70:73-78.
    Rice E L.Allelopathy,New York:Academic Press,1984,115-119.
    Rice E L.Allelopathy.New York:Academic Press,1974,166-179.
    Rice E L.Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants I.:Characterization and identification of inhibitors.Physiologia Planetarium,1965,18:255-268.
    Ross M A,Harper J L.Occupation of biological space during seedling establishment.Journal of Ecology,1972,60:77-88.
    Seigler D S.Chemistry and mechanisms of aUelopathic interactions.Agronomy Journal,1996,8:876-885.
    Shibu J,Gillespie R.Allelopathy in black walnut(Juglans nigra L.)alley cropping Ⅰ:Spatio-temporal variation in soil juglone in a black walnut com alley cropping system in the midwestem USA.Plant and Soil,1998,203:191-197.
    Silva A P,Irnhoff S,Corsi M.Evaluation of soil compaction in an irrigated short-duration grazing system.Soil and Tillage Research,2003,70(1):83-90.
    Smith M T,Staden J V.Info chemicals:the seed-fungus-root continuum.A review.Environmental and experimental botany,1995,35:115-123.
    Stevenson M J,Bullock J M,Ward L K.Re-creating semi natural communities:Effects of sowing rate on establishment of calcareous grassland.Restoration Ecology,1999,3:279-289.
    Stiles L H,Leather G R,Chen P K.Effects of two sesquiterpene lactones isolated from Artemisia Annua on physiology of Lemna Minor.Journal of Chemical Ecology,1994,20(4):969-978.
    Tang C S,Young C.Collection and identification of allelopathic compounds for the undisturbed root system of bigatta limpograss(Hemarthia altissima).Plant Physiological,1982,69:155-160.
    Tukey H.R.Jr 1966.Leaching metabolites from above-ground plant parts and its implications.Bulletin of the Torrey Botanical Club,1966,93:385-401.
    Turk M A,Tawaha A M.Allelopathic effect of black mustard(Brassica nigra L.)on germination and growth of wild oat(Arena fatua L.).Crop Protection,2003,22:673-677.
    Weidenhamer J D,et al.Solution volume and seed number:Often overlooked factors in allelothic bioassays.Chemical Ecology,1987,13:1481-1491.
    Weiner J,Wright D B,Castro S.Symmetry of below-ground competition between Kochia scoparia individuals.Oikos,1997,79:85-91.
    Wendy L R,Ragan M C.Root herbivores,pathogenic fungi,and competition between Centaurea maculosa and Festuca idahoensis.Plant Ecology,2003,169:161-170.
    Williamson G B,Richardson B.Biomass for aUelopathy measuring treatment response with independent controls.Journal of Chemical Ecology,1988,14(1):181-187.
    Yang Y S,Futsuhara Yuzu.Inhibitory effects of volatile compounds released from rice callus on soybean callus growth:allopathic evidence observed using in vitro cultures. Plant Science,1991,77:103-110.
    Yoh Iwasa,Mayuko Nakamaru,Simon A L.Allelopathy of bacteria in a lattice population:Competition between colicin-sensitive and colicin-producing strains.Evolutionary Ecology,1998,12:785-802.
    Yu J Q,Matsui Y.Effects of root exudates of cucumber(Cucumis sativus)and allelochemicals on ion uptake by cucumber seedlings.Journal of Chemical Ecology,1997,23(3):817-827.
    包青海,宝音陶格涛,阎巧玲,等.羊草草原割草处理群落特征比较研究.内蒙古大学学报(自然科学版),2003,34(1):74-78.
    曹潘荣,骆世明.柠檬桉的他感作用研究.华南农业大学学报,1996,17(2):7-11.
    柴强,黄高宝.植物化感作用机理、影响因素及应用潜力.西北植物学报,2003,23(3):509-515.
    陈龙池,廖利平,汪思龙,等.根系分泌物生态学研究.生态学杂志,2002,21(6):57-62.
    陈佐忠,汪诗平,等.中国典型草原生态系统.北京:科学出版社,2000,204-222.
    程积民,万惠娥,胡相明,等.半干旱区封禁草地凋落物的积累与分解.应用生态学报,2006,26(4):1207-1212
    程积民.从澳大利亚、新西兰草地畜牧业发展论黄土高原草地建设.西北植物学报,1999,19(5):82-86.
