用户名: 密码: 验证码:
西伯利亚白刺离体培养体系建立及试管苗耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西伯利亚白刺隶属于蒺藜科(Zygophyllaceae)白刺属(Nitraria L),是典型荒漠植物,在稳定沙漠、保护绿洲中起着重要的作用。同时,它又是沙生植物中少有的药食两用的浆果类植物,具有较高的经济利用价值。本研究以西伯利亚白刺茎段为试材,从探讨最佳外植体取材时间、基本培养基、以及最佳增殖和生根培养基配方入手,建立起无菌离体培养体系。进而研究NaCl处理下西伯利亚白刺试管苗耐盐机理,为西伯利亚白刺种质资源保存和人工繁殖及盐生植物耐盐机理提供理论依据。研究结果如下:
     1.以茎段为外植体,首次建立西伯利亚白刺的离体培养体系。外植体采集最佳时间为5月底。最佳启动培养基为MS+6-BA2.0 mg·L~(-1)+NAA 0.5 mg·L~(-1)腋芽启动萌发率91.11%;继代增殖培养基为MS+6-BA 1.0 mg·L~(-1)+NAA 0.2 mg·L~(-1)增殖系数高达4.53;生根培养基为1/2 MS+IBA 0.5 mg·L~(-1)生根率为96.67%。
     2.以试管苗叶片为外植体,首次通过愈伤组织途径获得了西伯利亚白刺再生植株。黑暗培养一周后转为光周期培养,最佳诱导愈伤组织培养基为MS+2,4-D2.0 mg·L~(-1),诱导率高达100%,培养25d愈伤组织相对生长量为468.31%。
     3.以试管苗为材料,最佳生根培养基附加不同浓度NaCl(0,25,50,100,200 mmol·L~(-1))。随着盐浓度的增加,植株的鲜重、干重以及根冠比呈现先上升后下降的变化趋势,在50 mmol·L~(-1)NaCl处理下,植株的鲜重、干重均比对照明显增加且为各处理的最大值,说明50 mmol·L~(-1)NaCl有利于白刺试管苗的生长。
     4.随着NaCl浓度的增加,试管苗叶片中的可溶性糖和脯氨酸含量呈增加趋势:叶绿素含量变化呈现先升后降的趋势,在50 mmol·L~(-1)NaCl时达到最大值;而叶片中丙二醛含量则呈现先降后升趋势,在50 mmol·L~(-1)NaCl时达到最小值。这表明50 mmol·L~(-1) NaCl是西伯利亚白刺试管苗生长最适的盐浓度。
     5.随着NaCl浓度增加,试管苗地上部和根系Na~+离子含量呈现增加趋势,在低浓度时(≤50 mmol·L~(-1))显著增加,而高浓度时(≥100 mmol·L~(-1))增加幅度不大;地上部K~+含量下降而根系K~+含量却呈现增加趋势;地上部、根系Ca~(2+)含量降低;白刺试管苗地上部和根系的Na~+/K~+、Na~+/Ca~(2+)比值都呈升高趋势。表明在低盐浓度下,试管苗通过地上部积累Na~+离子降低渗透势,适应盐环境,而在高盐浓度时根部积累一定的K~+对Na~+起到拮抗作用,减少高浓度盐的伤害。
     总之,本研究建立了西伯利亚白刺离体培养体系,明确了50 mmol·L~(-1)NaCl是其试管苗生长的最适盐浓度。探讨了在NaCl胁迫下,白刺试管苗主要通过Na~+、K~+离子积累参与渗透调节的耐盐机理。
Nitraria sibirica Pall.is a species of Zygophyllaceae in Nitraria genus,which is an important kind of tree species to control sand.Not only its fruits have higher economic value,but also N.sibirica Pall.plays an important role on local environment protection.In this study,a tissue culture system of N.sibirica Pall.was established by its stem.then we discussed the mechanism of plant salt resistance of N.sibirica Pall.' test-tube plantlet,hoping to offer some references for the tissue culture and the mechanism of salt resistance of the salt plant.The main research conclusions were showed as follow:
     1.It is the first time that a tissue culture system of N.sibirica Pall.was successfully established by its stem section.May middle is the best time when explants are collected.The optimal medium for inducing adventitious buds from stem explants was MS+6-BA 2.0mg·L~(-1)+NAA 0.5 mg·L~(-1),the rate of germination was 91.11%;the optimal medium for subculture culture was MS+6-BA 1.0 mg·L~(-1)+NAA 0.2 mg·L~(-1),the multiplication coefficients was 4.53;the optimal medium for rooting culture was 1/2MS+IBA 0.5 mg·L~(-1),the rate was 96.67%.
