用户名: 密码: 验证码:
高层建筑楼梯间及相连空间内烟气流动特性与火行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进展的加快和土地资源的日益稀缺,我国高层建筑的数量和高度得到了快速增长,再加上近年来房价的飞速上涨和住房需求量的不断攀升,进一步刺激各房地产企业加快投资和建设高楼大厦的速度,各地(超)高层建筑如雨后春笋般不断拔地而起,具有数量多、高度高、结构复杂、功能多样化的特点,并且许多建筑已经成为城市的标志性建筑,同时,高层建筑也是对施工技术和安全保障的严峻考验,尤其是高层建筑火灾安全问题备受人们关注。近年来发生了许多大型高层建筑火灾事故,并有愈演愈烈之势。高层建筑由于楼层多、结构复杂、体积大,且烟气蔓延途径多,其火灾危险性更大,尤其是烟囱效应和外界风带来后果尤其严重,因此,研究高层建筑烟气运动规律和火灾发展特性具有重要意义。
     湍流混合运动和烟囱效应是楼梯间内烟气运动的两种主要机制,两种运动机制分别在火灾发展不同阶段起主要作用。在第一个稳定阶段,楼梯间内烟气主要依靠湍流混合作用向上缓慢的运动;在第二个稳定阶段,楼梯间内烟气主要依靠烟囱效应向上快速的运动。两个稳定阶段的持续时间都会受到火源功率和通风口位置的影响。楼梯间内烟气运动机制影响其竖向温度分布。与湍流混合运动作用阶段相比,在烟囱效应作用阶段,楼梯间烟气竖向温度衰减较慢,温度衰减系数β值较小。随着楼梯间通风口位置升高和火源功率增大,β值越小,封闭楼梯间的烟气温度衰减最快,β值最大。着火层位于高层建筑中间楼层时,着火层上方和下方通风口状态对楼梯间内竖向温度分布有较大的影响。
     在烟囱效应作用下,甲醇和正庚烷池火向楼梯间方向倾斜,本文引入理查森数Ri分析烟囱效应对火焰倾角的影响。对于甲醇池火,火焰倾角θ与理查德森数Ri1呈线性递增关系,而对于正庚烷池火,在烟囱效应作用下各工况火焰倾角θ相差不大,其平均值为69.7°,楼梯间通风口位置对正庚烷的火焰倾角θ影响较小。对于火焰长度和火焰高度,实验结果表明在烟囱效应作用下正庚烷池火的无量纲火焰长度(Lf/D)和火焰高度(Hf/D)与无量纲火源热释放速率(Q*)的1/4次方呈正比。对于火焰温度,在烟囱效应产生的风速的冷却作用下,不仅倾斜火焰连续区的温升(△T)低于开放空间的火焰连续区温升,AT大约776℃,而且火焰连续区和间歇区的范围也有所增大,对于火焰连续区,L/Q2/5从无风情况下0-0.08增加到0-0.12,而对于火焰间歇区,L/Q2/5从无风情况下0.08-0.2增加到0.12-0.25。烟囱效应产生的风速和火源的燃烧速率相互作用、相互影响,研究结果表明风速V与火源功率Q的1/3次方呈线性递增关系。楼梯间通风口位置和状态对火源的燃烧速率、着火房间和前室的温度场分布以及楼梯间内辐射和总热流值有一定的影响。
     通过设计和建造1/6尺寸外界风楼梯间实验台,研究结果表明在不同外界风向和外界风速作用下,楼梯间内烟气运动和相连房间的火灾特性具有四种明显不同的模式。模式Ⅰ:随着燃烧时间增加,楼梯间内各层烟气温度和总热流也逐渐增加,同时房间内火焰逐渐向楼梯间方向倾斜,最终温度、热量值、火焰倾斜程度都达到最大。烟囱效应是楼梯间内烟气运动的主要驱动力。模式Ⅱ:在燃烧初期,楼梯间内各层温度和总热流值都非常小,燃烧一段时间后,楼梯间内温度和总热流突然地迅速升高。随着燃烧速率的增大,烟囱效应逐渐克服外界风成为主要的驱动力。模式Ⅲ:当外界风速比较大时,在整个燃烧过程中,楼梯间内各层烟气温度和总热流值都非常小,房间内火焰一直向室外方向倾斜。火源产生的热烟气始终不能克服外界风的阻力进入楼梯间内部。模式Ⅳ:在燃烧期间启动风机,楼梯间内各楼层的烟气温度和总热流呈现下降的趋势,房间内火焰逐渐向室外方向倾斜,随着外界风速增大,烟气温度和热流下降越快。房间内火焰的倾斜方向主要与烟囱效应作用力Fstack和外界风作用力Fwind有关,通过理论分析引入修正的弗洛德数Fr来判断和分析房间内火焰倾斜方向,最终计算出火焰方向转变的临界弗洛德数Fr值为0.814。当Fr小于O.814时,火焰向室外方向倾斜,否则,火焰向楼梯间方向倾斜。
Over the past decades, high-rise buildings have been constructed widely in many cities due to the acceleration of urbanization process and the scarcity of land resources in China. The fire safety of high-rise buildings has attracted public attention due to frequent fire accidents which leads to a large number of fatalities and property loss. Statistics show that more than80percent of fatalities in fires are caused by toxic gases such as carbon monoxide instead of the burning fire. Many vertical channels existing in the high-rise building lead to the rapid smoke spread. There are two special fire hazards related to high-rise buildings:the obvious stack effect in the vertical channels and the significant influence of external wind. Therefore, it is worth investigating the smoke movement characteristic and the fire behaviors in the high-rise buildings and the effects of these two factors should be focused.
