用户名: 密码: 验证码:
神经内分泌因子及代谢产物对体外培养犊牛肝细胞PEPCK、SCD及脂肪细胞HSL基因表达的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以围产期能量代谢障碍为病理学基础的酮病和脂肪肝是奶牛重要的群发性常见多发病。研究表明,酮病、脂肪肝是奶牛能量负平衡的结果,脂肪动员、肝脂沉积、低糖血症和酮体生成增多是奶牛酮病和脂肪肝的主要环节。
     围产期奶牛能量代谢特点是干物质摄入减少及能量负平衡,糖异生是反刍兽生糖的主要途径,磷酸烯醇式丙酮酸羧激酶(PEPCK)是糖异生途径的主要关键酶,通过上调PEPCK基因的表达量可直接影响肝脏糖异生的能力,从而缓解低血糖。
     脂肪动员是缓解能量负平衡的唯一途径。一方面弥补糖异生作用降低所引起的能量亏欠;另一方面释放大量游离脂肪酸(NEFA)进入血液及肝脏,可引发脂肪肝和酮病。而脂肪动员是由甘油三酯脂肪酶(又称激素敏感脂肪酶HSL)催化完成的。HSL的表达量直接体现脂肪动员的程度,所以调控脂肪动员是防治脂肪肝、酮病等围产期能量代谢障碍性疾病的重要措施。
     肝脂沉积也是脂肪肝、酮病发病根源之一。在肝脂沉积过程中,硬脂酰CoA去饱和酶(SCD)是单不饱和脂肪酸(MUFA)生物合成的限速酶,SCD可促进甘油三酯(TG)合成底物的形成,从而促进TG的合成。所以调控SCD酶的表达能直接调控脂肪的合成。
     而神经内分泌因子和代谢产物是调节糖代谢、脂肪代谢,缓解酮病和脂肪肝的主要途径。因此本研究将通过体外(肝细胞和脂肪细胞培养)途径,运用分子生物学技术(定量RT-PCR、荧光定量PCR法),重点研究部分神经内分泌因子及代谢中间产物对奶牛糖异生关键酶(PEPCK)、甘油三酯合成关键酶(SCD)基因表达和脂肪动员关键酶(HSL)的活性及基因表达的分子调控机制。阐明神经内分泌因子及代谢中间产物在奶牛酮病、甘油三酯合成、脂肪动员中的调控作用,为从基因水平和蛋白质水平揭示奶牛酮病、脂肪肝发病机制奠定分子生物学基础和理论依据。
     实验选取临床检查健康的新生荷斯坦犊牛,按照本实验建立的犊牛肝细胞原代单层培养方法进行培养,观察其生长形态,肝细胞培养至48h完全贴壁,为加样的最佳时机。
     以β-actin为内参,以相同的cDNA为模板,优化了RT-PCR反映条件,成功地对目的基因(PEPCK、β-actin)进行了克隆扩增、克隆、鉴定及测序,测序结果与GeneBank报道一致。在肝细胞培养到48h时,分别在培养液中添加0、1、10、100和1000nmol/mL胰岛素(INS),0、1、10、100和500pg/mL胰高血糖素(GN),0、5、10、15、20、30、40、50、60、100和150ng/mL胰岛素样生长因子-Ⅰ(IGF-Ⅰ),每浓度梯度设三个重复。通过RT-PCR法检测INS、GN和IGF-Ⅰ对糖异生关键酶PEPCKmRNA表达的影响。
     采用SYBR greenⅠ染料法建立了适时荧光定量PCR的优化反应条件,成功地对目的基因(β-actin、SCD)进行了扩增,两基因的扩增效率相同。在肝细胞培养到48h时,分别在培养液中添加0、5、10、20、50IU/mL的INS,0、50、100、500、1000pg/mL的GN,0、50、100、500、1000pg/mL神经肽Y(NPY),每浓度梯度设三个重复,以β-actin为内参基因,用荧光PCR方法检测肝细胞SCDmRNA的表达。
     通过犊牛前脂肪细胞原代单层培养(整个培养期为14d),培养至第8、12d,用油红0工作液和台盼蓝工作液对脂肪细胞分别进行染色,观察其生长形态;第14d,脂肪细胞分化成大的单脂滴的脂肪细胞。此时,在生长良好的脂肪细胞培养介质中分别添加0、10、20、30、40、50μg/L的IGF-Ⅰ,0、100、250、500、750、1000nmol/L的胰高血糖素样肽Ⅰ(GLP-Ⅰ),0、10、20、40、80、160mg/L的地塞米松、0、0.5、1.0、1.5、2.0、2.5mmol/L的油酸,0、10、20、30、40、50mg/L的乳酸(每浓度梯度设三个重复),再分别进行培养24h后提取细胞总RNA,通过荧光定量PER扩增,观察IGF-Ⅰ、GLP-Ⅰ、地塞米松、油酸及乳酸处理的脂肪细胞HSLmRNA丰度的变化。提取处理的脂肪细胞总蛋白,测定所提细胞总蛋白浓度,用脂肪酶测定试剂盒测定处理脂肪细胞HSL活性的变化。
     结果显示:
     1.INS和IGF-Ⅰ能显著下调体外培养犊牛肝细胞PEPCK基因表达,并呈现剂量依赖性,但INS浓度在1~10和100~1000nmol/mL时抑制效应趋缓;IGF-Ⅰ浓度在10~15ng/mL时抑制效果稍趋平缓外,其抑制作用有明显剂量依赖性,IGF-Ⅰ>100ng/mL后几乎检测不到PEPCK。GN能促进犊牛肝细胞PEPCK基因mRNA的表达,具有浓度依耐性,各浓度组间差异极显著,在10~100pg/mL时促进效果最明显,浓度≥100pg/mL上调效应趋于饱和。因此,INS和IGF-Ⅰ通过减弱而GN通过促进肝PEPCKmRNA表达来调节肝糖异生。
     2.INS浓度≥5IU/mL、NPY浓度≥50pg/mL对体外培养的犊牛肝细胞SCDmRNA表达有明显促进肝脏,且呈剂量依赖促进效应。GN浓度≥50pg/mL明显抑制肝脏SCDmRNA表达,且呈剂量依赖抑制效应。由此表明,INS和NPY可通过促进SCDmRNA表达,促进肝脂沉积:而GN可通过抑制SCDmRNA表达,减少肝脂沉积。