     2.The callus formation and plant regeneration system were established by the leaf of test-tube plantlet,and it is also the first time.Cultured one week in the dark then changed in the Photoperiod of 14 h/10 h.The optimal medium for callus formation was MS+2,4-D 2.0 mg·L~(-1),the formation rates was 100%,the relation growth amount was 468.31%after 25 days.
     3.NACl(0,25,50,100,200 mmol·L~(-1)) was added in the optimal rooting culture medium,N.sibirica Pall.'s test-tube plantlet were grown in these mediums.With the increase of NaCl concentration,fresh weight,dried weight and root/shoot rates were firstly increased and then decreased.Under 50 mmol·L~(-1) NaCl,test-tube plantlets' fresh weight and dried weight were more higher than others.It showed that 50 mmol·L~(-1) NaCl was the best salt concentration for the growth of test-tube plantlet.
     4.With the increase of NaCl concentration,contents of soluble sugar,proline were increased.Meanwhile the contents of chlorophyll were firstly increase and then decreased,and have the maximum value under 50 mmol·L~(-1) NaCl.The content of MDA in the leaf were firstly decrease and then increased,and have the minimum value under 50 mmol·L~(-1) NaCl.These showed that 50 mmol·L~(-1) NaCl is the best salt concentration for test-tube plantlet growing.
     5.With the increase of NaCl concentration,the concentration of Na~+ in shoot and root were increased,under low concentration(≤50 mmol·L~(-1)) NaCl,rapidly increased,but under high concentration(≥100mmol·L~(-1)) NaCl,increased slowly. Meanwhile concentration of K~+ in shoot was decrease,but concentration of K~+ in root was increased and concentration of Ca~(2+) in shoot and root were decreased and Na~+/K~+、Na~+/Ca~(2+) in shoot and root were increased.These showed that low concentration NaCl,Na~+ rapidly increased in shoot in order to adapting to salt stress, but high concentration NaCl,K~+ increased in root to antagonize Na~+,in order to avoid salt damage.
     In conclusion,in the experiment,a tissue culture system of N.sibirica Pall.was established.It indicated that 50 mmol·L~(-1) NaCl was the best salt concentration for the growth of test-tube plantlet growing,and discussed that under NaCl stress,the mechanism of salt tolerance the test-tube plantlet of N.sibirica Pall.used by accumulation of Na~+、K~+.
引文
[1]内蒙古植物志编辑委员会.内蒙古植物志第三卷[M],呼和浩特:内蒙古人民出版社,1987:414-418
    [2]张红晓,康向阳.白刺组织培养技术的研究[J],西北植物学报,2004,24(1):56-64
    [3]R.Yasodha,S.Kamala,S.P.An and Kumar.Effect of glucose on in vitro rooting of mature plants of Bambusa nutans[J].Scientia Horticulturae,2008,116(1):113-116
    [4]Krystyna Klimaszewska.Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis[J].Plant Science,1989,63(1):95-103
    [5]曹有龙,贾勇炯,陈放等.枸杞花药愈伤组织细胞悬浮培养与植株再生[J],四川大学学报,1999,36(1):131-135
    [6]Shailja Trivedia,Gabor Galiba,Narendra Sankhla.Responses to osmotic and NaCl stress of wheat varieties differing in drought and salt tolerance in callus cultures[J].Plant Science,1991,73(2):227-232
    [7]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M],科学出版社,2005:21-23
    [8]Raj Kumar Sairam,K.Veerabhadra Rao,G.C.Srivastava.Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration[J],Plant science,2002,163(5):1037-1046
    [9]王瑞刚,陈少良,刘力源.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J],北京林业大学学报,2005,27(3):46-52
    [10]罗庆云,刘友良.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运[J],植物生理与分子生物学报,2003,29(1):39-44
    [11]杨洪兵,王宝山.小麦幼苗拒Na~+部位的拒Na~+机理[J],植物生理与分子生物学报,2002,28(3):181-186
    [12]李伟强,刘小京.NaCl胁迫下3种盐生植物生长发育及离子在不同器官分布特性研究[J],中国生态农业学报,2006,14(2):49-51
    [13]Ziska L.H,Dejong T.M,Hoffman G.F.Sodium and chlorite distribution in salt stressed Prunus salicina,a deciduous tree species[J].Tree Physiology,1991,8:47-57
    [14]Liu T,Staden J.Growth rate,water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief[J],Plant Growth Regulation,2001,34:277-285
    [15]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J],植物生理学通讯,1988,3:62-64.
