用户名: 密码: 验证码:
甲烷水合物沉积物单轴强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用大连理工大学自行研制的适用于水合物强度测试的天然气水合物低温高压三轴仪,对实验室人工合成的甲烷水合物沉积物进行了单轴强度试验。利用实验结果,对甲烷水合物沉积物单轴压缩力学特性参数进行了分析。
     本文的主要研究工作如下:
     以土力学中三轴压缩实验为基础,以天然气水合物低温高压三轴仪为实验平台,设计了甲烷水合物沉积物单轴压缩实验。主要包括:甲烷水合物生成、沉积物制样和压缩实验流程。
     对φ40、φ60和φ80的应力-应变曲线进行分析,得出甲烷水合物沉积物的单轴变形特性,试样的变形随温度、应变速率和孔隙度的关系。对φ40和φ60沉积物,仔细分析了它们的变形在不同温度和应变速率下的特点。
     对φ40和φ60甲烷水合物沉积物,分析了它们的起始屈服强度随温度和应变速率的变化,并且拟合出起始屈服强度分别关于温度和应变速率的函数关系。针对φ40和φ60试样,分别提出了起始屈服强度随温度和应变速率的预测方程。结合φ80沉积物的起始屈服强度,得出了起始屈服强度随孔隙度的变化关系。分析了不同孔隙度下沉积物起始屈服强度随温度和应变速率的敏感性。
     分析了φ40和φ60甲烷水合物沉积物的起始屈服应变随温度和应变速率的变化关系。在φ40、φ60和φ80沉积物的基础上,分析了孔隙度对起始屈服应变的影响。
     在起始屈服强度和起始屈服应变的基础之上,分析了沉积物的起始屈服模量。得出了φ40和φ60沉积物的起始屈服模量随温度和应变速率的变化关系,拟合出了起始屈服模量分别关于温度和应变速率的函数关系。提出了起始屈服模量随温度和应变速率的预测方程。分析了孔隙度对起始屈服模量的影响。
     利用应力-应变曲线,计算了不同变形下的沉积物峰值强度。对φ40和φ60甲烷水合物沉积物,分别分析了峰值强度随温度和应变速率的变化关系,拟合了与温度和应变速率有关的单值函数关系。提出了峰值强度关于温度和应变速率的预测方程。分析了孔隙度对峰值强度的影响。
In this study, a low-temperature high-pressure triaxial apparatus suitable for hydrate strength testing developed by Dalian University of Technology was used to uniaxial strength research of synthetic methane hydrate sediments. Basic on the experimental results of methane hydrate deposits under uniaxial compression.the mechanical parameters were analyzed.
     The main research work are as follows:
     Basic on triaxial compression experiments in soil mechanics,,we designed the experimental scheme of the uniaxial compression of methane hydrate sediments according to the features of gas hydrates low-temperature high-pressure triaxial apparatus. Included: methane hydrate formation, sediment sample preparation and compression test process.
     We observed the φ40,φ60and φ8O of stress-strain curves, obtained the uniaxial deformation properties of methane hydrate sediments, and figured out the relationship between the deformation and temperature, strain rate and porosity.
     The effect of temperature and strain rate on initial yield strength of φ40and φ60methane hydrate sediments were analyzed. The functional relationship between initial yield strength and temperature and between initial yield strength and strain rate were figured out for φ40and φ60methane hydrate sediments respectively. A prediction equation of initial yield strength about temperature and strain rate was developed. The sensitivity of initial yield strength to temperature and strain rate under different porosity was discussed.
     The effect of temperature, strain rate and porosity on initial yield strain of methane hydrate sediments were analysed.
     Basis on the initial yield strain and initial yield strength, the initial yield modulus was analysed. The functional relationship between initial yield modulus and temperature and between initial yield modulus and strain rate were figured out for φ40and φ60methane hydrate sediments respectively. A prediction equation of initial yield strength about temperature and strain rate was developed.
     The functional relationship between peak strength and temperature and between peak strength and strain rate were figured out for φ40and φ60methane hydrate sediments respectively. A prediction equation of peak strength about temperature and strain rate was developed. The effect of porosity on peak strength was discussed.
引文
[1]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].化学工业出版社,2008.
    [2]樊栓狮.天然气水合物储存与运输技术[M].化学工业出版社,2005.
    [3]史斗,郑军卫.世界天然气水合物研究开发现状和前景三[J].地球科学进展,1999,14(4):330-339.
    [4]钟水清,熊继有,张元泽,等.我国21世纪非常规能源的战略研究[J].钻采工艺,2005,28(005):93-98.
    [5]吴能友,梁金强,王宏斌,等.海洋天然气水合物成藏系统研究进展[J].现代地质,2008,22(003):356-362.