     3.IGF-Ⅰ、GLP-Ⅰ、油酸、乳酸对体外培养脂肪细胞HSLmRNA表达及酶活性均呈现明显抑制作用,并存在剂量依赖性。IGF-Ⅰ浓度≥20μg/L对HSLmRNA的表达抑制作用显著,浓度≥30μg/L对酶活性抑制作用显著;GLP-Ⅰ浓度≥100nmol/L对HSLmRNA表达及酶活性抑制作用显著:油酸浓度≥1.0mmol/L显著抑制HSLmRNA表达,浓度≥0.5mmol/L极显著抑制HSL活性;乳酸浓度≥20mg/L显著抑制HSLmRNA表达,浓度≥40mg/L显著抑制HSL活性。地塞米松浓度≥20mg/L显著促进HSLmRNA表达,浓度≥10mg/L显著促进HSL活性。表明IGF-Ⅰ、GLP-Ⅰ、乳酸、油酸、地塞米松可通过影响奶牛脂肪细胞内HSLmRNA表达和酶活性影响脂肪代谢,除地塞米松可促进脂肪分解外,GF-Ⅰ、GLP-Ⅰ、乳酸、油酸均抑制脂肪分解,促进脂肪的沉积。
The ketosis and adiposis hepatica, which based on the pathobiology agent of perinatal stage energy metabolism disturbance are significant cow frequently encountered diseases. Research indicates that ketosis and adiposis hepatica are caused by negative balance of energy and fat mobilization, hepar lipidosis, hypoglycemia. ketoplasia are the main element.
     The energy metabolism feature of cow in perinatal stage is decrease in dry matter englobement and negative balance of energy, glyconeogenesis is the main path of produceing glucose in ruminant, PEPCK is the key enzyme of glyconeogenesis, glyconeogenesis and hypoglycemia can be effected through promoting PEPCK gene expression.
     Fat mobilization is the only path to relievenegative balance of energy,which can retrieve negative balance of energy as well as produce massive free fatty acid to initiate ketosis and adiposis hepatica. Fat mobilization is catalysised by HSL. So the expression of HSL personalizes mobilization level directly and controlling fat mobilization is significant measure to prevent and cure perinatal stage energy metabolism disturbance.
     Hepar lipidosis is another invasion origin of ketosis and adiposis hepatica.SCD is rate-limiting enzyme of MUFA production, which can promote triglyceride synthesis. So. fat synthesis can be controlled by controlling SCD expression.
     Neuroendocrine agent and metabolic are main path to control glycometabolism, fat metabolism and relieve ketosis and adiposis hepatica. The purpose of this research is to investigate molecule control mechanism of PEPCK,SCD,HSL expression and HSL activity, illuminate regulation of neuroendocrine agent and metabolic in the course of ketosis. triglyceride production and fat mobilization, establish molecular biological theory fundament for revealling pathogenesy in the genic and proteinaceous level.