    [16]侯彩霞.游离脯氨酸的测定,现代植物生理学实验指南[M],中国科学院上海植物生理研究所、上海市植物生理学会编,北京,科学出版社,1999:303.
    [17]Tang Z C,Chen Y.The experimental guide in modern plantphysiology[J].Shanghai,Science Press,1999:305-306.
    [18]梁超,王超,杨秀风.德抗961小麦耐盐生理特性研究[J],西北植物学报,2006,26(10):2075-2082
    [19]Maribel L,Dionisio-Sese,Satoshi T.Antioxidant response of rice seedlings to salinity stress[J].Plant Science,1998,135:1-9
    [20]邓勃.应用原子吸收与原子荧光光谱分析[M],北京,化学工业出版社,2003:463-508
    [21]梅新娣,张富春,王波.濒危植物盐桦离体组织培养特性的研究[J],生物技术,2006,16(3):79-81
    [22]H.Ben Jouira,A.Hassairi,C.Bigot.Adventitious shoot production from strips of stem in the Dutch elm hybrid'Commelin':plantlet regeneration and neomycin sensitivity[J].Plant Cell,Tissue and Organ Culture,1998,53:153-160
    [23]程磊,周根余.柽柳的组织培养与快速繁殖[J],上海师范大学学报(自然科学版),3 0(2):67-71
    [24]浩仁塔本,赵颖,郭永盛.黑果枸杞的组织培养[J],植物生理学通讯,2005,41(5):631
    [25]叶梅,王伯初,段传人.植物组织培养外植体褐变的研究进展[J],生物技术通讯,2004,15(4):426-428.
    [26]周俊辉,周家容,曾浩森等.园艺植物组织培养中的褐化现象及抗褐化研究进展[J],园艺学报,2000,27(增刊):481-486.
    [27]张志勇,胡相伟.霸王的组织培养和植株再生[J],植物生理学通讯,43(3):495
    [28]张小红,闵东红,康冰.核桃组织培养中外植体材料的初代培养研究[J],陕西林业科技,2005,(2):6-8
    [29]谢从华,柳俊.植物细胞工程[M],高等教育出版社,2004:79
    [30]施茜,卢琦,孙振元.沙生植物梭梭的组织培养与快速繁殖[J],植物生理学通讯,2006, 42(3):479
    [31]Peter Kitinl,Ivan Iliev,Apostolos Scaltsoyiannes.A comparative histological study between normal and fasciated shoots ofPrunus avium generated in vitro[J].Plant Cell,Tissue and Organ Culture,2005,82:141-150
    [32]Virginie Lauvergeat,Philippe Rechl,Alain Jauneau.The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species[J].Plant Molecular Biology,2002,50:497-509
    [33]王彩云,白吉刚,杨玉萍等.对节白蜡的组织培养及植株再生[J],植物生理学通讯,1999,35(4):299
    [34]谢耀坚.桉树组织培养研究进展[J],世界林业研究,2000,13(6):14-19.
    [35]郑均宝,王进茂,杜克久等.油松体细胞无性系的建立[J],遗传学报,1996,23(4):317-314.
    [36]范国强,蒋建平,贺窑青等.悬铃木叶片植株再生系统的建立[J],园艺学报,2003,30(2):236-238.
    [37]孙清荣,石荫坪,孙洪雁等.肥城桃幼子叶不定植株再生[J],山东农业大学学报,1999,30(4):395-397.
    [38]郑晴霞,王凤翱.绒毛皂荚离体茎段培养及再生植株的细胞组织学研究[J],湖南农学院学报,1994,20(3):244-248.