     In the current study, a set of experiments has been conducted in a1/3scaled high-rise building model with12floors to study smoke movement mechanisms and vertical temperature distribution in the staircase. It is found that the hot smoke movement along vertical staircase has two quasi-steady state stages during the whole burning period. Turbulent mixing strongly affects the smoke movement at the first stage while the stack effect plays a significant role at the second stage. Moreover, both fire size and location of opened window have significant effects on the duration of the two stages. The mechanisms of smoke movement have a significant effect on the vertical temperature distribution in staircase. The temperature attenuation coefficient β at the first stage is larger than that at the second stage. When the fire source is located at the middle floor, it is also found that the doors state below the fire source has a significant influence on the vertical temperature distribution in staircase. The temperature attenuation coefficient β is found to be larger in cases with the door opened due to the fresh air flowing into the opened staircase.
     The air flow pattern in the room adjacent to a staircase is affected by the stack effect. A large amount of fresh air is sucked into the fire room by the stack effect, which provides sufficient oxygen for combustion, and the flame would be stretched. The influence of stack effect on fire behaviors in the compartment is studied in the1/3scaled building model. The flames of methanol and heptane pool fires incline towards the staircase under the influence of stack effect. The flame tilt angle θ of methanol pool fire increases with increasing Ri-1. While the values of flame tilt angle of heptane pool fires in all cases are closed, and the average value is about69.7°. The location of window opened in the staircase has little influence on the flam tilt angle. It is furthermore found that the dimensionless flame height (Hf/D) and length (Lf/D) of leaned heptane flame under stack effect are proportional to1/4power of the dimensionless heat release rate (Q*). The temperature rise (AT) at the continuous flame zone is lower under the stack effect than that in a free burning case at open space due to the cooling of airflow. The flame of pool fire is stretched and the lengths of continuous and intermittent flame zones are much greater than those obtained at open space. The value of L/Q2/5in the intermittent flame zone ranges from0.12to0.25in the current research whereas it ranges from0.08to0.2at the open space.
     The fresh air sucked into fire room plays a significant role in the temperature distribution and burning rate of pool fire in the compartment. Under the action of stack effect, the upper hot smoke temperatures in the atrium are higher than these in the fire room due to the tilted flame. Meanwhile, the opened window position in the staircase has an important effect on the temperature distribution in the compartment. The results show that the velocity of airflow induced by stack effect is proportional to1/3power of the heat release rate of fire source. The radiant heat flux and total heat flux at the left sidewalls of staircase are also investigated, and the measured values in an opened staircase are higher than those in a closed staircase, due to the tilted flame.
     The smoke movement and fire behaviors in high-rise buildings under the external wind have been studied in a1/6scaled building model. Based on the experimental results, the magnitude and direction of external wind have a significant influence on the smoke movement in staircase and the fire behavior in the compartment. Four different scenarios were found in the experiments. In Scenario I, the flame tilt angle, temperature and heat flux in the staircase increase gradually after ignition and maintain a maximum for a while. In this scenario, there is no or a small external wind. The stack effect is the main factor inducing smoke movement, In addition, it is found that the side wind speed has little influence on the smoke movement and fire behavior. In Scenario II, the temperature and heat flux in the staircase are very low at the initial burning stage and then increase sharply to the maximum values. The flame firstly inclines toward the outdoor owing to the effect of external wind however it becomes straight up gradually and eventually inclines toward the staircase. In this scenario, the stack effect can overcome the external wind resistance and induce the smoke movement after a certain period of time. The modified Fr is proposed to address the flame direction transformation and the calculated critical value of Fr is0.814. In Scenario III, under large external winds, there was no noticeable temperature and heat flux rise in the staircase during the whole burning process. The flame inclines toward the outdoor throughout the experiments. In this scenario, the stack effect can not overcome the external wind which flows into the staircase. In Scenario IV, the temperature and heat flux in the staircase decrease and the flame inclines toward the outside after the wind machine is turned on. In this scenario, the external wind can overcome the block of hot smoke and flow into the staircase to cool it down. The mass loss rate increases sharply to the maximum value when the flame is straight up after the wind machine is turned on. The temperature and heat flux decrease rapidly with the increasing external wind speed.