     Health newborn calves were selected for primary monolayer hepatocytes culture in vitro, which was the best time for spotting while adherent cells emerged after 48h.
     Target genes(β-actin,PEPCK) were amplificated, cloned, identified and sequenced successfully by applying the reference ofβ-actin, the template of same cDNA. optimized reflect condion of RT-PCR. The results were at equal with Genebank's. INS of 0, 1, 10, 100, 1000nmol/mL and GN of 0, 1, 10, 100, 500pg/mL and IGF-I of 0, 5. 10, 15, 20, 30. 40, 50, 60, 100, 150ng/mL (three array in each gradient) were added to culture fluid.The effect of INS, GN, IGF-Ⅰon expression of PEPCKmRNA were detected by RT-PCR method.
     Target genes(P-actin,SCD) were successfully amplificated through SYBR greenⅠreal-time quantitative PCR and coined. INS of 0, 5, 10, 20, 50IU/mL and GN of 0, 50, 100, 500, 1000pg/mL, and NPY of 0, 50, 100, 500, 1000pg/mL(three array in each gradient) were added to culture fluid. Then the expression of SCD mRNA was detected applying the reference ofβ-actin and fluorescent PCR methods to detect the expression of SCD mRNA.
     Primary monolayer preadipocyte was cultured for 14d. Observe cells at 8d and 12d after staining with oil red O and trypan blue solution. IGF-1 of 0, 10. 20, 30, 40, 50ug/L. GLP-Ⅰof 0, 100, 250, 500, 750, 1000nmol/L, dexameth of 0, 10, 20, 40, 80,160mg/L, oleic acid of 0, 0.5, 1.0, 1.5, 2.0, 2.5mmol/L, and lactic acid of 0, 10, 20. 30, 40, 50mg/L were added to culture fluid after simple lipids emerged at 14d, then isolated total RNA after 24h. The expression of HSL mRNA was detected by fluorescent quantitation PCR in adipocyte handled with IGF-Ⅰ,GLP-Ⅰ, dexameth. oleic acid and lactic acid. Then total protein was isolated and detected. HSL activity was detected using lipase kit.
     The results were as follows:
     1. The PEPCK mRNA expression was notably inhibited by INS and IGF-Ⅰ. and the effect was dose dependent. While the concentration of INS was between 1 and 10nmol/mL or between 100 and 1000nmol/mL.the suppression was gently. The suppression of IGF-Ⅰwas dose dependent. While the concentration of IGF-Ⅰwas between 10 and 15ng/mL, the suppression was gently, and while the concentration was more than 100ng/mL, there was nearly no PEPCK. The PEPCK mRNA expression dose-dependently increased by GN. Liver gluconeogenesis ability was adjusted by INS and IGF-Ⅰthrough inhititing PEPCK mRNA expression and adjusted by GN through increasing PEPCK mRNA expression.
     2. The expression of SCD mRNA was notably promoted in hepatocytes while the concentration of INS and NPY was more than 5IU/mL and 50pg/mL respectively. This expression was dose dependent. The expression was notably suppressed while the concentration of GN was more than 50pg/mL. This suppression was dose dependent. INS and NPY promoted SCD mRNA expression and liver fat storing. GN inhibited SCDmRNA express and liver fat storing.
     3. The expression of HSL mRNA and the activity of HSL were suppressed in adipose cell, treated with IGF-Ⅰ, GLP-Ⅰ, oleic acid and lactic acid. This effecion was dose dependent. While the concentration of IGF-Ⅰ, GLP-Ⅰ, oleic acid, lactic acid was more than 20ng/L,1.0mmol/L and 20mg/L respectively, the suppression towards HSL mRNA abundance was notable. While the concentration was more than 30ug/L,0.5mmol/L and 40mg/L respectively, the suppression towards HSL activity was notable. While the concentration of GLP-Ⅰwas more than 100nmol/L, the suppression towards HSL mRNA abundance and HSL activity was notable. While the concentration of dexameth was more than 20mg/L, the expression of HSL mRNA was promoted, and while the concentration was more than 1 0mg/L, the HSL activity was promoted. It was concluded that IGF-Ⅰ, GLP-Ⅰ, oleic acid, lactic acid, dexameth regulated the fat lipoclasis through regulating the abundance of HSL mRNA and the HSL activity. Dexameth promoted lipoclasis and IGF-Ⅰ, GLP-Ⅰ, oleic acid, lactic acid inhibited lipoclasis, and then promote fat storing.
引文
[1]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展[J].黑龙江畜牧兽医,2004,(8):78-79.