    [39]徐虹,梁宗锁.沙棘组织培养技术的研究[J],西北植物学报,2001,21(2):267-272
    [40]张红晓,康向阳.白刺组培快繁的研究.经济林研究[J],2003,21(4):60-63
    [41]金顺玉,刘桂丰,杨传平.黑林1号杨(小黑杨×波兰15A)的组织培养与植株再生[J],物生理学通讯,2003,39(6):639
    [42]王雅英,杨忠耿,陈汉鑫.枸杞的组织培养与快速繁殖[J],亚热带植物科学,2004,33(3):60
    [43]J.H.Liu,T.Moriguchi.Changes in free polyamine titers and expression ofpolyamine biosynthetic genes during growth of peach in vitro callus[J].Plant Cell Report,2007,26:125-131
    [44]Ji-Hong Liu,Xiao-Peng Wen.Polyamine biosynthesis of apple callus under salt stress importance of the arginine decarboxylase pathway in stress response[J],Journal of Experimental Botany,2006,57,(11):2589-2599
    [45]陈巍,于泉林,高文远.甘草愈伤组织培养的研究[J],中国中药杂志,30(9):713-715
    [46]王忆,许雪峰,李天忠.小金海棠叶片的组织培养与快速繁殖[J],植物生理学通讯,2005,41(6):789
    [47]曹有龙,许兴.麻黄愈伤组织的诱导及植株再生的研究[J],宁夏农学院学报,20(1):84-88
    [48]何丽君.濒危植物四合木(Tetraena mongolica Maxim)组织培养的研究[J],内蒙古草业,2001,(2):7-10
    [49]Z.Hu·J,Yang.G.Q,Guo·G.C.High-efficiency transformation of Lycium barbarum mediated by Agrobacterium tumefaciens and transgenic plant regeneration via somatic embryogenesis[J],Plant Cell Rep,2002,21:233-237
    [50]Yong Wook Kim,Heung Kyu Moon.Enhancement of somatic embryogenesis and plant regeneration in Japanese larch(Larix leptolepis)[J],Plant Cell Tiss Organ Culture,2007,88:241-245
    [51]齐力旺,韩一凡,韩素英.麦芽糖、NAA及ABA对华北落叶松体细胞胚成熟及生根的影响[J],林业科学,40(1):52-57
    [52]胡博然,徐文彪,赵吉强.枸杞生物技术研究进展[J],西北植物学报,2001,21(4):811-817
    [53]谷瑞升,蒋湘宁,郭仲深.胡杨离体器官发生及试管无性系的建立[J],植物学报,1999,41(1):29-33
    [54]吾甫尔·米吉提,吾玛尔·阿不里孜,牙尔买买提·铁依甫.蓝麻黄的组织培养和快速繁殖[J],植物生理学通讯,2005,41(3):334
    [55]Gong J R,Zhang L X,Zhao A F.Elementary studies on physiological and bio-chemical anti-drought features ofArtemisia ordosica[J],Journal of Desert Research,2002,22(4):387-392.
    [56]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J],植物生理学通讯,1987,(4):1-7
    [57]张恩平,张淑红.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响[J],沈阳农业大学学报,200132(6):446-448
    [58]赵纪东,傅华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响[J],西北植物学报,2006,26(9):1788-1793
    [59]陶晶,陈士刚,秦彩。盐碱胁迫对杨树各品种丙二醛及保护酶活性的影响[J],东北林业大学学报,33(3):13-16
    [60]王瑞刚,陈少良,刘力源.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J],北京林业大学学报,27(3):46-51
    [61]汪月霞,孙国荣,王建波.NaCl胁迫下星星草幼苗MDA含量与质膜透性及叶绿素荧光 参数之间的关系[J],生态学报,26(1):122-128
    [62]Lin Qi-feng,Li Guan-yi.Research progress in salt tolerance in plants[J].Developments of Biotechnology,2000,20(2):20-25
    [63]Santa-Cruz A,Acosta M,Rus A.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J].Plant Physiology Biochemistry,1999,37(1):65-71.
