用户名: 密码: 验证码:
河南洛宁浅山区刺槐能源林生物量与热值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日益枯竭,世界各国都已开始重视对可再生的生物质能源的研究。燃料型能源林是生物质能源的重要组成部分。刺槐(Robinia pseudoacacia L.)因其适应性强、生长快、易繁殖和耐燃烧,是一种传统而又具有良好开发前景的能源树种。本文以河南洛宁浅山丘陵区刺槐萌蘖林为研究对象,通过主要对冬季地上部分生长量的调查和对林木相关组成物质(灰分、挥发分)和元素(碳、氮、磷、钾)的测定,研究了刺槐能源林生物量、生物质当量热值和林分热值的变化特征及其影响因素。6年的持续调查研究得出以下主要结论:
     (1)刺槐能源林收获物热值变化有以下特征:矮林型生物质的当量热值高于乔林型。其中:1-5年生矮林型生物质当量热值随年龄增加而升高,在4-5年生时热值明显升高(P<0.05),变幅为18.76-19.16kj·g-1;8~39年生的乔林型当量热值随年龄增加而下降,变幅为18.50-19.06kj·g-1。不同器官的当量热值不同,其排列顺序为:叶>干>枝>皮;不同立地条件下的当量热值表现为阴坡大于阳坡;当量热值随枝条基径的增大而降低。
     (2)刺槐能源林生物量的变化有以下特征:1-5年生矮林型刺槐林基径和高度的年均生长量持续下降,连年生长量表现为波浪形下降,生物量平均值和连年增长量的变化都表现为上升的“V”型,5年生的连年生物量增长极为明显;8~39年生乔林型年均生物量的变化为8-22年为上升阶段,22年后为下降,34年时明显下降,22年生左右为转折点。
     (3)刺槐能源林不同形式收获物的特征为,生物量是标准煤量和发电量基础。其中矮林型生物质煤当量系数为0.6401~0.6538,乔林型为0.6313~0.6505。1度电耗标准煤为320g,以矮林型5年生林分为例,单位面积不同形式收获量分别为:生物量达32.1t·hm-2时,折合标准煤为20.6t·hm-2,可发电量约为64375度·hm-2;林分总热值的高低主要取决于林分生物量,当量热值影响较小(1.37%-1.92%)。煤质和电质收获量与生物质量有同样趋势和几乎一致的变化。
     (4)立地条件对乔林型和矮林型刺槐当量热值和生物质量有一致的影响,即阴坡高于阳坡,而且对矮林型的影响更明显,矮林型3年生后阴坡生物量超过阳坡1.98~2.23倍。
     (5)对矮林型2年生样地的抚育强度的试验表明,自然生长1年后,与对照相比,1/4抚育强度下生物量明显增加了20.64%,1/2抚育强度下生物量极明显,增加了30.25%。说明适时适当抚育对生物量增加是有效的。
     (6)影响矮林型刺槐能源林热值差异的原因之一是木纤维结构的差异。初步断定,刺槐树干木纤维壁厚与热值呈正相关,而长度与腔径对热值则有负向影响。木纤维结构与热值间明显相关性。
     (7)影响热值差异的另一个原因是不同的组成成分。刺槐不同器官粗灰分含量的变化为:树叶>树皮>树枝>树干;挥发分含量随基径的增大有下降的趋势;矮林型刺槐林木的碳含量顺序是为:2年生>4年生>3年生>1年生。粗灰分和挥发分含量与干重热当量值为负相关,林分的碳储量与总热值呈正相关。各因子综合相关性分析结果为:热值与灰分、全碳、氮、磷和钾等因子的相关性较高;全碳、灰分与其它因子的相关性很高。
     本研究系统分析了矮林型与乔林型刺槐能源林生物量和当量热值的变化特征,从热值与灰分、挥发分、养分以及碳含量等方面,揭示了影响刺槐热值的主要因子;将生物学、热力学的参数引入评价燃料能源林指标,为能源林理论研究与实践应用相结合提供一个新途径。
Studies on renewable biomass resources have been emphasized in all the countries of the world with the exhaustion of the traditional resources. The fuel type energy forest is the major part of biomass resources. Locust, a traditional fuel energy tree species, has wonderful development prospect, because it has good features such as strong adaptability, fast growth, feeding nature and nectar with the large-scale cultivation in our country. Locust in the hilly region of Luoning County, Henan Province was researched from the perspectives of the biomass of locust energy forest, thermal equivalent, variation characteristics of the stand caloric values and their influencing factors by investigating the aboveground growth and biomass of locust and by determining and analyzing the matters (ash, volatile matter) and elements (carbon, nitrogen, phosphorus, potassium) of forest-related components for six years. Major conclusions are as follows.