    [2]Drackley J K.Biology of dairy cows during the transition period:The final frontier[J].Dairy Sci,1999,82:2259-2273.
    [3]Jorritsma R H,rritsma Y H,Schukken P C,Bartlett.Prevalence and indicators of post partum fatty infiltration of the liver in nine commercial dairy herds in The Netherlands[J].Vest Prod Sci,2001.8:53-60.
    [4]何生虎,晁向阳,王明成,等.奶牛酮病的发病机理研究现状及进展[J].草食家畜(季刊),2004,3(9):15-17.
    [5]Zerbe H N,Schneider W,Leibold T.Altered functional and immunophenotypical properties of neutrophilic granulocytes in postpartum cows associated withfatty liver[J].Theriogenology,2000,54:771-786.
    [6]卢德勋.反刍动物营养调控理论及其应用[J].内蒙古畜牧科学,1993(增刊):1-6.
    [7]Baird G D.Primary ketosis in the high-producing dairy cows:clinical and subclinical disorder,treatment,prevention,and outlook[J].Dairy Sci,1982.65:1-10.
    [8]孙海州.生长肥育羊葡萄糖营养整体优化规律的研究[D].内蒙古农业大学,博士学位论文,1999.
    [9]Hocquette J F,Bauchart D.Intestinal absorption,blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals[J].Reprod Nutr Dev,1999,39(1):27-48.
    [10]Lane M A,Baldwin R L,Jesse B W.Sheep rumen metabolic development in response to age and dietary treatments[J].J Anim Sci,2000,78(7):1990-1996.
    [11]Oba M,Allen M S.Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation[J].J Dairy Sci.2003,86(9):2922-2931.
    [12]Bava L,Rapetti L,Crovetto G M.Effects of a nonforage diet on milk production.energy,and nitrogen metabolism in dairy goats throughout lactation[J].J Dairy Sci,2001,84(11):2450-2459.
    [13]Reis R B,Combs D K.Effects of corn processing and supplemental hay on rumen environment and lactation performance of dairy cows grazing grass-legume pasture[J].J Dairy Sci,2000,83(11):2529-2538.
    [14]Huhtanen P,Vanhatalo A,Varvikko T.Effects of abomasal infusions of histidine,glucose,and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets[J].J Dairy Sci,2002,85(1):204-216.
    [15]何剑斌,田文儒,胡春山.应用血中生化指标监测围产期奶牛脂肪肝[J].黑龙江畜牧兽医,1997,(6):1-5.
    [16]Laven R A,Andrews A H.Control of fatty liver syndrome in a Jersey herd by a change of diet and the use of recombinant bovine somatotrophin[J].Vet Rec,1998,142(2):36-39.
    [17]Brody T.[J].Adv Vet Sci Comp Ned,1999,37:417.
    [18]陈代文.奶牛脂肪肝的发病机理及防制措施[J].中国畜牧兽医(原国外畜牧科技),2002,29(3):37-40.
    [19]王吉峰,王加启.奶牛营养代谢对乳脂合成调控机制的研究进展[J].中国畜牧兽医,2003,30(2):6-10.
    [20]Dale H,Vik-Mo L,Fjellheim P.Relationship to energy balance,appetite and ketosis[J].Nord Vet Med,1979,31(3):97-105.
    [21]Grum D E,Hansen L R,Drackley J K.Peroxisomal β-oxidation of fatty acids in bovine and rat liver[J].Comp Biochem Physiol,1994,109B:281-292.
    [22]Osmundsen H,Bremer J,Pedersen J I.Metabolic aspects of peroxisomal β-oxidation[J].Biochim Biophys Act,1991,1085:141
    [23]Andrews A H,Laven R,Maisey I.Treatment and control of an outbreak of fat cow syndrome in a large dairy herd[J].Vet Rec,1991,129(10):216-219.
    [24]孙斌,赵凯,王洪,等.奶牛酮病及其研究进展[J].黑龙江八一农垦大学学报,1999,11(3):48-51.
    [25]Katoh N.Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripatum diseases in dairy cows[J].J Vet Med Sci,2002,64:293-307.
    [26]Mazur A,Ayrault-Jarrier M,Chilliard Y,et al.lipoprotein metabolism in fatty liver dairy cows[J].Diabete Metab,1992,18:145-149.
    [27]Bremmer D R,Berties S J,Besong S A,et al.Changes in Hepatic Microsomal Triglyceride Transfer Protein and Triglyceride in Periparturient Dairy Cattle[J].J Dairy Sci,2000,83:2252-2260.
    [28]Grummer R R.Etiology of lipid-related metabolic disorders in periparturient dairy cows[J].J Dairy Sci,1993,76:3882-3896.
