用户名: 密码: 验证码:
预防性补充维生素E和镁对糖尿病大鼠糖脂代谢的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(DM)是一组病因和发病机理尚未完全阐明的内分泌代谢性疾病,表现为糖、脂肪、蛋白质代谢紊乱和继发水、电解质失衡,进而导致一系列并发症出现的综合病征。大量研究表明糖尿病的发生发展与肥胖、体内氧化与抗氧化水平改变及低血镁密切相关。以往研究表明单纯补充维生素E(VE)或镁对糖尿病有改善作用,但有关与糖尿病高危险因素同时预防性联合补充VE和镁对糖尿病糖脂代谢,尤其是胰岛素传导通路中信号分子影响的报导到目前为止在国内外尚属空白。本研究的目的就是观察预防性与危险因素同时补充VE联合镁对高脂高糖饮食和链脲咗菌素(STZ)诱导糖尿病大鼠氧化与抗氧化水平及糖脂代谢,特别是胰岛素传导通路中信号分子的影响。
     Wistar大鼠适应性喂养1周后随机分为6组,均喂食高脂高糖饲料,其中模型对照组(C,n=15)仅喂食高脂高糖饲料、维生素E组(E,n=17)添加维生素E(VE)0.5g/kg饲料,中剂量镁组(MM,n=16)添加镁0.6g/kg饲料,高剂量镁组(HM,n=16)添加镁1.2g/kg饲料,维生素E+中剂量镁组(EMM,n=17)添加VE 0.5g/kg饲料和镁0.6g/kg饲料,维生素E+高剂量镁组(EHM,n=17)添加VE 0.5g/kg饲料和镁1.2g/kg饲料。各组大鼠喂食不同饲料4周并禁食24小时后,腹腔注射STZ诱导糖尿病模型。各组大鼠继续用不同饲料喂养4周,于宰杀前24小时禁食,水合氯醛麻醉后经腹主动脉抽取全血,分离肝脏、心脏、脾脏、胸腺和后肢骨骼肌备用。酶生化法测定肝脏丙二醛(MDA)含量和谷胱甘肽过氧化物酶(GSH-PX)及超氧化物歧化酶(SOD)活性;MTT法观察淋巴细胞增殖活性;H2O2诱导氧化溶血试验测定红细胞溶血度;全自动生化分析仪检测血浆总胆固醇(TC)、甘油三酯、高密度脂蛋白(HDL)和低密度脂蛋白(LDL)水平;血流变锥板粘度计检测低切、中切和高切血粘度;称重法计算心脏、肝脏、脾脏和胸腺指数;HE染色观察肝脏组织学改变;实时定量PCR观察骨骼肌胰岛素受体、葡萄糖转运蛋白-4(GLUT-4)mRNA的表达;免疫组织化学法检测骨骼肌胰岛素受体底物-1(IRS-1)的表达;Western blot检测腺苷酸活化蛋白激酶-α2(AMPK-α2)的蛋白表达;放射免疫法测定血清胰岛素、白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的水平;公式计算胰岛素抵抗水平。
     结果发现:预防性补充VE或/和镁可以减轻糖尿病大鼠的胰岛素抵抗状态,与C组相比,胰岛素抵抗指数在E组、MM组、EMM组、EHM组分别降低了5.52(P<0.05)、2.28、3.29、2.65。血清胰岛素水平在各处理组均较明显降低,其中以EMM组降低最为明显P<0.01。预防性补充VE或/和镁对空腹血糖的影响不大。与模型组7.79 mmol/L相比,血中TC的水平在E组、MM组,HM组,EMM组,和EHM组,TC分别降低了4.72 mmol/L(P=0.004),3.54 mmol/L(P=0.062),1.36 mmol/L(P=0.436),3.75 mmol/L(P=0.016),和3.49 mmol/L(P=0.050)。各组甘油三酯和HDL水平略有提高,但与C组相比没有统计学意义。与C组相比,VE及VE和镁联合应用的各组中,LDL水平下降明显,而单独补充镁组的LDL水平不但没有下降,反而略有上升。预防性补充VE或/和镁对低切血粘度没有影响,但可以显著降低中切和高切血粘度,与模型对照组相比,P<0.001。补充VE可以降低肝脏指数,其他没有统计学意义。HE染色发现,模型组肝脏细胞呈空泡状,胞内充满脂肪,细胞核被推到一边,几乎找不到正常的肝细胞,预防性补充或/VE和镁可以改善这种状况,VE联合镁的改善效果优于单纯补充VE或镁。预防性补充VE或联合补充VE和镁可以降低肝脏MDA含量,与C组相比,以VE补充的效果最为明显,MDA水平下降了8.98(P<0.01),其次为EMM组下降了7.84(P<0.05),和EHM组7.56(P<0.05)。单纯补充镁对肝脏MDA水平没有影响。GSH-PX的活性在HM组得到显著提高(P<0.01),其次为EHM,和EMM组(P<0.05),余两组虽有提高但与对照组相比没有统计学意义。另外,与C组相比,单独或联合补充VE和镁均可以显著提高肝脏SOD活性(all P<0.05),以EHM组提高的最为明显。单纯或联合补充VE和镁可以适当提高淋巴细胞增殖活性,但统计学意义不大。预防性补充VE或/和镁,可以显著降低DM的红细胞溶血度(all P <0.05),下降幅度在各组分别为:E,0.19(P=0.003);MM,0.22(P=0.001);HM,0.17(P=0.030);EMM,0.25(P=0.001)和EHM,0.25(P=0.001)。与模型对照组相比,E, MM, HM,EMM和EHM饮食均可显著提高胰岛素受体和GLUT-4 mRNA的表达(all P<0.05);联合补充VE和中剂量镁可以提高IRS-1的表达,提高幅度为1.30(P=0.006);与C组相比,AMPK-α2的蛋白表达水平在各处理组均有显著提高(P<0.01),其中以EMM补充效果最好(P<0.001)。补充VE或/和镁对血清IL-6和TNF-α水平的影响与对照组相比没有显著性。析因分析结果表明VE和镁在各检测指标中不存在交互作用。
     本研究结果表明,与糖尿病高危因素同时预防性补充VE或/和镁可以降低大鼠的胰岛素抵抗、TC、LDL和中高切血粘度水平,改善糖尿病大鼠的糖脂代谢,其机制与预防性补充VE或/和镁抑制大鼠脂质过氧化反应、增强抗氧化物酶活性和上调胰岛素信号传导通路中信号分子的表达有关。本研究为VE和镁将来在人群中的预防性应用奠定了一定的实验基础。