     (1) Variation characteristics of the harvest thermal equivalent of the locust energy forest are as follows. The thermal equivalent of the coppice type was higher than that of the high forest type. The thermal equivalent value of the coppice type was obviously high at the ages of four to five with the amplitude of18.76~19.16kj·g-1, while the amplitude of the thermal equivalent of the high forest type was18.50~19.06kj·g-1; The thermal equivalent values of organs were different with the sequence of leaf> trunk> branch> bark; The thermal equivalent values of site conditions were also different, for the average value of the shady slope was higher than that of the sunny slope at the age of two or more; The thermal equivalent decreased as the branch diameter enlarged.
     (2) Variation characteristics of the biomass of the locust energy forest are as follows. The average annual biomass maximum of the high forest type was22years with obvious decrease at the age of34. During one to five years of locust shrub growth of the coppice working circle, the ground diameter and height declined continuously which was manifested as a declining pattern of "W". It was slightly different in these two wavy patterns, for the steepness of the height was larger than that of the diameter. The annual increment and continuous increment of biomass were both manifested as an increasing pattern of "V" and the continuous increment at the age of five was very obvious.
     (3) The total harvest volume of various species of the locust energy forest had different coefficient conversions on the basis of biomass. The coal equivalent coefficient of the coppice type biomass was0.6401~0.6538, while that of the high forest type was0.6313~0.6505. One kilowatt hour needed320g of standard coal. For example, as for the harvest volume of various species of the unit area of the five-year-old stand of the coppice type, when the biomass was32.1t·hm-2, the converted standard coal was20.6t·hm-2, which could produce about64375kilowatt hour·hm-2; the total thermal value of the stand mainly depended on the biomass of the stand, and the harvest volume and biomass of the coal quality and electric power had the same tendency and similar changes.
     (4) Site conditions had the same influence on the thermal equivalent value and biomass of the locust forests of the high forest type and coppice type, especially remarkably on the coppice type stand. The biomass of the coppice type in the shady slope was higher than that in the sunny slope at the age of two; the biomass in the shady slope was twice higher than that in the sunny slope at the age of three. The thermal equivalent value and coal equivalent coefficient were higher in the shady slope than those in the sunny slope except at the age of one, which indicated that the thermal equivalent value and biomass in the shady slope were both very high with the high total thermal equivalent value at the ages of four to five.
     (5)As was shown in the experiment of the tending intensity of the sample plot of the two-year-old coppice, biomass increased by20.64%(P<0.05) at the tending intensity of1/4and by30.25%(P<0.01) at the tending intensity of1/2, which suggested that the proper tending intensity was effective for the biomass increase.
     (6) The difference of wood fibre structure was one of the influencing factors of the difference of the thermal equivalent value of the coppice type of the locust energy forest. According to the initial judgment, fibre patterns and thickness of locust were positively correlated with the thermal value, while the length and size were negatively correlated.
     (7) Different comprehensive component was another reason for the difference of the thermal value. The tendency of shrub locust crude ash content was leaf> trunk> branch> bark; the volatile component decreased as the diameter increased; The sequence of shrub locust forest carbon density:2a>4a>3a>1a; crude ash and volatile component content were negatively correlated with the gross caloric value, while the carbon storage of a stand was positively correlated with the total caloric value. The comprehensive correlation analysis of all the factors showed that the thermal value had high correlation with the factors such as ash, pure carbide, nitrogen, phosphorus and potassium, while pure carbide and ash had high correlation with the other factors.
     The total harvest volume of various species of the locust energy forest, the variation characteristics and regular pattern of various forms such as biomass, coal quality and electric power were obtained, which provided a theoretical basis to make the measures of improving the harvest volume. The study of the short cutting period contributed a lot to the systematic study of the locust energy forest. The study showed that the biomass production and the short cutting period of the energy forest cultivation and the coppice management were of practical significance. The diameter class provided a theoretical basis for the classification of the harvest and a new method of combining theory with practice in the field of energy forests.