    [29]Perkins K H,VandeHaar M J,Tempelman R J,et al.Negative energy balance does not decrease expression of leukocyte adhesion or antigen-presenting molecules in cattle[J].J Dairy Sci,2001,84(2):421-428.
    [30]左之才.不同能量水平对围产期奶牛生产性能、血液生化及内分泌因子影响的研究[M].四川农业大学,硕士学位论文,2004.
    [31]牛叔玲.围产期奶牛干物质摄入减少及脂肪动员的神经内分泌调控机制[D].吉林大学,博士学位论文,2005.5.
    [32]Van Saun R J,Idleman S C,Sniffen C J.Effect of undegradable protein amount fed prepartum on postpartum production in first lactation Holstein cows.J Dairy Sci,1993,76:236-244.
    [33]Dann H M,Varga G A,Putnam D E.Improving energy supply to late gestation and early postpartum dairy cows.J Dairy Sci,1999,82:1765-1778.
    [34]Greenfield R B,Cecava M J,Johnson T R,et al.Impact of dietary protein amount and rumen undegradability on intake,peripartum liver triglyceride,plasma metabolites,and milk production in transition dairy cattle.J Dairy Sci,2000,83:703-710.
    [35]左之才,邓俊良,王哲,等.不同能量摄入水平对围产期健康奶牛生产性能及脂肪代谢的影响[J].黑龙江畜牧兽医,2005,(11):19-22.
    [36]牛淑玲,李艳飞,王哲,等.不同能量摄入水平对围产期奶牛生产性能及血浆瘦素浓度影响的研究[J].畜牧与兽医,2005.37(2):1-4.
    [37]Chilliard Y,Bonnet M,Delavaud C.et al.Leptin in ruminants:Gene expression in adipose tissue and mammary gland,and regulation of plasma concentration[J].Domest Anim Endocrinol,2001,21:271-295.
    [38]Mark Renz,Elizabeth TomLinson,Bruce Hultgren,et al.Quantitative Expression Analysis of Genes Regulated by Both Obesity and Leptin Reveals a Regulatory Loop between Leptin and Pituitary-derived ACTH[J].J Biol Chem,2000,275(14):10429-10436
    [39]Liefers S C,Veerkamp R F,WtePas M F,et al.Leptin Concentrations in Relation to Energy Balance,Milk Yield,Intake,Live Weight,and Estrus in Dairy Cows[J].J Dairy Sci,2003,86:799-807.
    [40]Reist M,et al.Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows[J].J Dairy Sci,2002,85(12):3314-3327.
    [41]Zarjevski N,Cusin I,Vettor R,et al.Chronic intracerebroventricular neuropeptide Y administration to normal rats mimics hormonal and metabolic changes of obesity[J].Endocrinology,1993,133:1753-1758.
    [42]Herdth T H.Ruminant adaptation to negative energy balance Influences on the etiology of ketosis and fatty liver[J].Vet Clin North Am Food Anim Pract,2000,(16):215-230.
    [43]Wilding J P,Ajala M D,Lambert P D,et al.Additive effects of lactation and food restriction to increase hypothalamic neuropeptide Y mRNA in rat[J].J Endocrinol,1997,152:365-369.
    [44]李艳飞,李红梅,牛淑玲,等.干奶期不同能量水平对奶牛血中神经肽Y和生长激素浓度的影响[J].中国兽医学报.2006,26(6):684-686.
    [45]Donkin S S,Armentano L E.Insulin and glucagon regulation of gluconeogenesis in preruminating and ruminating bovine[J].Anim Sci,1995,73(2):546-551.
    [46]Moxley R T,Arner P,Moss A.Acute effects of insulin-like growth factor Ⅰ and insulin on glucose metabolism in vivo[J].AJP-Endocrinology and Metabolism,1990,259(4):561-567.
    [47]Sigrun R,Hugl Morrls,White F,et al.Insulin-like Growth Factor-Ⅰ(IGF-Ⅰ)-stimulated Pancreatic β-Cell Growth is Glucose-dependent[J].Biol Chemi,1998,273(28):17771-17779.
    [48]Hippen A R.Glucagon as a potential therapy for ketosis and fatty liver[D].Vet Clin North Am Food Anim Pract,2000,16(2):267-82.
    [49]Donkin S S,Bertics S J,Armentano L E.Chronic and Transitional Regulation of Gluconeogenesis and Glyconeogenesis by Insulin and Glucagon in Neonatal Calf Hepatocytes[J].Anim Sci,1997,75:3082-3087.
    [50]刘聪,杨萍,毛瑞涛.生长激素对大鼠血糖代谢的影响[J].中华急诊医学杂志,2007,(11):1165-1166.