Diabetes is a group of endocrinological metabolic diseases whose etiology and pathogenesis have not yet been fully understood, expressed as glucose, lipids and protein metabolism disorders and secondary water, electrolyte imbalance, which led to a series of complications. Large number of studies show that the occurrence and development of diabetes are closely related to obesity, in vivo oxidation and antioxidant level changes and magnesium deficiency. Previous studies showed that supplement of vitamin E (VE) or magnesium had benificial effects on diabetes, but no documents reported the impacts of prophylactic supplementation of VE or/and magnesium on metabolism of glucose and lipids, especially insulin signaling pathway markers in diabetes while the high risk of diabetes happened at the same time. This study is a new finding to previous studies and the aims are to observe the effects of preventive treatment of VE or/and magnesium on glucose and lipid metabolism, the insulin signaling pathway molecules in high fat and high glucose diet and streptozotocin-induced diabetic rats.
     Wistar rats were randomly assigned to six groups, all fed with high fat and glucose diets plus either 0.5 g/kg diet vitamin E (group E), 0.6 g/kg diet magnesium (group MM), 1.2 g/kg diet magnesium (group HM), 0.5 g/kg diet vitamin E plus 0.6 g/kg diet magnesium (group EMM), 0.5 g/kg diet vitamin E plus 1.2 g/kg diet magnesium (group EHM), or no supplement (group C). Four weeks treatment of different diets and an overnight empty stomach later, all rats were injected streptozotocin to provoke diabetes mellitus. The whole trial lasted eight weeks. Malondialdehyde (MDA) level, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were detected using enzyme-biochamical methods. Lymphocytes proliferative capacity was evaluated by MTT assay. Hemolytic degree of red blood cell were detected using hemolysis test. Total plasma cholesterol (TC), triglycerides, high density lipoprotein (HDL), and low density lipoprotein (LDL) were measured by automatic biochemistry analyzer. Blood viscosity was measured using cone viscometer. Histological changes of liver was examined by hematoxylin & eosin stain. mRNA expressions of insulin receptor and glucose transporter-4 (GLUT-4) of skeletal muscle were determined using quantitive real-time PCR. Insulin receptor substrate-1 (IRS-1) was detected by immunohistological method. Protein expression of AMP-activated protein kinase-α2 (AMPK-α2) was estimate by western blot. The serum concentration of insulin, interleukin-6 (IL-6), and tumor necrosis factor-α(TNF-α) were detected by radioimmunoassay; insulin resistance index was calculated by formula.