引文
DGJ08-88-2006上海市工程建设规范-民用建筑防排烟技术规程[S].2006
    GB50045-95高层民用建筑设计防火规范(2005年版)[S].北京:中国计划出版社,2005.
    范维澄,刘乃安.火灾安全科学—一个新兴交叉的工程科学领域[J].中国工程科学,2001,3(1):6-14.
    范维澄,王清安,姜冯辉,周建军.火灾学简明教程[M].合肥:中国科学技术出版社,1995.
    霍然,胡源,李元洲,建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999.
    霍然,袁宏永.性能化建筑防火分析与设计[M].合肥:安徽科学技术出版社,2003.
    李一帆.高层建筑竖向通道内烟气运动特性研究[D].硕士论文,合肥:中国科学技术大学,2013.
    李政.环境风对高层建筑竖井内烟气运动的影响研究[D].硕士论文,合肥:中国科学技术大学,2012.
    廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,2003.
    刘帅.水平环境风对油池火热反馈及燃烧速率的影响研究[D].硕士论文,合肥:中国科学技术大学,2011.
    毛少华.烟气中性面的理论模型及实验研究[D].博士论文,合肥:中国科学技术大学,2012.
    秦挺鑫,郭印诚,张会强,王希麟,林文漪.2004楼梯井内火灾过程的大涡模拟[J].工程热物理学报,25(1):177-179.
    孙晓乾.火灾烟气在高层建筑竖向通道内的流动及控制研究[D].博士论文,合肥:中国科学技术大学,2009a.
    孙晓乾,许兆宇,胡隆华,李元洲,霍然.2009b楼梯井内烟囱效应对着火房间燃烧和溢出烟气的影响研究,火灾科学,18(2):80-87.
    涂然.高原低压低氧对池火燃烧与火焰图像特征的影响机制[D].博士论文,合肥:中国科学技术大学,2012.
    许晓元,李元洲,毛少华,阳东.2010a火灾情况下竖井中性面多区域模型[J].火灾科学,19(4):224-231.
    许晓元,李元洲,许兆宇,李政.2010b高层建筑楼梯井不同开口方式下的烟气控制效果研究[J].中国科学技术大学学报,40(10):1036-1042.
    许晓元.高层建筑竖向通道内中性面位置研究[D].硕士论文,合肥:中国科学技术大学,2011a.
    许晓元,李元洲,毛少华,阳东.2011b预测火灾情况下竖井中性面位置的连续模型[J].燃烧科学与技术,17(4):375-381.
    许兆宇.不同开口形式楼梯井内烟气温度及速度分布规律研究[D].硕士论文,合肥:中国科学技术大学,2010a.
    许兆宇,李元洲,孙晓乾,许晓元.2010b开口位置对楼梯井内烟气运动影响的研究[J].安全环境学报,10(2):156-161.
    张靖岩.高层建筑竖井内烟气流动特征及控制研究[D].博士论文,合肥:中国科学技术大学,2006.
    赵建贺,郜冶,霍岩,钟伟.2012小尺寸竖井内羽流前锋上升时间试验研究[J].哈尔滨工程大学学报,33(2):160-165.
    Audouin L, Kolb G, Torero J L, Most J M.1995. Average centerline temperatures of a buoyant pool fire obtained by image processing of video recordings [J]. Fire Safety Journal 24 (2): 167-187.
    Barrett R E, Locklin D W.1969. A computer technique for predicting smoke movement in tall buildings [J]. Fire Technology 5 (4):299-310.
    Benedict L, Zukoski E E.1996. Buoyant flows in shafts [G]. NIST 69-77.
    Benedict N L. Buoyant flows in vertical channels relating to smoke movement in high rise building fires [D]. Pasadena, CA:California Insitute of Technology,1999.
    Best R, Demers D P. Investigation report on the MGM Grand Hotel Fire-Las Vegas[R]. Nevada, Quincy MA:National Fire Protection Association,1980.
    Black W Z.2009. Smoke movement in elevator shafts during a high-rise structural fire [J]. Fire Safety Journal 44 (2):168-182.
    Blinov V I, Khudiakov G N. Diffusion Burning of Liquids [R]. US:Army Engineer Research and Development Labs Fort Belvoir VA,1961.