    [51]Carro E,et al.Evidence of free and bound Leptin in human circulation studies in leanand obese subjects and during short-term fasting[J].Endocrinology,1997,138:2203-2206.
    [52]Karine C,et al.Obese gene expression alters the ability of 30 A5 preadipocytes to respond to lipogenic hormones[J].Nature,1998,392:398-401.
    [53]Kieffer,et al.Relation between plasma Leptin concentration and body fat,gender,age and metabolic covanates[J].Diabetes,1997,46:1087-1093.
    [54]Yukio T,et al.Radioimmunoassay of Leptir,in human plasma[J].Endocrinology,1997,138:4513-4516.
    [55]Huang Q L,et al.Leptin and leptinomania[J].Endocrinology,1998,139:1524.
    [56]Stefan R,et al.The obesity gene in swine:sequence and expression of porcine leptin[J].Diabetes,1997,46:1235-1239.
    [57]Akihiro I,et al.Augment-edexpression of the obesegene in the adipose of the obese gene in the adipose tissue from rats fed high-fat diet[J].Endocrinology,1998,139:3057.
    [58]Carro E,et al.Cloning and expression of procine obesegene[J].Endocrinology,1997,138:2203-2206.
    [59]Vuagnat-Beatrice A M,et al.cDNA cloning and tissue-specific gene expression no fovine leptin,NPY-Y1 receptor,and NPY-Y2 receptor[J].Neuroendocrinology,1998,67:291-300.
    [60]Wang Z L,Bennet W M,Wang R M,et al.Evidence of a paracrine role of neuropeptide Y in the regulation of insulin release from pancreatic islets of normal and dexamethasone-treated rats[J].Endocrinology,1994,135:200-206.
    [61]Zarjevski N,Cusin I,Vettor R,et al.Intracerebroventricular administration of neuropeptide Y to normal rats has divergent effects on glucose utilization by adipose tissue and skeletal muscle[J].Diabetes,1994,(43):764-769.
    [62]Kanzaki M,Fujisawa M,Okuda Y,et al.Expression and regulation of neuropeptide Y messenger ribonucleic acid in cultured immature rat leydig and sertoli cells[J].Endocrinology,1996,137:1249-1257.
    [63]Abegg R,Eieher R,Lis J,et al.Concentration of volatile fatty acids in digesta samples obtained from healthy cows and cows with cecal dilatation or dislocation[J].Am J Vet Res,1999,60(12):1540-1545.
    [64]周鹏,朱大龙,何戎华.瘦素研究进展[J].江苏临床医学杂志,2001,5(4):358-360.
    [65]李维辛.Leptin与内分泌及代谢[J].国外医学内分泌学分册,1999,19(3):100-103.
    [66]夏成.奶牛酮病、脂肪肝糖异生和脂肪动员的神经内分泌调控机制[D].吉林大学,博士学位论文,2005.
    [67]徐闯.丙酸盐、丙酮酸盐、β-羟丁酸对牛肝细胞PCmRNA和PEPCKmRNA丰度的影响.吉林大学,硕士学位论文,2005.
    [68]Armentano L E,Grummer R R,Bertics S J,et al.Effects of energy balance on hepatic capacity for oleate and propionate metabolism and triglyceride secretion[J].J Dairy Sci,1991,74(1):132-139.
    [69]Herdt T H.Blood serum concentrations of selenium in female llamas(Lama glama)in relationship to feeding practices,region of United States,reproductive stage,and health of offspring[J].J Anim Sci,1995,73(2):337-344.
    [70]陈仕均.围产期奶牛肝微粒体甘油三酯转运蛋白基因表达的调控研究[M].四川农业大学,硕士学位论文,2006.
    [71]孙玉成.围产期奶牛肝VLDL组装与分泌主要相关蛋白基因表达的调控[D].吉林大学,博士学位论文,2006.
    [72]Gruffat D,Durand D,Chilliard Y,et al.Hepatic Gene Expression of Apolipoprotein B100 During Early Lactation in Underfed,High Producing Dairy Cows[J].J Dairy Sci,1997,80:657-666.
    [73]Durand D,Martinaud M,Gruffat D,et al.Plasma and hepatic lipids and lipoproteins in the underfed high yielding dairy cows during early lactation[J].Ann Zootech(Paris),1994,43:46.
    [74]Fox J C,Henry C M,Carey Dee,et al.In Vivo Regulation of Hepatic LDLR mRNA in the Baboon.Differential effects of saturated and unsaturated fat[J].J Biol Chem,1987,262(15):7014-7020.