引文
1. 白卫国,张玲,翟明普.论我国林业生物质能源林培育与发展[J].林业资源管理,2007,(2):7-10.
    2. 鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2000.
    3. 鲍雅静,李政海,韩兴国,等.植物热值及其生物生态学属性[J].生态学杂志,2006,25(9):1095-1103.
    4.毕玉芬,车伟光.几种苜蓿属植物植株热值研究[J].草地学报,2002,10(4):265-269.
    5. 蔡宝军、刘军朝、沈永存等,北京石质山地燃料型能源树种刺槐无性系筛选,林业科技开发,2008,22卷1期71-75
    6. 曹吉鑫,田赞,王小平,等.森林碳汇的估算方法及其发展趋势[J].生态环境学报,2009,18(5):2001-2005
    7. 曹吉鑫.北京北部山区不同林龄的油松和侧柏人工林碳库研究[D].北京林业大学.2011.
    8. 陈波,杨永川,周莹.浙江天童常绿阔叶林内七种优势植物的热值研究[J].华东师范大学学报(自然科学版),2006,(2):105-111.
    9. 陈存及,何宗明.37种针阔树种抗火性及其综合评价的研究[J].火灾科学,1994,3(1):42-51.
    10.陈新安,袁瑛武. “薪炭林”林种商榷[J].中南林业调查规划,2012,31(3):45-48
    11.单长卷,梁宗锁,韩蕊莲等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究[J].应用生态学报,2005,16(7):1205-1212
    12.邓可蕴.21世纪我国生物质能发展战略[J].中国电力,2000,33(9):82-84
    13.丁伯让,栎树薪炭林的造林技术及开发利用[J],安徽林业科技.2003年第1期,P15-17
    14.方升佐,黄宝龙.瑞典柳树能源林的研究及发展概况[J].世界林业研究,1997,(3):66-71.
    15.方升佐,万劲,彭方仁.木本生物质能源的发展现状和对策[J].生物质化学工程,2006,40(B12):95-102.
    16.费世民.国内外能源植物资源及其开发利用现状[J].四川林业科技,2005(5):22-26
    17.高岚,李伟.林木生物质能源的发展和我国能源林建设[J].生物质化学工程,2006,40(B12):265-275.
    18.高尚武,马文元.中国主要能源树种.北京:中国林业出版社,1990
    19.官丽莉,周小勇,罗艳.我国植物热值研究综述[J].生态学杂志,2005,24(4):452-457.
    20.宫锐,何勇,孙建辉,等.刺槐速生丰产示范林栽培技术总结[J].山东林业科技,1996(6):14-15.
    21.龚运淮,陈慧泉,尹士恩.生物质能源的开发前景[J].云南化工,1995,(1):23-26.
    22.郭良,丁红.白榆与刺槐混交造林效果调查分析[J].林业科技开发,1997(4):36-37.
    23.郭勇,刘柏谦,生物质燃料在燃煤锅炉上直接燃烧的试验研究[J],锅炉技术,2012,43(3),0044-0046
    24.韩斐扬.桉树人工林能量结构特征与能源林品种选择[D].中国林业科学研究院.2010
    25.韩斐扬,周群英,陈少雄.6年生11种桉树无性系生物量与炭化研究[J].桉树科技.2012,09-15
    26.郝文芳,单长卷,梁宗锁,等.陕北黄土丘陵沟壑区人工刺槐林土壤养分背景和生产力关系研 究[J].中国农学通报,2005,21(9).
    27.何晓,包维楷,辜彬,等.中国高等植物干质量热值特点[J].生态环境,2007,16(3):973-981.
    28.何宝华,彭祚登.生物质直接燃烧利用现状[J].江西林业科技,2007(2).06-30
    29.侯琳,雷瑞德,王得祥,等.秦岭火地塘林区油松群落乔木层的碳密度[J].东北林业大学学报,2009,37(1):23-24.
    30.黄世能,郑海水,何克军.桉树薪炭林混交试验——Ⅱ.林分生物量和能量的分配研究[J].林业科学研究,1991,4(5):545-549.
    31.胡建忠.沙棘作为农村能源植物开发的可行性分析[J].国际沙棘研究与开发,2004,2(4):36-43.