    Cannon J B, Zukoski E E. Turbulent mixing in vertical shafts under conditions applicable to fires in high rise buildings [R]. California Institute of Technology, Pasadena, California: Technology Fire Report No.l to the National Science Foundation,1975b.
    Cannon J B. Convective flows under conditions applicable to fires in high rise buildings [D]. Pasadena, CA:California Insitute of Technology,1975a.
    Chen H X, Liu N A, Chow W K.2011. Wind tunnel tests on compartment fires with crossflow ventilation [J]. Journal of Wind Engineering and Industrial Aerodynamics 99 (10): 1025-1035.
    Chen H X, Liu N A, Zhang L H, Deng Z H, Huang H. Experimental study on cross-ventilation compartment fire in the wind environment:Proceedings of the Ninth International Symposium, International Association for Fire Safety Science,2008 [C]. New York: Cambridge University Press.
    Chen H, Liu N, Chow W.2009. Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment [J]. Building and Environment 44 (12): 2521-2526.
    Chow C L, Chow W K.2009. Fire safety aspects of refuge floors in supper tall buildings with computational fluid dynamics [J]. Journal of Civil Engineering and Management 15 (3):225-236.
    Chow W K, Fong N K. The PolyU/USTC Atrium:a full-scale burning facility for atrium fire studies:Proeeedings of the First International Symposium on Engineering Performance-Based Fire Codes,1998 [C]. HongKong:
    Chow W K, Hung W Y.2003. On the fire safety for internal voids in high rise buildings [J]. Building and Environment 38 (11):1317-1325.
    Chow W K, Wong L T, Tang P M, Kwan E C.2000. Scale model studies of smoke filling in the lift shaft of an old high-rise building [J]. Journal of Applied Fire Science 9 (2):135-151.
    Chow W K, Zhao J H.2011. Scale modeling studies on stack effect in tall vertical shafts [J]. Journal of Fire Sciences 29 (6):531-542.
    Chow W K.2005. Building fire safety in the Far East [J]. Architectural Science Review 48 (4):285-294.
    Chuan Y Y, Hwei S C, Liang H T, Chiang C K.2005. Wind effects on performance of smoke exhaust systems for tall buildings in Taiwan [J]. Journal of applied fire science 14 (3):189-203.
    Cooper L Y.1994. Overview of a Theory for Simulating Smoke Movement Through Long Vertical Shafts in Zone-Type Fire Models [J]. Chemical and Physical Processes in Combustion: 192-192.
    Cooper L Y.1996. Calculating combined buoyancy-and pressure-driven flow through a shallow, horizontal, circular vent:Application to a problem of steady burning in a ceiling-vented enclosure [J]. Fire Safety Journal 27(1):23-35.
    Cooper L Y.1998. Simulating smoke movement through long vertical shafts in zone-type compartment fire models [J]. Fire Safety Journal 31 (2):85-99.
    Drysdale, D. An introduction to fire dynamics [M]. Third Ed. New York:A John Wiley and Sons, Ltd,2011.
    Ergin-Ozkan S, Mokhtarzadeh-Dehghan M R, Reynolds A J.1993. The effect of different air inlet sizes on the air flow through a stairwell [J]. Indoor and Built Environment 2 (5-6):350-359.
    Fan C G, Ji J, Gao Z H, Han J Y, Sun J H.2013. Experimental study of air entrainment mode with natural ventilation using shafts in road tunnel fires [J]. International Journal of Heat and Mass Transfer 56:750-757.
    Feustel H, Zuercher C H, Diamond R, Dickinson B, Grimsrud D, Lipschutz R.1985. Temperature-and wind-induced air flow patterns in a staircase [J]. Computer modeling and experimental verification, Energy and Buildings 8 (2):105-122.
    Gaoloumi 2014 http://top.gaoloumi.com/cn.php
    Hadjisophocleous G, Fu Z, Lougheed G. A computational and experimental study of smoke movement in a 10-storey building using a two-zone model:9th International fire science and engineering conference,2001 [C]. Edinburgh, Scotland:Interscience Communications Ltd.
    Hadjisophocleous G, Jia Q.2009. Comparison of FDS prediction of smoke movement in a 10-storey building with experimental data [J], Fire technology 45 (2):163-177.
    Hamins A, Fischer S J, Klashiwagi T, Klassen M E, Gore J P.1994. Heat feedback to the fuel surface in pool fires [J]. Combustion Science and Technology 97 (1-3):37-62.
    Hamins A, Yang J C, Kashiwagi T. A global model for predicting the burning rates of liquid pool fires [M]. Gaithersburg:US Department of Commerce, Technology Administration, National Institute of Standards and Technology,1999.