     Compared with C group, insulin resistance index wad inhibited in E, MM, EMM, EHM group, the decrease was 5.52 (P<0.05), 2.28, 3.29, and 2.65 respectively. The insulin level decreased in all treated group, and the best effect was found in EMM group (P<0.01). No statistical difference was observed in fasting blood glucose in each treated group compared with control group. Compared with 7.79 mmol/L of TC in control group, the decrease of each treated group was 4.72 mmol/L (P=0.004); 3.54 mmol/L (P=0.062); 1.36 mmol/L (P=0.436); 3.75 mmol/L (P=0.016); 3.49 mmol/L (P=0.050) in E, MM, HM, EMM, and EHM group, respectively. Compared with C group, the differences of middle and high shear rates blood viscosity were lower in each treated groups (all P <0.001); but no significant changes were observed in low shear rate blood viscosity. Liver index in E group descended (P=0.034) while thymus index decreased in M and EM group (P=0.045, 0.035 respectively) compared with C group; no significant changes were founded in heart and spleen index. For histological changes of liver, hepatocytes were tumescent and filled with fat vacuole of inequality of size. The cell nuclei was pulled to the side by fat vacuole, and fatty infiltration was seen in the liver as a whole in control group. Prophylactic treatment of VE and magnesium could improve this status and the helpful effect in combined use of VE and magnesium was better than VE or magnesium supplementation alone. Prophylactic supplementation of VE or VE combined magnesium could attenuate the MDA level in liver, the decrease in E, EMM, and EHM group was 8.98 (P<0.01), 7.84 (P<0.05), and 7.56 (P<0.05) respectively. No benifical effect on MDA was observed in respective supplementation of magnesium alone. The activity of GSH-PX elevated in HM, EMM, and EHM group (P<0.05). SOD activity elevated in each treated group(all P<0.05). No statistical difference was observed on lymphocyte proliferation capacity between control group and each treated group. Preventive supplementation of VE or/and magnesium attenuated hemolytic degree of red blood cell greatly (all P <0.05), the decrease in each group was:E, 0.19 (P=0.003); MM, 0.22 (P=0.001); HM, 0.17 (P=0.030); EMM, 0.25 (P=0.001); and EHM, 0.25 (P=0.001), respectively. The mRNA expression of insulin receptor and GLUT-4 in E, MM, HM, EMM and EHM diet increased (all P<0.05). IRS-1 elevated 1.30 in EMM group (P=0.006), although elevation were observed in other treated groups, but no significant differences were observed compared with control group. Protein expression of AMPK-α2 increased in all treated group (P<0.01), and the best effect was supposed in EMM group (P<0.001). No significant difference were found in serum level of IL-6 and TNF-αin five treated group compared with control group. Statistical analysis showed there was no interaction between VE and magnesium.
     In conclusion, the present study, at the first time, suggests that a preventive supplementation of VE or/and magnesium are beneficial to improve pathologic status of inslin resistance and lipid metabolism, the mechanism may be related to the inhibition of lipid peroxidation, increase of antioxidative level and up-regulation of insulin signaling pathway markers. The best effects were found in EMM group. This study provides a experimental basis for the preventive application of VE combined magnesium in crowd in the future.
引文
1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
    2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PloS Med 2006; 3: e442.
    3. Roglic G, Unwin N, Bennett PH, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 2005; 28: 2130-2135.
    4. Virkam?ki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999; 103: 931-943.
    5. LeRoith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001 24: 588-597.
    6. Thirone AC, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 2006; 17: 72-78.
    7. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85-96.
    8. Cai D, Dhe-Paganon S, Melendez PA, et al. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 2003; 278: 25323-25330.
    9. Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91: 1073-1083.
    10. Kirwan JP, Del Aguila LF. Insulin signalling, exercise and cellular integrity. Biochem Soc Trans 2003; 31: 1281-1285.
    11. Bellacosa A, Testa JR, Staal SP, et al. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254:274-277.
    12. Dugani CB, Klip A. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep 2005; 6: 1137-1142.
    13. Hardie DG, Scott JW, Pan DA, et al. Management of cellular energy by the AMP-actived protein kinase system. FEBS Lett 2003; 546: 113-120.
    14. Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase c-subunit isoforms and their role in AMP binding. Biochem J 2000; 346: 659-669.
    15. Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J Bio Chem 1996; 271: 27879-27887.
    16. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles intype 2 diabetes. Am J Physiol. 1999; 277: E1-10
    17. Henin N, Vincent MF, Gruber HE, et al. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 1995; 9: 541-546.
    18. Atkinson LL, Kozak R, Kelly SE, et al. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin resistant rats. Am J Physiol Endocrinol Metab 2003; 284: E923-E930.