    董章杭.作物化感作用研究现状及前景展望.中国生态农业学报,2001,9(3):80-83.
    方琦军.植物之间生化他感作用的研究及其应用.云南农业大学学报,1999,14(2):206-210.
    耿广东.辣椒(Capsicum annuum L.)化感作用及其机理研究:[博士学位论文].杨凌:西北农林科技大学,2005.
    韩庆华,马永清.小麦秸秆中生化他感化合物的研究概况.生态农业研究,1994,2(4):71-75.
    贺锋,陈辉蓉,吴振斌.植物间的相生相克效应.植物学通报,1999,16(1):19-27.
    侯扶江,常生华,于应文,林慧龙.放牧家畜的践踏作用研究评述.生态学报,24(4):784-789.
    侯扶江,肖金玉,南志标.黄土高原退耕地的生态恢复.应用生态学报,2002,13(8):923-929.
    侯扶江,杨中艺.放牧对草地的作用.生态学报,2006,26(1):244-264.
    靳月华.组织培养在化学生态(他感作用)研究中的应用.生态学杂志,1986,5(5):61-63.
    孔垂华,胡飞,陈雄辉,等.植物化感品种资源的评价利用.中国农业科学,2002,35(9):1159-1164.
    孔垂华,黄寿山,胡飞.胜红蓟化感作用研究V:挥发油对真菌、昆虫和植物的生物活性及其化学成份.生态学报,2001,21(4):584-587.
    李俊生,郭玉荣.放牧扰动对山地荒漠草地植物群落结构的影响.东北林业大学学报,2005,33(1):35-37.
    李凌浩,陈佐忠.草地生态系统碳循环机器对全球变化的响I.碳循环的分室模型、碳输入与贮量.植物学通报,1998,15(2):14-22.
    李绍文.高等植物间生化关系.生态学杂志,1989,8(1):66-70.
    李寿田,周健民,王火焰,等.植物化感作用机理的研究进展.农村生态环境,2001,17(4):52-55.
    李新宇,朴顺姬,唐海萍,等.大籽蒿花中生物碱类化感物质对羊草根茎节器官分化的影响.生态学杂志,2004,23(2):50-54.
    李杨瑞.植物的生化互作现象.土壤,1993,25(5):248-251,259.
    李志华,沈益新.紫花苜蓿化感作用的研究.草业科学,2005,22(12):33-36.
    李玉占,梁文举,姜勇.苜蓿根际土壤化感潜力的初步研究.土壤通报,2004,35(6):776-779.
    林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景.福建林学院学报,2002,2:184-189.
    刘金平,张新全,罗波,等.扁穗牛鞭草浸出液对豆科牧草种子萌发及幼苗生长的影响.种子,2005,24(7):5-8.
    马瑞君,王明理,赵坤,等.高寒草地优势杂草黄帚橐吾水浸液对牧草的化感作用.应用生态学报,2006,17(5):845-850.
    潘紫重,杨文化,曲银鹏.不同林分类型凋落物的蓄水功能.东北林业大学学报,2002,30(5):19-21.
    彭少麟,邵华.化感作用的研究意义及发展前景.应用生态学报,2001,12(5):780-786.
    朴顺姬,杨持.大籽蒿水浸提液对羊草种子萌发的影响.内蒙古大学学报:自然科学版,1993,24(5):523-527.
    任继周,胡自治,牟新待,张普金.草原的综合顺序分类法及其草原发生学意义.中国草地学报,1980,1:12-24.
    任继周,朱兴运.中国河西走廊草地农业的基本格局和它的系统相悖—草原退化的机理初探.草业学报,1995,4(1):69-80.
    任继周.草原调查与规划.北京:农业出版社,1985:27.
    邵华,彭少麟,张弛,等.薇甘菊的化感作用研究.生态学杂志,2003,22(5):62-65.
    申建波,张福锁,王敬国,等.化感作用与可持续农业.生态农业研究,1999,7(4):34-37.
    申卫军,彭少麟,周国逸,等.马占相思与湿地松人工林凋落物层的水文生态功能.生态学报,2001,21(5):846-850.