    [75]Colleen M Croniger,Yael Olswang,Lea Reshef,et al.Phosphoenolpyruvate Carboxykinase Revisited[J],Biochemistry and Molecular Biology Education,2002,30(1):14-20.
    [76]Svend O,Freytag S,Merton F.Regulation of the Synthesis and Degradation of Pyruvate Carboxylase in 3T3-L1 Cells[J].Biological chemistry,1983,258:6307-6313.
    [77]Pengxiang She,Masakazu Shiota,Kathy D Shelton.Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism[J].Molecular and Cellular Biology,2000,20(17):6508-651.
    [78]Yoshikawa H,Tajiri Y,Sako Y,et al.Effects of free fatty acids on beta-cell functions:a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox[J].Metabolism,2001,50(5):613-618.
    [79]Hartwell J R,Cecava M J,Donkin S S.Rumen undegradable protein,rumen-protected choline and mRNA expression for enzymes in gluconeogenesis and ureagenesis in periparturient dairy cows[J].J Dairy Sci,2001.84(2):490-497
    [80]Donkin S S.Changess in hepatic pyruvate carboxylase expression during transition to ruminating status[M],1996.
    [81]Greenfield R B,Cecava M J,Donkin S S.Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation[J].J Dairy Sci,2000,83(6):1228-36.
    [82]Pershing R A,Lucy M C,Thatcher W W.Effects of BST on oviductal and uterine genes encoding components of the IGF system in lactating dairy cows[J].J Dairy Sci,2002,85(12):3260-3267.
    [83]Donkin S S,Armentano L E.Preparation of Extended In Vitro Culture of Bovine Hepatocytes That Are Hormonally Responsive[J].Anim Sci,1993,71:2218-2227.
    [84]Donkin S S,Armentano L E.Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine[J].Am J Physiol Regul Integr Comp Physiol,1994,266:1229-1237.
    [85]She P,Lindberg G L,Hippen A R.Regulation of Messenger Ribonucleic Acid Expression for Gluconeogenic Enzymes During Glucagon Infusions into Lactating Cows[J].J Dairy Sci,1999,82:1153-1163.
    [86]沈坤堂,秦新裕,张新.胰岛素、胰高血糖素和地塞米松调节PEPCK启动子活性的体外研究[J].复旦学报(医学版),2003,30(4):338-340.
    [87]张和平.牛初乳中的类胰岛素生长因子的分离制备及其降血糖作用研究[J].新疆畜牧业奶业专刊,2004,(2):15-17.
    [88]Sigrun R Hugl,Morrls F Whlte,Christopher J Rhodes.Insulin-likeGrowth Factor-Ⅰ(IGF-Ⅰ)-stimulated Pancreatlcβ-Cell Growth is Glucose-dependent[J].Biol Chemi,1998,273(28):17771-17779.
    [89]Breier B H,Gluckman P D,Bass J J.Plasma concentrations of insulin-like growth factor-Ⅰ and insulin in the infant calf:ontogeny and influence of altered nutrition[J].Journal of Endocrinology,1988,119(1):43-50.
    [90]段宇,周红文,汪承亚,等.胰岛素样生长因子-Ⅰ基因表达对糖尿病大鼠血糖的影响[J].南京医科大学学报,2004,24(4):317-320.A
    [91]Shingu H,Hodate K,Kushibiki S.Hormonal and Lactational Responses to Growth Hormone Releasing Hormone Treatment in Lactating Japanese Black Cows[J].J Dairy Sci,2004,87:1684-1693.
    [92]Reynolds C K,Aikman P C,Lupoli B,Humphries D J,Beever D E.Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation[J].Dairy Sci,2003,86:1201-1217.
    [93]Schlumbohm C,Harmeyer J.Hyperketonemia Impairs Glucose Metabolism in Pregnant and Nonpregnant Ewes[J].Dairy Sci,2004(87):350-358
    [94]孔凡德,吴跃明,刘建新.激素敏感脂肪酶的研究进展.中国畜牧杂志,2002.38(6):38-39
    [95]Raclot T,Holm C,Langin D.Fatty acid specificity of hormone sensitive lipase: implication in the selective hydrolysis of triacylglycerols[J]. Lipid Res, 2001, 42:2049-2057.
    
    [96] Belkner J,Stender H, Holzhutter H G, et al. Macrophage cholesterylester hydrolases and hormone sensitive lipase prefer specifically oxidized cholesteryl esters as substrates over their nonoxidized counter parts [J]. Biochem,2000,352(1): 125-133.
    [97] Mulder H, Hoist L S, Svensson H, et al. Hormone sensitive lipase,the rate limiting enzyme in triglyceride hydrolysis,is expressed and active in β cells[J]. Diabetes, 1999,48:2282-2321.