    Harmathy T Z.1998. Simplified model of smoke dispersion in buildings by stack effect [J]. Fire Technology 34 (1):6-17.
    Heskestad G.1975. Physical modeling of fire [J]. Journal of Fire and Flammability 6 (3): 253-273.
    Heskestad G. Modeling of enclosure fires:Proceedings of the 14th Symposium on Combustion,1972[C]. Pittsburgh, USA:Combustion Institute.
    Hottel H C.1959. Certain laws governing the diffusive burning of liquids [J]. Fire Research Abstracts and Reviews 1 (2):1-41.
    Huang H, Ooka R, Liu N A, Zhang L H, Deng Z H, Kato S.2009. Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions [J]. Fire Safety Journal 44 (3):311-321.
    Huo R, Fan W C, Yuan L M, Dong H, Chow W K, Fong N K, Ho P L. The design of large space experimental hall and some preliminary tests:Proceedings of Symposium for 97 Forum: Application of Fire Safety Engineering,1997 [C]. Tianjin:Fire Research Institute.
    Ingason H.2007. Model scale railcar fire tests [J]. Fire Safety Journal 42 (4):271-282.
    Jaluria Y, Chiu W K S, Lee S H K.1995. Flow of smoke and hot gases across horizontal vents in room fires [J]. Combustion Science and Technology 110 (1):197-208.
    Ji J, Gao Z H, Fan C G, Zhong W, Sun J H.2012. A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires [J]. International Journal of Heat and Mass Transfer 55 (21):6032-6041.
    Ji J, Li L J, Shi W X, Fan C G, Sun J H.2013. Experimental investigation on the rising characteristics of the fire-induced buoyant plume in stairwells [J]. International Journal of Heat and Mass Transfer 64:193-201.
    Jo J H, Lim J H, Song S Y, Yeo M S, Kim K W.2007. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings [J]. Building and Environment 42 (1):263-277.
    Kandola B S.1990. Effects of atmospheric wind on flows through natural convection roof vents [J]. Fire technology 26 (2):106-120.
    Kandola B S.1990. Effects of atmospheric wind on flows through natural convection roof vents [J]. Fire technology 26 (2):106-120.
    Karlsson B, Quintiere J. Enclosure Fire Dynamics [M]. Boca Raton:CRC press,2002.
    Kim S Y, Jaluria Y.1998. Basic considerations in combined buoyancy-induced and forced flow in a vertical open shaft [J]. Numerical Heat Transfer, Part A Applications 34 (5):519-536.
    Klopovic S, Turan (O|") F.1998. Flames venting externally during full-scale flashover fires:two sample ventilation cases [J]. Fire Safety Journal 31 (2):117-142.
    Klopovic S, Turan O F.2001a. A comprehensive study of externally venting flames-Part I: Experimental plume characteristics for through-draft and no-through-draft ventilation conditions and repeatability [J]. Fire Safety Journal 36 (2):99-133.
    Klopovic S, Turan O F.2001b. A comprehensive study of externally venting flames-Part II: Plume envelope and centre-line temperature comparisons, secondary fires, wind effects and smoke management system [J]. Fire Safety Journal 36 (2):135-172.
    Klote J H, Fothergill J W. Design of smoke control systems for buildings [S]. Washington, D.C.:US Department of Commerce, National Bureau of Standards Publications,1983.
    Klote J H. A general routine for analysis of stack effect [M], USA:National Institute of Standards and Technology, Building and Fire Research Laboratory,1991.
    Klote J H. Fire and smoke control:an historical perspective [M]. USA:National Institute of Standards and Technology, Building and Fire Research Laboratory,1994.
    Kumar R, Naveen M.2007a. Compartment Fires:CALTREE and Cross-Ventilation [J]. Combustion Science and Technology 179 (8):1549-1567.
    Kumar R, Naveen M.2007b. An experimental fire in compartment with dual vent on opposite walls [J]. Combustion Science and Technology 179 (8):1527-1547.
    Kumar R. Studies on compartment fires [D]. India:Department of Chemical Engineering, Indian Institute of Technology Roorkee,2004.
    Kurioka H, Oka Y, Satoh H, Sugawa O.2003. Fire properties in near field of square fire source with longitudinal ventilation in tunnels [J]. Fire Safety Journal 38 (4):319-340.
    Lee Y P, Delichatsios M A, Ohmiya Y, Wakatsuki K, Yanagisawa A, Goto D.2009. Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of the Combustion Institute 32 (2):2551-2558.
    Lee Y P, Delichatsios M A, Ohmiya Y.2012. The physics of the outflow from the opening of an enclosure fire and re-examination of Yokoi's correlation [J]. Fire Safety Journal 49:82-88.