    石盛莉.大气酸沉降影响下硫的生态化学一以庐山森林系统为例:[博士学位论文].南京:南京农业大学,2000.
    宋君.植物间的他感作用.生态学杂志,1990,9(6):43-47.
    苏大学.天然草原在防治黄河上中游流域水土流失与土地荒漠化中的作用与地位.草 地学报,2000,2:77-81.
    孙海群,周禾,王培.草地退化演替研究进展.中国草地,1999,1:51-56.
    王大力.水稻化感作用研究综述.生态学报,1998,18(3):326-334.
    王大力.豚草属植物的化感作用研究综述.生态学杂志,1995,14(4):48-53.
    王进闯,潘开文,吴宁,等.花椒品种间化感效应差异的研究.生态学报,2005,25(7):1591-1598.
    王威,闫喜英,王永奇,等.胡枝子属植物化学成分及药理活性研究进展.中草药,2000,31(2):144-146.
    王娓,郭继勋,张保田.东北松嫩草地羊草群落环境因素与凋落物分解季节动态.草业学报,2003,12(1):47-52.
    王永明,王忠武,韩国栋,赵萌莉,薛志宏.典型草原不同放牧强度凋落物的持水能力.干旱区资源与环境.2007,21(9):155-159.
    王佑民.中国林地凋落物持水保土作用研究概况.水土保持学报,2002,14(4):108-113.
    韦琦.胜红蓟化感作用的研究:[学位论文].广州:华南农业大学,1994
    吴凤芝,赵凤艳,马凤鸣.酸物质及其化感作用.东北农业大学学报,2001,32(4):313-319.
    熊君,林文雄,周军建,等.不同供氮条件下水稻的化感抑草作用与资源竞争分析.应用生态学报,2005,16(5):885-889.
    徐起初,杨连菊,杨春澍.茵陈的质量研究.中草药,1983,14(1):35-40.
    闫龙凤,杨青川,韩建国.苜蓿的自毒性研究进展.四川草原,2005,2:14-18.
    闫玉春,唐海萍.围栏禁牧对内蒙古典型草原群落特征的影响.西北植物学报,2007,27(6):1225-1232.
    阎凤鸣.化学生态学.北京:科学出版社,2003,94-95.
    杨立文,石清峰.太行山主要植被枯枝落叶层的水文作用.林业科学研究,1997,10(3):283-288.
    曾任森,林象联,谭惠芬,等.蟛蜞菊根分泌物的异种克生作用及其初步分离.生态学杂志,1994,13(1):51-56.
    张宝琛,白雪芳,顾立华.生化他感作用与高寒草甸上人工草地自然退化现象的研究.生态学报,1989,9(2):115-120.
    张宝琛,顾立华,甑润德,等.细叶亚菊入侵与高寒草甸垂穗披碱草人工草地自然退化现象的相关性调查.中国草地,1989,6:24-28.
    张凤荣主编.土壤地理学.北京:中国农业出版社,2003.
    张光辉,李增嘉,潘庆民,等.内蒙古典型草原羊草和大针茅地下器官中碳水化合物含量的季节性变化.草业学报,2006,15(3):42-49.
    张建利,张文,毕玉芬.山地草地凋落物分解与持水力的研究.草业科学,2008,25(3):108-110.
    张开梅,石雷,李振宇.蕨类植物的化感作用及其对生物多样性的影响.生物多样 性,2004,12(4):466-471.
    张启伟,章育中.滨蒿利胆有效成分的含量测定.药学学报.1986,21(12):922-927.
    赵凤云,毕红卫,王元秀.植物生化他感作用及其在生产实践中的应用.淄博学院学报(自然科学与工程版),2000,2(1):82-85.
    郑丽,冯玉龙.紫茎泽兰叶片化感作用对10种草本植物种子萌发和幼苗生长的影响.生态学报,2005,25(10):2782-2787.
    周青,韩晓鹰,邹明勤.生化他感作用的种群生态学意义.生物学通报,1996,31(3):6-8.
    周志宏.植物化感作用及其在农业中应用的研究进展.生态科学,1995,2:129-133.
    朱旺生.白三叶和高羊茅化感作用效应及品种间差异的研究:[硕士学位论文].南京:南京农业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700