    [6]江怀友,乔卫杰,钟太贤,等.世界天然气水合物资源勘探开发现状与展望[J].中外能源,2009,13(6):19-25.
    [7]Blunier T. " Frozen" Methane Escapes from the Sea Floor[J]. Science, 2000, 288 (5463): 68-69.
    [8]Glasby G. Potential impact on climate of the exploitation of methane hydrate deposits offshore[J]. Marine and petroleum geology, 2003, 20 (2): 163-175.
    [9]Kvenvolden K, Lorenson T, Lilley M. Methane in the Beaufort Sea on the continental shelf of Alaska[J]. EOS, Trans. Am. Geophys. Union, 1992, 73 43.
    [10]Kvenvolden K A. Methane hydrates and global climate [J]. Global Biogeochemical Cycles, 1988, 2 (3): 221-229.
    [11]Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. REVIEWS OF GEOPHYSICS-RICHMOND VIRGINIA THEN WASHINGTON-, 1993, 31 173-173.
    [12]甘华阳,王家生,胡高韦.海洋沉积物中的天然气水合物与海底滑坡[J].防灾减灾工程学报,2004,24(002):177-181.
    [13]彭晓彤,叶瑛.论天然气水合物与海底地质灾害,气象灾害和生物灾害的关系[J].自然灾害学报,2002,11(4):18-22.
    [14]宋海斌.天然气水合物体系动态演化研究(Ⅱ):海底滑坡[J].地球物理学进展,2003,18(3):503-511.
    [15]颜文涛,陈建文,范德江.海底滑坡与天然气水合物之间的相互关系[J].海洋地质动态,2007,22(12):38-40.
    [16]Kayen R E, Lee H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin[J]. Marine Georesources & Geotechnology,1991,10 (1-2): 125-141.
    [17]Paull C K, Buelow W J, Ussler III W, et al. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments [J]. Geology, 1996, 24 (2): 143-146.
    [18]Katz D L V, Cornell D, Kobayashi R, et al. Handbook of natural gas engineering[M]. McGraw-Hill New York,1959.
    [19]胡春,裘俊红.天然气水合物的结构,性质及应用[J].天然气化工:C1化学与化工,2000,25(4):48-52.
    [20]Christiansen R L, Sloan Jr E D. Mechanisms and kinetics of hydrate formation[J]. Annals of the New York Academy of Sciences,1994,715 (1):283-305.
    [21]Collins M, Ratcliffe C, Ripmeester J. Nuclear magnetic resonance studies of guest species in clathrate hydrates:line-shape anisotropies, chemical shifts, and the determination of cage occupancy ratios and hydration numbers[J]. Journal of Physical Chemistry, 1990, 94 (1): 157-162.
    [22]Englezos P, Bishnoi P. Gibbs free energy analysis for the supersaturation limits.of methane in liquid water and the hydrate-gas-liquid water phase behavior[J]. Fluid Phase Equilibria, 1988, 42 129-140.
    [23]王淑云,鲁晓兵.水合物沉积物力学性质的研究现状[J].力学进展,2009,39(2):176-188.
    [24]Carcione J M, Gei D. Gas-hydrate concentration estimated from P-and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada[J]. Journal of Applied Geophysics, 2004, 56 (1): 73-78.
    [25]Coren F, Volpi V, Tinivella U. Gas hydrate physical properties imaging by multi-attribute analysis-Blake Ridge BSR case hi story [J]. Marine Geology,2001,178 (1): 197-210.
    [26]汤凤林,张时忠.天然水合物钻探取样技术介绍[J].地质科技情报,2002,21(2):97-99.
    [27]Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. 1997,
    [28]Lu S, McMechan G A. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas[J]. Geophysics,2004,69 (1): 164-179.
    [29]Bangs N L B, Sawyer D S, Golovchenko X. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction[J]. Geology, 1993, 21 (10): 905-908.
    [30]Hyndman R, Spence G. A seismic study of methane hydrate marine bottom simulating reflectors[J]. Journal of Geophysical Research, 1992, 97 (B5): 6683-6698.
    [31]Pearson C, Halleck P, McGuire P, et al. Natural gas hydrate deposits:A review of in situ properties[J]. The Journal of Physical Chemistry, 1983, 87 (21): 4180-4185.
    [32]宋海斌,吴能友.海洋天然气水合物的地球物理研究(Ⅰ):岩石物性[J].地球物理学进展,2001,16(002):118-126.
    [33]Miyazaki K, Masui A, Haneda H, et al. Variable-compliance-type constitutive model for methane hydrate bearing sediment[J]. 2008,
    [34]Hato M, Matsuoka T, Ikeda H, et al. Geomechanical property of gas hydrate sediment in The Nankai Trough [J]. The 6th International Conferernce on Gas Hydrates. Canada,2008,
    [35]Santamarina J, Francisca F, Yun T, et al. Mechanical, thermal, and electrical properties of hydrate-bearing sediments[C] 2004.