    32.胡建忠,卢顺光.沙棘能源林建设及颗粒燃料开发技术探讨[J].国际沙棘研究与开发,2003,3(1):8-13.
    33.贾黎明、刘诗琦、祝令辉,等,我国杨树林的碳储量和碳密度,南京林业大学学报,2013,(37)2,1-7
    34.贾治邦.大力推进林业又快又好发展发挥林业在建设节约型社会中的作用[J].林业经济,2006,(11):3-7.
    35.蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    36.蒋剑春,应浩,孙云娟.德国、瑞典林业生物质能源产业发展现状[J].生物化学工程,2006,(5):5-9.
    37.蒋建新,陈晓阳.能源林与林木生物转化能源化研究进展[J].世界林业研究,2005,18(6):39-44.
    38.康树珍.几种能源树种燃烧利用效果的研究[D].北京林业大学,2007
    39.李洪.杨柳能源林种植密度和轮伐期试验及其燃烧特性分析[D].中国林业科学研究院.2009
    40.李俊,许兴.桉树生物质能源的价值研究[J].企业技术开发,2008,27(9):96-98.
    41.李慧卿,马文元,李慧勇,等.我国能源林发展与展望[J].世界林业研究,1999,12(4):51-53.
    42.李军,王学春,邵明安,等,黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟[J].植物生态学报2010,34(3):330-339
    43.李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林主要种类能量背景值测定分析[J].植物生态学报,1996,20(1):1-10.
    44.林承超.福州鼓山季风常绿阔叶林及其林缘几种植物叶热值和营养成分[J].生态学报,1999,19(6):832-836.
    45.林华,曹敏,张建侯.中国西南地区热带季节雨林及山地常绿阔叶林热值及能量分配格局[J].植物生态学报,2007,31(6):1103-1110.
    46.林鹏,邵成,郑文教.福建和溪亚热带雨林优势植物叶的热值研究[J].植物生态学报,1996,20(4):303-309.
    47.林益明,黎中宝,陈奕源,等.福建华安竹园一些竹类植物叶的热值研究[J].植物学通报,2001,18(3):356-362.
    48.林益明,郭启荣,叶功富,等.福建东山几种木麻黄的物质与能量特征[J].生态学报,2004,24(10):2217-2224.
    49.林益明,王湛昌,柯莉娜,等.四种矮林状与四种乔木状棕榈植物热值的月变化[J].生态学报,2003,23(6):1117-1124.
    50.龙应忠,吴际友,董方平,等.高热值速生能源树种选育及应用研究进展[J].林业科技开发,2007,21(2):1-5.
    51.龙瑞军,徐长林,胡自治,等.天祝高山草原15种饲用矮林的热值及季节动态[J].生态学杂志,1993,12(5):13-16.
    52.卢顺光,许涛.从第七届国家沙棘学术讨论会看沙棘研究开发的方向[J].国际沙棘研究与开发,2003,1(2):44-45.
    53.陆显祥.能源林业的动向[J].世界林业研究,1988,1(1):43-48.
    54.孟宪宇,张弘.闽北杉木人工林单木模型[J].北京林业大学学报,1996,18(2):1-8.
    55.孟新华,梁宝君.发展能源林解决农村居民生活用能[J].森林工程,2007,23(6):83-85.
    56.彭鸿,Reinhard Mosandl,立地和人为干扰对渭北黄土高原刺槐人工林个体生长过程的影响,山东农业大学学报:2003,34(1):44-49
    57.彭柞登,何宝华.林业生物质能开发利用途径、问题与前景分析[J].生物质化学工程,2006,40(增刊):276-281
    58.乔秀娟,曹敏,林华.西双版纳不同林龄次生植物群落优势树种的热值[J].植物生态学报,2007,31(2):326-332.
    59.钱能志.加快林业生物质能源的开发利用[J].中国石化,2007,(8):16-19.
    60.任伯文,刘玉西,刺槐薪炭林研究,四川林业科技,1990,11(4),51-57
    61.任海,彭少麟,刘鸿先,等.鼎湖山植物群落及其主要植物的热值研究[J].植物生态学报,1999,23(2):148-154.
    62.茹桃勤,李吉跃,张克勇,等.国外刺槐(Robinia pseudoacacia)研究[J].西北林学院学报,2005,20(3):102-107.
    63.沈国舫,贾黎明.沙地杨树刺槐人工混交林的改良土壤功能及养分互补关系[J].林业科学,1998,34(5):12-20.