    19. Fryer LG, Foufelle F, Barnes K, et al. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem J 2002; 363: 167-174.
    20. Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5’-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47: 1369-1373.
    21. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 1996; 270: E299- E304.
    22. Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 2005; 280: 25250-25257.
    23. Shimizu H, Ohtani K, Kato Y et al. Interleukin-6 increases insulin secretion and preproinsulin mRNA expression via Ca2+-dependent mechanism. J Endocrinol 2000; 166: 121-126.
    24. Park H, Ahn Y, Park CK, et al. Interleukin-6 protects MIN6 beta cells from cytokine-induced apoptosis. Ann NY Acad Sci 2003; 1005: 242-249.
    25. Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005; 54 Suppl 2: S114-124.
    26. Mohamed-Ali V, Goodrick S, Bulmer K, Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol 1999; 277: E971-975.
    27. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91.
    28. Zhang HH, Halbleib M, Ahmad F et al.Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002; 51: 2929-2935.
    29. Mandrup-Poulsen T. Beta-cell apoptosis: stimuli and signaling. Diabetes 2001; 50(Suppl 1): S58-S63.
    30. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996; 271: 665-668.
    31. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333-1346.
    32. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.
    33. Freidenberg GR, Reichart D, Olefsky JM, et al. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988; 82: 1398-1406.
    34. Bak JF, Moller N, Schmitz O, et al. In vivo insulin action and muscle glycogen synthase activity in type 2 (non-insulin-dependent) diabetes mellitus: Effects of diet treatment. Diabetologia 1992; 35: 777-784.
    35. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119 (Suppl. 1): S10-S16.
    36. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and p ro-apoptotic effects on human pancreatic islets: evidence that bate-call death is caspase mediated, partially dependent on ceramede pathway, and Bcl-2 regulated. Diabetes 2002; 51: 1437-1442.
    37. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008; 118: 2992-3002.
    38. Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Che 1997; 272: 971-976.
    39. Gasic S, Tian B, Green A. Tumor necrosis factor alpha stimulates lipolysis in adipocytes by decreasing Gi protein concentrations. J Biol Chem 1999; 274: 6770-6775.
    40. Rydén M, Arvidsson E, Blomqvist L, et al. Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 2004; 318: 168-175.
    41. Ryden M, Dicker A, van Harmelen V, et al. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J Biol Chem 2002; 277: 1085-1091.
    42. Fasshauer M, Klein J, Lossner U, et al. Suppression of aquaporin adipose gene expression by isoproterenol, TNFalpha, and dexamethasone. Horm Metab Res 2003; 35: 222-227.
    43. Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 2000; 32: 548-554.
    44. Bastard JP, Maachi M, Van Nhieu, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab 2002; 87: 2084-2089.
    45. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003; 278: 45777-45784.
    46. Senn JJ, Klover PJ, Nowak IA, et al. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002; 51: 3391-3399.
    47. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretionand induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311: 372-379.
    48. Stouthard JML, Oude Elferink RPJ, Sauerwein HP. Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes. Biochem Biophys Res Commun 1996; 220: 241-245.
    49. Kim HJ, Higashimori T, Park SY, et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 2004; 53: 1060-1067.
    50. Senn JJ, Klover PJ, Nowak IA,et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003; 278: 13740-13746.
    51. Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 2004; 63: 263-267.
    52. Fridlyand LE, Philipson LH. Reactive species and earlymanifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 2006; 8: 136 - 145.
    53. Asnat BD, Nava B. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 2005; 7 : 1553 - 1567.
    54. Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways:A unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23: 599-622.
    55. Houstis N, Rose ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440: 944-948.
    56. Carlsson C, Borg LA, Welsh N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 1999; 140: 3422-3428.
    57. Paolisso G, Giugliano D. Oxidative stress and insulin action: Is there a relationship? Diabetologia 1996; 39: 357-363.
    58. Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance andβ-cell dysfunction? Diabetes 2003; 52: 1-8.
    59. Birnbaum MJ. Turning down insulin signaling. J Clin Invest 2001; 108: 655-659.
    60. Goldstein BJ, Mahcdev K, Wu XD, et al. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 2005; 7: 1021 - 1030.
    61. Bj?rnholm M, Kawano Y, Lehtihet M, et al. Insulin receptor substrate-1 phosphorylation and hosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 1997; 46: 524-527.