    [36]Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate [J]. American Mineralogist, 2004, 89 (8-9): 1221-1227.
    [37]Winters W J, Waite W F, Mason D, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56 (1): 127-135.
    [38]Kingston E, Clayton C R I, Priest J, et al. Effect of grain characteristics on the behaviour of disseminated methane hydrate bearing sediments[J].'2008,
    [39]Lee M, Hutchinson D, Collett T, et al. Seismic velocities for hydrate-bearing sediments using weighted equation[J]. Journal of Geophysical Research, 1996, 101 (B9): 20347-20,358.
    [40]业渝光,张剑,胡高伟,等.天然气水合物超声和时域反射联合探测技术[J].海洋地质与第四纪地质,2009,28(5):101-107.
    [41]王东,李栋梁,张海澜,等.天然气水合物样品声纵波特性和温压影响测量[J].中国科学:G辑,2008,38(008):1038-1045.
    [42]Durham W B, Kirby S H, Stern L A, et al. The strength and rheology of methane clathrate hydrate [J]. J. Geophys. Res, 2003, 108 (2182): 1-11.
    [43]Hyodo M, Hyde A F L, Nakata Y, et al. Triaxial Compressive Strength of Methane Hydrate. Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002.
    [44]Hyodo M, Nakata Y, Yoshimoto N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and foundations, 2005, 45 (1): 75-85.
    [45]Hyodo M, Nakata Y, Yoshimoto N, et al. Shear behaviour of methane hydrate-bearing sand[J]. Proceedings of Seventeenth, 2007, 1326-1333.
    [46]Hyodo M, Nakata Y, Yoshimoto N, et al. Bonding Strength by Methane Hydrate Formed among Sand Particles. Powders and Grains 2009, Proceedings of the 6 International Conference onMicromechanics of Granular Media. 79-82.
    [47]Masui A, Haneda H, Ogata Y, et al. Effects of Methane Hydrate Formation on Shear Strength of Synthetic Methane Hydrate Sediments[A]. Proceedings of The Fifteenth (2005) International Offshore and Polar Engineering conference [C], Seoul, Korea,June 19-24,2005.
    [48]Masui A, Haneda H, Ogata Y, et al. Mechanical Properties of Sandy Sediment Containing Marine Gas Hydrates in Deep Sea Offshore Japan, Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, 2007, 53-56.
    [49]Masui A, Miyazaki K, Haneda H, et al. Mechanical Properties of National Gas Hydrate Bearing Sediments Retrieved from Eastern Nankai Trough[A]. Offshore Technology Conference [C], Houston, Texas, U. S.A, May5-8, 2008.
    [50]Masui A, Miyazaki K, Haneda H, et al. Mechanical Characteristics of Natural and Artificial Gas Hydrate Bearing Sediments, Proceedings of the 6th International Conference on Gas Hydrates, ICGH. 2008.
    [51]Miyazaki K, Masui A, Aoki K, et al. Strain-rate dependence of triaxial compressive strength of artificial methane-hydrate-bearing sediment[J]. International Journal of Offshore and Polar Engineering, 2010, 20 (4): 256.
    [52]LU X, Wang L, WANG S, et al. Study on the Mechanical Properties of the tetrahydrofuran hydrate deposit[J]. 18th Proc. ISOPE. Vancouver:[sn], 2008, 57-60.
    [53]鲁晓兵,王丽,王淑云,et a1.四氢呋喃水合物沉积物力学性质研究[J].第十三届中国海洋(岸)工程学术讨论会论文集,2007,
    [54]张旭辉,王淑云,李清平,et a1.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074.
    [55]Song Y, Yu F, Li Y, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19 (3): 246-250.
    [56]Yu F, Song Y, Liu W, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate [J]. Journal of Petroleum Science and Engineering, 2011.
    [57]Yu F, Liu W, Song Y, et al. STUDY ON STRENGTH OF ARTIFICIAL METHANE HYDRATE-BEARING CLAY SEDIMENTS UNDER TRIAXIAL COMPRESSION[J].
    [58]Yu F, Song Y, Li Y, et al. Analysis of Stress-Strain Behavior and Constitutive Relation of. Methane Hydrate-Bearing Sediments with Various Porosity[J]. International Journal of Offshore and Polar Engineering, 2011, 21 (4): 316.
    [59]于锋.甲烷水合物及其沉积物的力学特性研究[D].大连理工大学,2011.
    [60]朱元林.冻结粉砂在常变形速度下的单轴抗压强度[J].冰川冻土,1986,8(4):365-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700