    [64]Tang ZC.The accumulation of free praline and its roles in water stressed sorghum seedings[J].Acta Phytophys Sinica,1989,15:105-110
    [65]Timpa JD,Burke JJ.Effects of water stressed on the organic acid and carbohudratc composition of cotton plant[J].Plant Physiology,1986,82:724-728
    [66]赵可夫.作物抗盐生理[M],中国科技出版社,1990,249-252
    [67]陈受宜,王阁.黑麦和水稻与脯氨酸合成有关的基因片段的克隆和鉴定[J],中国科学,1991(2):139-145
    [68]汤章城.逆境条件下植物脯氨酸的累积及可能的意义[J],植物生理学通讯,1984(1):15-27
    [69]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J],植物学报,1998,40(1):56-61
    [70]赵利,陈贵林,李卫欣.NaCl、Na_2SO_4和Na_2CO_3对南瓜幼苗的生理胁迫效应[J],河北农业大学学报,2006,29(6):21-24
    [71]阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J],植物资源与环境学报,2002,11(2):45-47
    [72]赵可夫.盐生植物[J],植物学通报,1997,14(4):1-12
    [73]Baba T,Fujiyama H.Differences in short-term responses office and tomato to sodium salinization and supplemental potassium and calcium[J].Soil Science Plant Nutrition,2003,49(51):669-675
    [74]FlowersT J,Torke P F,Yeo AR.The mechanism of salt tolerance in halophytes[J].Annal Review Plant Physiology,1977,28:89-121
    [75]Brownell P F,Crossland C J.The requirement for sodium as a micronutrient by species having C4 dicarboxylic photosynhetic pathway[J].Plant Physiology,1972,49:794-797
    [76]Brownell P F.Sodium as an essential micronutrient for a hibber plant(Atriplex vesicaria)[J].Plant Physiology,1965,40:460-468
    [77]YeoAR,Flowers TJ.Salt tolerance in the halophyteSuaeda maritimaL.Dum:Evaluation of the effect of salinity upon growth[J].Journal Expriment Botany,1980,31:1171-1183
    [78]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J],植物学报,1998,40(1):56-61
    [79]王冉,陈贵林.NaCI胁迫对两种南瓜幼苗离子含量的影响[J],植物生理分子生物学学报,2006,32(1):94-98
    [80]Ungar I A.Ecophysiology of Vascular Halophytes[M],London:CRCPress,1999
    [81]Schilmper A F.Saline environment and plant growth[M].India,Agro Botanical Publishers,1986,64-66
    [82]Horie T,Schroeder JI.Sodium transporters in plants.Diverse genes and physiological function [J].Plant Physiology,2004,136:2457-2462
    [83]FlowersTJ.The mechanism of salt tolerance in halophytes[J].Annal Review Plant Physiology,1977,28:89-121
    [84]Jian kang Zhu,Ji Ping Liu,Ming xiong Li.Genetie Analysis of salt Tolerance in Arabidopsis,Evidence for a Critical role Potassinm nutrition[J].The Plant Cell,1998,10:1191-1194
    [85]Storey R.Wye Jones RG Responses of AtriPlex SPongioss and Suaeda Monoeial to salt[J].Plant Physiology,1979,82:156-160
    [86]刘家尧,衣艳君,赵可夫.盐分对碱蓬幼苗离子含量、甜菜碱水平和BADH活性的效应[J],植物学报,1994,36(8):622-626
    [87]Ashraf M,O Leary JW.Does pattern of ion aecumulation vary in alfalfa at different growth stages[J],Plant Nutrition,1994:1443-1461
    [88]Boursier P,Lauehli A.Growth responses and mineral relations of salt-stressed sorghum[J].Crop Science,1990,30:1226-1233
    [89]Cramer GR,Abdel-Basset R,Seemann FR.Salinity-ealcium interactions on root growth and osmotic adjustment of two corn cuitivars differing in salt tolerance[J].Plant Nutrition,1990,13:1453 -1462
    [90]Kinralde TB.Interactions among Ca~(2+),and K~+ in salinity toxieity:quantitative effects[J].Experiment Botany,1999,50:1495-1505
    [91]Maggio A,Reddy MP,Joly.Leaf gas exchange and solute accumulation in the HaloPhyte Salvadora presica grown at moderate salinity[J].Environ Experiment Botany,2000,44:31-38
    [92]Shennan C.Salt toleranee in Aster troliumL.Ⅲ,Na and K Fluxes in iniact Seedings[J].Plant Cell Environ,1987,10:75-81
    [93]Greenway H, Munns R. Mechanism of salt tolerance in nonhalophytes [J]. Annal Review Plant Physiology, 1980, 31: 149 190.
    [94] Cheeseman J M, Wickeens J K. Control of Na and K transport in SpergulariaⅢ. Relationship between ion up-take and growth at moderate salinity [J]. Physiology Plant, 1986, 67: 15 22.
    [95]Wang BS, Zou Q, Zhao KF. Effect of NaCl stress on ionic contents in diferent organ s of sorghum plants [J]. Acta Agronomica Sinica 200026(6): 845-850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700