    62. Carvalho E, Jansson PA, Axelsen M, et al. Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J 1999; 13: 2173-2178.
    63. Krook A, Bj?rnholm M, Galuska D, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 2000; 49: 284-292.
    64. Sesti G, Federici M, Hribal ML, et al. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 2001; 15: 2099-2111.
    65. Sigal RJ, Doria A, Warram JH, et al. Codon 972 polymorphism in the insulinreceptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996; 81: 1657-1659.
    66. McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1(IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 2005; 280: 6441-6446.
    67. Almind K, Inoue G, Pedersen O, et al. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 1996; 97: 2569-2575.
    68. Hribal ML, Federici M, Porzio O, et al. The Gly/Arg972 amino acid polymorphism in insulin receptor substrate-1 affects glucose metabolism in skeletal muscle cells. J Clin Endocrinol Metab 2000; 85: 2004-2013.
    69. Porzio O, Federici M, Hribal ML, et al. The Gly972/Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells. J Clin Invest 1999; 104: 357-364.
    70. Yamauchi T, Tobe K, Tamemoto H, et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol 1996; 16: 3074-3084.
    71. Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391: 900-904.
    72. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87: 99-109.
    73. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 2003; 300: 1140-1142.
    74. Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664-671.
    75. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100: 8466-8471.
    76. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127: 1109-1122.
    77. Mensink M, Hesselink MK, Russell AP, et al. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obesepatients with type 2 diabetes mellitus. Int J Obes (Lond). 2007; 31: 1302-1310.
    78. Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress mediated apoptosis in pancreatic beta-cells.Apoptosis 2002;7: 335-345.
    79. Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmicreticulum stress in insulin resistance and diabetes. J Biol Chem 2005; 280: 847-851.
    80. Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endop lasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Bio chem Cell Biol 2006; 38: 782 - 793.
    81. Ozcan U, Cao Q, Yilmaz E, et al. Endop lasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 4574 - 4561.
    82. Muoio DM, Newgard CB. Biomedicine. Insulin resistance takes a trip through the ER. Science 2004; 306: 425 - 426.
    83. Lopez Martinez J, Sanchez Castilla M, Garcia de Lorenzo yMateos A, et al. Magnesium. Metabolism and requirements. Nutr Hosp 1997; 12: 4-10.
    84. Baron AD. The coupling of glucose metabolism and perfusion in human skeletal muscle. The potential role of endothelium-derived nitric oxide. Diabetes 1996; 45( suppl l): S105-109.
    85. Nadler JL, Rude RK. Disorders of magnesium metabolism. Endocrinol Metab Clin North Am 1995;
    24: 623-641.
    86. Takaya J, Higashino H, Kobayashi Y. Intracellular magnesium and insulin resistance. Magnes Res 2004; 17: 126-136.
    87. Paolisso G, Scheen A, D’Onofrio F, et al. Magnesium and glucose homeostasis. Diabetologia 1990; 33: 511-514.
    88. Resnick LM. Ionic basis of hypertension, insulin resistance, vascular disease, and related disorders. The mechanism of syndrome X. Am J Hypertens 1993; 6: S123-S134.
    89. Rodr?′guez-Mora′n M, Guerrero-Romero F. Elevated serum concentration of tumor necrosis factor-alpha is linked to low serum magnesiumlevels in the obesity-related inflammatory response. Magnes Res 2004; 17: 189-196.
    90. Nadler JL, Buchanan T, Natarajan R, et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension, 1993; 21: 1024-1029.
    91. Grill V, Bjorklund A. Overstimulation and B-cell function. Diabetes 2001; 50(Suppp l. 1): S122-124.
    92. Donath MY, Gross DJ, Cerasi E, et al. Hyperglycem ia-induced B-cell apoptosis in pancreatic islets of P sammomus Obesus during development of diabetes. Diabetes 1999; 48: 738-744.
    93. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307: 384-387.
    94. McCullough KD, Martindale JL, KlotzL O, et al.Gadd153 sensitizes cells to endoplasmic reticulumstress by down regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21: 1249-1259.
    95. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expand polyglutamine repeats. Genens Dev 2002; 16:1345-1355.
    96. NakagawaT, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000; 150: 887-894.
    97. Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276: 33869-33874.
    98. Donath MY, Ehses JA, Maedler K, et al. Mechanisms ofβ-cell death in type 2 diabetes. Diabetes 2005; 54 ( Supp l2): S108-S113.
    99. Fardoun RZ. The use of vitamin E in type 2 diabetesmellitus. Clin Exp Hypertens 2007; 29 : 135-148.
    100. Robertson RP. Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr Opin Pharmacol 2006; 6: 615-619.
    101. Cerillo A, Giugliano D, Quataro A, et al.Vitamin E reduction of protein glycosylation in diabetes. Diabetes Care 1991; 14: 68-72.