    64.沈国舫.森林培育学.北京:中国林业出版社,2001
    65.生物质能源考察组.德国瑞典林业生物质能源利用技术考察报告[J].生物质化学工程,2006,40(B12):I0008-I0015.
    66.谭晓红,刘诗琦,马履一,等.豫西刺槐能源林的热值动态[J].生态学报.2012,4-23
    67.谭晓红,王爽,马履一,等.豫西刺槐能源林培育的光合生理生态理论基础[J].生态学报,2010,06-08
    68.谭忠奇,林益明,丁印龙,等.五种丛生状中棕搁植物叶热值的月变化研究[J].应用生态学报,2004,15(7):1135-113
    69.施士争,潘明建,王保松,等.培育矮林柳生物质能源林的前景[J].江苏林业科技,2006,33(3):1-5.
    70.宋永芳.刺槐资源的开发利用[J].林业科技开发,2002,16(5):11-13.
    71.宋西德,杨有举.刺槐饲料林叶量及其营养成分动态[J].西北林学院学报,1995,10(4):6-10.
    72.孙海鹏,朱振民,青格乐.干旱沙区薪材树种选择及其生物量的研究[J].内蒙古林业调查设计,1999(2):45-52.
    73.谭忠奇,林益明,向平,等.5种榕属植物不同发育阶段叶片的热值与灰分含量动态[J].浙江林学院学报,2003,20(3):264-267.
    74.唐红英,胡延杰.国外生物质能源产业发展的经验及启示[J].世界林业研究,2008,21(3):72-74.
    75.唐守正,杜纪山,利用树冠竞争因子确定同龄间伐林分的断面积生长过程[J],林业科学,1999,35(6),35-41
    76.万劲,方升佐.能源林的发展概述[J].现代农业科技,2006(10):14-17.
    77.王安亭,王燕军.刺槐无性系营养钵插根育苗试验研究[J].河南林业科技,1999,19(3):15-16,31.
    78.王得祥,雷瑞德,尚廉斌,等.秦岭林区主要乔,矮林种类能量背景值测定分析[J].西北林学院学报,1999,14(1):54-58.
    79.王晗生.黄土高原重要薪材林树种沙棘营养价值分析[J].沙棘,1997,(2):59-63.
    80.王恺,管宁编译.木质能源的开发和利用[J].国际木业,2005,(12):19-20.
    81.王世忠,郭浩.油松刺槐混交林生长及其效应研究[J].林业科技通讯,2000(3):6-8.
    82.王爽,彭祚登,冯莎莎.栽植密度对沙棘幼苗生长及热值的影响[J],河北林果研究,2011,(26)1,1-5
    83.温佐吾,张文武.白栎次生薪炭林的工艺成熟与适宜采伐年龄[J].山地农业生物学报.2012,10-30
    84.汪有科.世界各国能源林的研究与发展综述[J].水土保持学报,1989,9(5):52-57.
    85.吴德军,王开芳,胡丁猛,等.林木生物质能源研究进展及发展趋势[J].山东林业科技,2008(1):79-81.
    86.吴鹏飞,马祥庆,王平.我国发展生物质能源树种原料林的潜力和对策[J].亚热带农业研究,2007,3(2):125-128.
    87.武维华主编.植物生理学[M].北京:科学出版社,2003.
    88.肖千文.生物质能发展问题与对策[J].生物质化学工程,2006,40(B12):108-114.
    89.奚士光,吴味隆,蒋君衍编著.锅炉及锅炉房设备(第三版)[M].北京:中国建筑出版社,2002.
    90.许小骏.林业生物质能源发展现状及展望[J].山西农业科学,2008,36(8):88-89.
    91.徐永荣,张万均,冯宗炜,等.天津滨海盐渍土几种植物的热值和元素含量及相关性[J].生态学报,2003,23(3):450-455.
    92.徐秀琴,杨敏生,刺槐资源的利用现状[J].河北林业科技,2006,9:54-57.
    93.荀守华,乔玉玲,张江涛,等.我国刺槐遗传育种现状及发展对策[J].山东林业科技,2009,39(1):92-96.
    94.杨成源,张加研,李文政,等.滇中高原及干热河谷新材树种热值研究[J].西南林学院学报,1996,16(4):294-302.