    Lee Y P, Delichatsios M A, Silcock G W H.2007. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J]. Proceedings of the Combustion Institute 31 (2): 2521-2528.
    Li L J, Ji J, Fan C G, Sun J H, Yuan X Y, Shi W X.2014. Experimental investigation on the characteristics of buoyant plume movement in a stairwell with multiple openings [J]. Energy and Buildings 68:108-20.
    Li Y Z, Huo R, Chow W K.2002. On the operation time of horizontal ceiling vent in an atrium [J]. Journal of Fire Sciences 20 (1):37-51.
    Lo S M, Chen D, Yuen K. K, Lu W.2002b. A numerical study of external smoke spread in designated refuge floor [J]. Building and environment 37(3),257-268.
    Lo S M, Yuen K K, Lu W, Chen D H.2002a. A CFD study of buoyancy effects on smoke spread in a refuge floor of a high-rise building [J]. Journal of Fire Sciences 20 (6):439-463.
    Marchant E W.1984. Effect of wind on smoke movement and smoke control systems [J]. Fire safety journal 7 (1):55-63.
    Marshall N R.1985. The behaviors of hot gases flowing within a staircase [J]. Fire Safety Journal 9(3):245-255.
    Marshall N R.1986. Air entrainment into smoke and hot gases in open shafts [J]. Fire safety journal 10(1):37-46.
    McCaffrey B J. Purely buoyant diffusion flames:some experimental results [M]. Washington D.C.:National Bureau of Standards Publications,1979.
    McGuire J H.1967a. Smoke movement in buildings [J]. Fire Technology 3 (3):163-174.
    McGuire J H.1967b. Control of smoke in building fires [J]. Fire Technology 3 (4):281-290.
    Merci B, Vandevelde P.2007. Experimental study of natural roof ventilation in full-scale enclosure fire tests in a small compartment [J]. Fire Safety Journal 42 (8):523-535.
    Mercier G P, Jaluria Y.1999. Fire-induced flow of smoke and hot gases in open vertical enclosures [J]. Experimental Thermal and Fluid Science 19 (2):77-84.
    Mercier G P. Fire-induced flow of smoke and hot gases in vertical shafts [D]. New Brunswick, N.J.:Rutgers University,1996.
    Meroney R N.2011. Wind effects on atria fires [J]. Journal of Wind Engineering and Industrial Aerodynamics 99 (4):443-447.
    Moodie K, Jagger S F.1992. The King's Cross fire:results and analysis from the scale model tests [J]. Fire Safety Journal 18(1):83-103.
    Morgan H P, Marshall N, Goldstone B. Smoke hazards in covered, multi-level shopping malls:some studies using a model 2-storey mall [R]. Garston, UK:Building Research Establishment,1976.
    NFPA 92B. Guide for smoke management systems in malls, atria and large areas [S]. MA, USA:National Fire Protection Association,2000.
    Northnews 2013 http://www.northnews.cn/2013/1216/1475263.shtml
    Oka Y, Kurioka H, Satoh H, Sugawa O. Modelling of unconfined flame tilt in cross-winds: Proceedings of the Sixth International Symposium, International Association for Fire Safety Science,2000 [C].
    Oka Y, Sugawa O, Imamura T, Matsubara Y. Effect Of Cross-Winds To Apparent Flame Height And Tilt Angle From Several Kinds Of Fire Source:Proceedings of the Seventh International Symposium, International Association for Fire Safety Science,2003 [C].
    Oka Y, Sugawa O, Imamura T.2008. Correlation of temperature rise and velocity along an inclined fire plume axis in crosswinds [J]. Fire Safety Journal 43(6):391-400.
    Orloff L, De Ris J. Froude modeling of pool fires:Proceedings of the 19th Symposium on Combustion,1982 [C].
    Peppes A A, Santamouris M, Asimakopoulos D N.2001. Buoyancy-driven flow through a stairwell[J]. Building and Environment 36 (2):167-180.
    Peppes A A, Santamouris M, Asimakopoulos D N.2002. Experimental and numerical study of buoyancy-driven stairwell flow in a three storey building [J]. Building and environment 37 (5): 497-506.
    Pokorny M, Husted B P, Kraaijeveld A. Comparison of shaft fire experiment and CFD modeling:Proceedings of the Tenth International Symposium, International Association for Fire Safety Science,2011 [C].
    Poreh M, Trebukov S, Gurevitz, T. Mitigation of wind effects on the performance of pressurization systems in high-rise buildings:Proceedings of the Seventh International Symposium, International Association for Fire Safety Science,2003 [C].