    102. Andrew R, Skyrme-Jones P, O’Brien RC, et al.Vitamin E supplementation improves endothelial function in type 1 diabetes mellitus. A randomized, placebo-controlled study. J Am CollCardiol 2000; 36: 94-102.
    103. Salonen JT, Nyyssonen K, Tuomainen T-P, et al. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow-up study in men. Br J Med 1995; 311: 1124-1127.
    104. Ihara Y, Toyokuni S, Uchida K, et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 1999; 48: 927-932.
    105. Ihara Y, Yamada Y, Toyokuni S, et al. Antiooxidant alpha-tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes. FEBS Lett 2000; 473: 24-26.
    106. Laight DW, Desai KM, Gopaul NK, et al. Pro-oxidant challenge in vivo provokes the onset of NIDDM in the insulin resistant obese Zucker rat. Br J Pharmacol 1999; 128: 269-271.
    107. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci 2002; 9: 475-487.
    108. Packer L, Witt EH, Tritschler HJ. Alpha lipoic acid as a biological antioxidant. Free Radic Biol Med 1995; 19: 227-250.
    109. Sen CK, Roy S, Packer L. Alpha-lipoic acid: cell regulatory function and potential therapeutic implications. In Packer L, Hiramatsu M, Yoshikawa T (eds): "Antioxidant Food Supplements inHuman Health." New York: Academic, 1999; pp 111-119.
    110. Jacob S, Ruus P, Hermann R, et al. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Radical Biol & Med 1999; 27: 309-314.
    111. Zeigler D, Reljanovid M, Mehnert H, et al. Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp Clin Endocrin Diabet 1999; 107: 421-430.
    112. Chen MS, Hutchinson ML, Pecoraro RE, et al. Hyperglycemic-induced intracellular depletion of ascorbic acid content in adults with insulin-dependent diabetes mellitus consuming adequate dietary vitamin C. Metabolism 1991; 40 : 146-149.
    113. Dyer RG, Stewart MW, Metcheson J, et al. Ketocholesterol, a specific indicator of lipoprotein oxidation and malondialdehyde in non-insulin dependent diabetes and peripheral vascular diasease. Clin Chim Acta 1997; 260: 1-13.
    114. Sargeant LA, Wareham NJ, Bingham Luben RN, et al. Vitamin C and hyperglycemia in the European prospective investigation into cancer- Norfolk (EPIC-Norfolk) study. Diabetes Care 2000; 23: 726-732.
    115. Afkhami-Ardekani M, Vahidi AR, Borjian L, et al. Effect of vitamin C supplement on glycosylated hemoglobin in patients with type 2 diabetes. J Shah Sad Univ 2003; 10: 15-18.
    116. Simom JA. Vitamin C and cardiovascular disease: a review. J Am Coll Nutr 1992; 11: 107-125.
    117. Afkhami-Ardekani M, Shojaoddiny-Ardekani A. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J Med Res 2007; 126: 471-474.
    118. Owu DU, Antai AB, Udofia KH, et al. Vitamin C improves basal metabolic rate and lipid profile in alloxan-induced diabetes mellitus in rats. J Biosci 2006; 31: 575-579.
    119. Trachtman H, Futterweit S, Maneska J, et al. Taurine ameliorates chronic streptozocin-induced diabetes nephropathy in rats. Am J Physiol 1995; 269: F429-38.
    120. Salonen JT, Nyyssonen K, Tuomainen T-P, et al. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow-up study in men. Br J Med 1995; 311: 1124-1127.
    121. de Valk HW. Magnesium in diabetes mellitus. Neth J Med 1999; 54: 139-146.
    122. Song Y, Manson JE, Buring JE, et al. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 2004; 27: 59-65.
    123. Saris NE, Mervaala E, Karppanen H, et al. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26.
    124. Anderson RA. Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr1997; 16: 404-410.
    125. Cefalu WT, Wang ZQ, Zhang XH, et al. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JRC-LA corpulent) rats. J Nutr 2002; 132: 1107-1114.
    126. Davis CM, Sumrall KH, Vincent JB. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry 1996; 35: 12963-12969.
    127. Cefalu WT, Bell-Farrou AD, Stigner J, et al. Effect of chromium picolinate on insulin sensitivity in vivo. J Trace Elem Exptl Med 1999; 12: 71-84.