    95.杨福囤,何海菊.高寒草甸地区常见植物热值的初步研究[J].植物生态学报,1983,7(4):280-288.
    96.尹伟伦,翟明普.建立矮林能源林概念并构筑林业可再生能源新产业链[J].生物质化学工程,2006,40(B12):91-95.
    97.尹思慈主编,木材学[M].北京:中国林业出版社,1996
    98.袁振宏,吕鹏梅,孔晓英.生物质能源开发与应用现状和前景[J].生物质化学工程,2006,40(B12):13-21.
    99.张建国,彭祚登.中国薪炭林培育技术[J].生物质化学工程,2006,40(B12):56-66.
    100.张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征[J].生态学报,2005,25(3):527-537.
    101.张文辉,何景峰,周建云.能源柳研究现状与国内引种栽培[J].生物质化学工程,2006,40(B12):38-45.
    102.赵静,钱桦,袁湘月,等.林木生物质收获机械发展现状[J],林业机械与木工设备,2006(05).
    103.赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-8.
    104.赵廷宁,杨维西,陈涛,等.黄土高原主要树种的两种化学成分含量及其对树木热值的影响[J].北京林业大学学报,1993,15(2):53-58.
    105.中国林业科学研究院科技情报研究所编辑.森林能源(上册)[M].北京:中国林业科学研究院科技情报所编辑出版,1982.
    106.中国林业科学研究院科技情报研究所编辑.森林能源(下册)[M].北京:中国林业科学研究院科技情报所编辑出版,1982.
    107.中国土壤学会农业化学专业委员会.土壤农业化学分析常规分析方法[M].北京:科学出版社,1983.
    108.周长瑞,杜华兵,王月海.侧柏刺槐混交的生长增益及其机理[J].林业科技通讯,1996(4):9-12.
    109.朱延林,杨洪义.刺槐无性繁殖配套技术[J].河南林业科技,1998,18(3):30-32.
    110. Aerts R, Chapin FS. The mineral nutrition of wild plants revisited:A re-evaluation of processes and patterns[J]. Advances in Ecological Research,2000,30:1-67.
    111. Chapin FSIII, Kerowski A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous tmga trees [J]. Ecology, 1983,64 (2):376-391.
    112. Enquist BJ, West GB, Brown JH. Quarter-power scaling in vascular plants:Functional basis and ecologiacal consequences. In:Scalling in Biology (eds. Brown J H, West G B.)[M]. Oxford University Press, Oxford.2000.
    113.Lambers H, Chapin S, Pons TL.张国平,周伟军译.植物生理生态学[M].杭州:浙江大学出版社,2005.
    114. Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stochionmetry across 753 terrestrial plant species in China[J]. New Phytologist,2005,168:377-385.
    115.H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, L. L. Baxter. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Progress in Energy and Combustion Science.2000,26:283-298.
    116. Hirose T, Werger MJA, van Rheenen JWA. Canopy development and leaf nitrogen distributions in a stand of Carex acutiformis [J]. Ecology,1989,70:1610-1618.
    117. Neizke M. Changes in energy fixation and efficiency of energy capture in above-ground biomass along an environmental gradient in calcareous grasslands [J]. Flora,2002,197:103-117.
    118. Randerson PF,董宏林,Slater FM.世界若干国家生物质能源利用及有关问题研究[J].宁夏农林科技,1999,(5):5-8,16.
    119.Tisdale SL, Nelson WL(美)著.孙秀廷,曹志洪译.土壤肥力与肥料[M].北京:科学出版社,1984.
    120.Whittaker RH. Communities and Ecosystems[M]. New York:MacMillan.1970.
    121. Wielgolaski FE, Kjevikc S. Energycontent and use of solar radiation of Fennoscandian Tundra Plants[A]. In:Wielgolaski FE. ed. Fennoscandian Tundra Ecosystems Part I: Plant and Microorganisms[C]. New York, Berlin-Heidelberg:Springer,1975.
    122. Wielgolaski FE, Kjevikc S.杨福囤译.芬兰斯堪的纳维亚冻原植物能量含量及太阳辐射能的利用[J].国外畜牧学—草原,1982,(3):27-31.
    123. Zhou Haosheng, Peter Arendt Jensen, Flemming Jappe Fran. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler [J]. Fuel, 2007,86:1519-1533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700