    Poreh M, Trebukov S.2000. Wind effects on smoke motion in buildings [J]. Fire Safety Journal 35 (3):257-273.
    Prasad K, Pitts W, Yang J.2010. Effect of wind and buoyancy on hydrogen release and dispersion in a compartment with vents at multiple levels [J]. International Journal of Hydrogen Energy 35 (17):9218-9231.
    Qin T X, Guo Y C, Chan C K, Lau K S, Lin W Y.2005. Numerical simulation of fire-induced flow through a stairwell [J]. Building and environment 40 (2):183-194.
    Quintiere J G.1989. Scaling Applications in Fire Research [J]. Fire Safety Journal 15 (1): 3-29.
    Rasbash D J.1991. Major fire disasters involving flashover [J]. Fire Safety Journal 17 (2): 85-93.
    Reynolds A J, Mokhtarzadeh-Dehghan M R, Zohrabian A S.1988. The modelling of stairwell flows [J]. Building and Environment 23 (1):63-66.
    Reynolds A J.1986. The scaling of flows of energy and mass through stairwells [J]. Building and Environment,21 (3):149-153.
    Roh J S, Ryou H S, Kim D H, Jung W S, Jang Y J.2007a. Critical velocity and burning rate in pool fire during longitudinal ventilation [J]. Tunnel Underground Space Technology 22 (3): 262-271.
    Roh J S, Yang S S, Ryou H S, Yoon M O, Jeong Y T.2008. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case [J]. Building and Environment 43(7):1225-1231.
    Roh J S, Yang S S, Ryou H S.2007b. Tunnel fires:experiments on critical velocity and burning rate in pool fire during longitudinal ventilation [J]. Journal Fire Science 25 (2):161-176.
    Satoh H, Kurioka H. Flame Inclination With Induced Wind Through Inlet Opening In A Tall And Narrow Atrium:Proceedings of the Fifth International Symposium, International Association for Fire Safety Science,1997 [C].
    Satoh H, Sugawa O, Kurioka K, Takahashi W. Plume Behavior in a Confined Tall and Narrow Spaces One of Sub-Models of Plume for an Atrium:Proceedings of the Fourth International Symposium, International Association for Fire Safety Science,1994 [C].
    Shi C L, Lu W Z, Chow W K, Huo R.2007. An investigation on spill plume development and natural filling in large full-scale atrium under retail shop fire [J]. International Journal of Heat and Mass Transfer 50:513-529.
    Shi W X, Ji J, Sun J H, Lo S M, Li L J, Yuan X Y.2013a. Experimental study on influence of stack effect on fire in the compartment adjacent to stairwell of high rise building [J]. Journal of Civil Engineering and Management 20 (1):121-131.
    Shi W X, Ji J, Sun J H, Lo S M, Li L J, Yuan X Y.2014a. Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building [J]. Applied Energy 119:173-180.
    Shi W X, Ji J, Sun J H, Lo S M, Li L J, Yuan X Y. Experimental Study on the Temperature Distribution in an Emergency Staircase of High-rise Building:The 2nd International Conference on Civil Engineering,2013b [C]. Sweden.
    Shi W X, Ji J, Sun J H, Lo S M, Li L J, Yuan X Y. Experimental study on the characteristics of temperature field of fire room under stack effect in a scaled high-rise building model: Proceedings of the Eleventh International Symposium, International Association for Fire Safety Science,2014b [C]. Christchurch, New Zealand.
    Sina 2010 http://news.sina.com.cn/z/shzzqh/index.shtml
    Su C H, Lin Y C, Shu C M, Hsu M C.2011. Stack effect of smoke for an old-style apartment in Taiwan [J]. Building and Environment 46(12):2425-2433.
    Sugawa O, Takahashi W.1995. Flow behavior of ejected fire plume from an opening with and without external wind [J]. Proceedings of Asia flame 95:15-16.
    Sun X Q, Hu L H, Chow W K, Xu Y, Li F.2011. A theoretical model to predict plume rise in shaft generated by growing compartment fire [J]. International Journal of Heat and Mass Transfer 54 (4):910-920.
    Sun X Q, Hu L H, Li Y Z, Huo R, Chow W K, Fong N K, Gigi C H, Li KY.2009. Studies on smoke movement in stairwell induced by an adjacent compartment fire [J]. Applied Thermal Engineering 29 (13):2757-2765.
    Sun X Q, Li F, Huo R, Zhang J Y, Tu R. Numerical Studied on Stairwell Smoke Movement Induced by an Adjoining Compartment Fire:The 7th Asia-Oceania Symposium on Fire Science and Technology,2007 [C]. HongKong.