    128. Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables of people with type II diabetes. Diabetes 1997; 46: 1786-1791.
    129. Ravina A, Slezak L, Rubal A, et al. Clinical use of the trace element chromium (III) in the treatment of diabetes mellitus. J Trace Elem Exp Med 1995; 8: 183-190.
    130. Thomas V, Gropper S. Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors. Biol Trace Elem Res 1996; 55: 297-305.
    131. Stearns DM. Is chromium a trace essential element? BioFactors 2000; 11: 149-162.
    132. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87: 507-520.
    133. H?ieggen A, Fossum E, Moan A, et al. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens 1998; 16: 203-210.
    134. Caimi G, Sinagra D, Scarpitta AM, et al. Plasma viscosity and insulin resistance in metabolic syndrome. Int J Obes Relat Metab Disord 2001; 25: 1856-1857.
    135. Tamariz LJ, Young JH, Pankow JS, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 2008; 168: 1153-1160.
    136. Laight DW, Desai KM, Gopaul NK, et al. Pro-oxidant challenge in vivo provokes the onset of NIDDM in the insulin resistant obese Zucker rat. Br J Pharmacol 1999; 128: 269-271.
    137. Tabatabaei SR, Papahn AA, Jalali MR, et al. The effects of oral vitamin E on induction and consequence of experimental diabetes mellitus in rats. Pak J Biol Sci 2008; 11: 633-637.
    138. Cinar MG, Ulker S, Alper G, et al. Effect of dietary vitamin E supplementation on vascular reactivity of thoracic aorta in streptozotocin-diabetic rats. Pharmacology 2001; 62: 56-64.
    139. Saris NE, Mervaala E, Karppanen H, et al. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26.
    140. Ma J, Folsom AR, Melnick SL, et al. Association of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. J ClinEpidemiol 1995; 48: 927-940.
    141. Rosolova H, Mayer O, Reaven GM. Insulin-mediated glucose disposal is decreased in normal subjects with relatively low plasma magnesium concentrations. Metabolism 2000; 49: 418-420.
    142. White JR Jr, Campbell RK. Magnesium and diabetes. Ann Pharmacother 1993; 27: 775-780.
    143. Mather HM, Nisbet JA, Burton GH, et al. Hypomagnesaemia in diabetes. Clin Chim Acta 1979; 95: 235-242.
    144. Sjogren A, Floren CH, Nilsson A. Magnesium, potassium and zinc deficiency in subjects with type II diabetes mellitus. Acta Med Scand 1988; 224: 461-466.
    145. de Valk HW. Magnesium in diabetes mellitus. Neth J Med 1999; 54: 139-146.
    146. Paolisso G, Sgambato S, Gambardella A, et al. Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 1992; 55: 1161-1167.
    147. Corica F, Allegra A, Di Benedetto A, et al. Effects of oral magnesium supplementation on plasma lipid concentrations in patients with non-insulin-dependent diabetes mellitus. Magnes Res 1994; 7: 43-47.
    148. Pryor PR, Liu SC, Clark AE, et al. Chronic insulin effects on insulin signalling and GLUT4 endocytosis are reversed by metformin. Biochem J 2000; 348: 83-91.
    149. Ricort JM, Tanti JF, Van Obberghen E, et al. Alterations in insulin signalling pathway induced by prolonged insulin treatment of 3T3-L1 adipocytes. Diabetologia 1995; 38: 1148-1156.
    150. Singh U, Otvos J, Dasgupta A, et al. High-dose alpha-tocopherol therapy does not affect HDL subfractions in patients with coronary artery disease on statin therapy. Clin Chem 2007; 53: 525-528.
    151. Manuel y Keenoy B, Shen H, Engelen W, et al. Long-term pharmacologic doses of vitamin E only moderately affect the erythrocytes of patients with type 1 diabetes mellitus. J Nutr 2001; 131: 1723-1730.
    152. Koyama K, Chen G, Lee Y, et al. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol 1997; 273: E708-713.
    153. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 2007; 458: 40-47.
    154. Rodriguez-Moran M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects. A randomized, double-blind controlled trial. Diabetes Care 2003; 26: 1147-1152.
    155. Faure P, Rossini E, Lafond JL, et al. Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. J Nutr 1997; 127: 103-107.
    156. Cheung PCF, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase c-subunit isoforms and their role in AMP binding. Biochem J 2000; 346: 659-669.
    157. Li J, Hu X, Selvakumar P, et al. Role of the nitric oxide pathway in AMPK-mediated glucose uptakeand GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 2004; 287: E834-841.
    158. He K, Liu K, Daviglus ML, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 2006; 113: 1675-1682.
    159. 2型糖尿病患者血维生素C、维生素E及R一胡萝卜素水平探讨张广吾张爱珍周君富中国全科医学杂志2000;3:130-131。
    160. Fernandes MA, Geraldes CF, Oliveira CR, et al. Chromate - induced human haemoglobin oxidation andperoxidation:influence of vitamin E, vitamin C, salicylate, deferoxamine, and N - ethylmaleimide. Toxicol Lett. 2000; 114:237-243.
    161. Hiroko Sasaki, Hirohiko Akamatsu, Takeshi Horio. Protective Role of Copper, Zinc Superoxide Dismutase Against UVB-Induced Injury of the Human Keratinocyte Cell Line HaCaT. J Invest Dermatol 2000; 114: 502-507.
    162. G?kkusu C, Palanduz S, Ademo?lu E, et al. Oxidant and antioxidant systems in niddm patients: influence of vitamin E supplementation. Endocr Res 2001; 27: 377-386.
    163. Kinalski M, Sledziewski A, Telejko B, et al. Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes. Acta Diabetol. 2000; 37: 179-183.
    164. Lapolla A, Piarulli F, Sartore G, et al. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care 2007; 30: 670-676.
    165. Martín-Gallán P, Carrascosa A, Gussinye M, et al. Estimation of lipoperoxidative damage and antioxidant status in diabetic children: relationship with individual antioxidants. Free Radic Res 2005; 39: 933-942.
    166. Hong JH, Kim MJ, Park MR, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta 2004; 340: 107-115.
    167. Fernandes MA, Geraldes CF, Oliveira CR, et al. Chromate - induced human haemoglobin oxidation andperoxidation:influence of vitamin E, vitamin C, salicylate, deferoxamine, and N - ethylmaleimide. Toxicol Lett. 2000; 114:237-243.
    168. Hans CP, Chaudhary DP, Bansal DD. Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnes Res 2003; 16: 13-19.
    169. Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 1989; 264: 21340-21345.
    170. Koya D, Haneda M, Kikkawa R, et al. d-alpha-tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase C-diacylglycerol pathway. Biofactors. 1998; 7: 69-76.
    171. Wigg SJ, Tare M, Forbes J, et al. Early vitamin E supplementation attenuates diabetes-associatedvascular dysfunction and the rise in protein kinase C-beta in mesenteric artery and ameliorates wall stiffness in femoral artery of Wistar rats. Diabetologia. 2004; 47: 1038-1046.
    172. Kimura Y, Murase M, Nagata Y. Change in glucose homeostasis in rats by long-term magnesium-deficient diet. J Nutr Sci Vitaminol (Tokyo) 1996; 42: 407-422.
    173. Balon TW, Gu JL, Tokuyama Y, et al. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am J Physiol 1995; 269: E745-752.
    174. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85-96.
    175. Russell RR 3rd, Bergeron R, Shulman GI, et al. Translocation of myocardial Glut-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 1999; 277: H643-649.
    176. Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle Glut-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91: 1073-1083.
    177. Tzatsos A, Tsichlis PN. Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 2007; 282: 18069-18082.
    178. Paz K, Liu YF, Shorer H, et al. Phosphorylation of insulin receptor substrate-1 (insulin receptorS-1) by protein kinase B positively regulates insulin receptor-1 function. J Biol Chem 1999; 274: 28816-28822.
    179. Furnsinn C, Neschen S, Wagner O, et al. Acute and chronic exposure to tumor necrosis factor- fails to affect insulin-stimulated glucose metabolism of isolated rat soleus muscle. Endocrinology 1997; 138: 2674-2679.
    180. Del Prato S, Leonetti F, Simonson DC, et al. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 1994; 37: 1025-1035.
    181. Maegawa H, Shigeta T, Egawa K, et al. Impaired autophosphorylation of insulin receptors from abdominal skeletal muscle in nonobese subjects with NIDDM. Diabetes 1991; 40: 815-819.
    182. Suáres A, Pulido N, Casla A, et al. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 1995; 38: 1262-1270.
    183. Than TH, Swethadri GK, Wong J, et al. Expression of Galectin-3 and Galectin-7 in thyroid malignancy as potential diagnostic indicators. Singapore Med J 2008; 49: 333-338.
    184. Del Prato S, Leonetti F, Simonson DC, et al. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 1994; 37: 1025-1035.
    185. Henry RR, Ciaraldi TP, Mudaliar S, et al. Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells: influence of high glucose and insulin levels. Diabetes 1996; 45: 400-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700