    Tamm G O, Jaluria Y. Buoyancy and pressure induced flow of hot gases in vertical shafts: Proceedings of the 12th International Heat Transfer Conference,2002 [C].
    Tanaka T, Fujita T, Yamaguchi J.2000. Investigation into rise time of buoyant fire plume fronts [J]. International Journal on Engineering Performance-Based Fire Codes 2(1):14-25.
    Tewarson A. Generation of Heat and Chemical Compounds in Fires [M]//SFPE Handbook of Fire Protection Engineering, Third Ed.. Boston:Society of Fir Protection Engineers,2002:3-105.
    Utiskul Y, Quintiere J G, Rangwala A S, Ringwelski B A, Wakatsuki K, Naruse T.2005. Compartment fire phenomena under limited ventilation [J]. Fire Safety Journal 40 (4):367-390.
    Walton W D., Thomas P H. Estimating temperatures in compartment fires [M]//SFPE Handbook of Fire Protection Engineering, Second Ed.. Boston:Society of Fir Protection Engineers,1995:3-188.
    Wang Y, Hadjisophocleous G, Zalok E.2012. Smoke movement in multi-storey buildings using CUsmoke [J]. Safety Science 52:13-27.
    Wang Y. A Study of Smoke Movement in Multi-storey Buildings Using Experiments and Computer Modelling [D]. Ottawa, Ontario, Canada:Carleton University,2008.
    Waterman T E.1968. Room flashover-criteria and synthesis [J]. Fire Technology 4:25-31.
    Wolfe A J. Analysis of limited ventilation compartment fires [D]. USA:University of Maryland,2009.
    Woods J A, Fleck B A, Kostiuk L W.2006. Effects of transverse air flow on burning rates of rectangular methanol pool fires [J]. Combustion and flame 146 (1),379-390.
    Xiao G Q, Tu J Y, Yeoh G H.2008. Numerical simulation of the migration of hot gases in open vertical shaft [J]. Applied Thermal Engineering 28 (5):478-487.
    Xinhua 2009 http://www.godeves.cn/UploadFiles/YJWS/2009/2/200902101023149392.i
    Yamada T, Takanashi K, Yanai E, Suzuki T, Sekizawa A, Sato H, Kurioka H. An experimental study of ejected flames and combustion efficiency:Proceedings of the Seventh International Symposium, International Association for Fire Safety Science,2003.
    Yan W G, Wang C J, Guo J.2012. One Extended OTSU Flame Image Recognition Method Using RGBL and Stripe Segmentation [J]. Applied Mechanics and Materials 121:2141-2145.
    Yang D, Du T, Peng S N, Li B Z.2013. A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space [J]. Energy and Buildings 62: 107-115.
    Yik F W, Lo T Y, Burnett J.2003. Wind data for natural ventilation design in Hong Kong [J]. Building Services Engineering Research and Technology 24 (2):125-136.
    Yokoi S. Study on the prevention of fire-spread caused by hot upward current [M]. Building Research Institute, Ministry of Construction,1960.
    Yu J Y, Cho D W, Song K D. Case studies of the design alternatives to minimize stack effect problems in tall buildings:In the 8th International Symposium on Building and Urban Environmental Engineering, BUEE,2006 [C].
    Yumoto T.1971. Heat transfer from flame to fuel surface in large pool fires [J]. Combustion and Flame 17(1):108-110.
    Zhang J Y, Ji J, Huo R, Yuan H Y, Yang R.2006. A comparison of simulation and experiment on stack effect in long vertical shaft [J]. Journal of fire sciences 24(2):121-135.
    Zhang J Y, Li Y Q, Huo R, Li Y Z, Liu W L.2011. Experimental Studies on a Rise-Time of Smoke Layer Interface in Vertical Shaft [J]. Procedia Engineering 11:162-170.
    Zhang J Y, Lu W Z, Huo R, Feng R.2008. A new model for determining neutral-plane position in shaft space of a building under fire situation [J]. Building and Environment 43 (6): 1101-1108.
    Zhao J H, Chow W K.2009. Experimental and numerical studies on stack effect in a vertical shaft [J]. Journal of Applied Fire Science 19 (4):369-400.
    Zinn B T, Bankstom C P, Cassanova R A, Powell E A, Koplon N A.1974. Fire spread and smoke control in high-rise fires [J]. Fire Technology 10 (1):35-53.
    Zohrabian A S, Mokhtarzadeh-Dehghan M R, Reynolds A J, Marriott B S T.1989. An experimental study of buoyancy-driven flow in a half-scale stairwell model [J]. Building and Environment 24 (2):141-148.
    Zukoski E E. A review of flows driven by natural convection in adiabatic shafts [M]. US Department of Commerce:Technology Administration, National Institute of Standards and Technology,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700