    
    [98] Winzell M S, Holm C, Ahren B. Downregulation of islet hormone sensitive lipase during long term high fat feeding [J]. Biochem Biophys ResCommun, 2003,304:2732-2781.
    [99] Roduit R, Masiello P, Wang S P, et al.A role for hormone sensitive lipase in glucose stimulated insulin secretion [J]. Diabetes, 2001,50:19702-19751.
    [100] Osuga Ji, Ishibashi S, Oka T, et al. Targeted disruption of hormone sensitive lipase result s in male sterility and adipocyte hypert rophy,but not in obesity [J]. Proc Natl Acad Sci, 2000,97:7872-7921.
    
    [101] Haemmerle G, Zimmermann R. Hayn M, et al. Hormone sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue,muscle.and testis [J]. Biol Chem, 2002,277:48062-48151.
    [102] Chung S, Wang S P, Pan L, et al. Infertility and Testicular Defect s in Hormone Sensitive Lipase Deficient Mice [J]. Lipid Res, 2004,45:10402-10501.
    [103] Kabbaj O, Holm C, Vitale M L, et al. Expression,activity and subcellular localization of testicular hormone sensitive lipase during postnatal development in t he guinea pig [J]. Biol Reprod, 2001,65:6012-6121.
    
    [104] Li H, Brochu M, Wang S P, et al. Hormone Sensitive Lipase Deficiency in Mice Causes Lipid Storage in the Adrenal Cortex and Impaired Corticosterone [J]. Response to Cortico tropin StimulationEndocrinology, 2002,143:33332-33401.
    [105] Larsen T S, Nilsson N O, Becfrage P. Acta Physiologica Scandinavica[J]. 1985,125 (4):735-738.
    
    [106] Wilson B E, Deeb S, Folrant G L. [J]. Amer J Physiol, 1992,262 (2): 177-181.
    [107] Chris Kazala E, Jennifer L, Petrak Fred, Lozeman J, et al. Hormone-sensitive lipase activity in relation to fat content of muscle in Wagyu hybrid cattle Livestock Production. Science, 2003,79:87-96.
    [108] McNamara J P, Mcfarland D C, Role of Hormone-sensitive lipase in cattle Livestock Production.Bai S[J], Dairy Sci, 1987,70(7):1377-1384.
    [109] Bai S C, McNamara J P, Killers J K.[J]. Dairy Sci, 1986,69:154-159.
    [110] Stich V. Effect of energy balance on the hormone-sensitive lipase in lactating dairy cows[J]. Journal of Clinical Endocrinology and Metabolism, 1997.82(3):739-744.
    [111] Tanaka K, Ohtani S. [J]. Japanese Journal of Zootechnical Science, 1986. 57(9):747-757.
    [112]Awad A B,Chattopadhyay J P.[J].Nutr,1986,116(6):1095-1100.
    [113]Sutton J D,Dhanoa M S,Morant S V,et al.Rates of production of acetate,propionate,and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets[J].Dairy Sci,2003,86(11):3620-3633.
    [114]Takahashi K,Akiba Y.[J].Anim Sci and Technol,1996,67(3):305-309.
    [115]Liesman J S,Mcnamara J P,Capuco A V,et al.Comparion of Growth Hormone-Release Factor(GHRF)and Somatotropin(ST):Lipid and Glucose Metabolism in Dairy Cows[J].Dairy.Sci,1995,78:2159-2166.
    [116]Naomi S,Beswick John,Kennelly J.The influence of bovine growth hormone and growth hormone releasing factors on acetyl-CoA carboxylase(ACC)and fatty acid synthase(FAS)in primiparous Holstein cows[J].Comparative Biochemistry and Physiology Part C,1998.120:241-249.
    [117]Lanna D P,et al.Effect of somatotropin treatment on lipogenesis,lipolysis,and related cellular mechanisms in adipose tissue of lactating cows[J].Dairy Sci,1995,78(8):1703-1712
    [118]Naima Moustaid,Brynm H Jones,James W Taylor.Insulin Increases Lipogenic Enzyme Activity in Human Adipocytes Primary Culture[J].Nutri,1996(126):865-870.
    [119]Kaske M,et al.Peripheral responsiveness to insulin in dry cows,lactating cows and cows suffering from fatty liver:results of hyperinsulinemic euglycemic clamps[J].Abstract-ⅩⅫ World Buiatrics Congress,2002.
    [120]Alpini G,Phillips J,Vorman Betal.Recent advance in the isolation of liver cells[J].Hepatology,1994,20:494.
    [121]汪启迪.瘦素与其他相关激素间的互调作用[J].国外医学内分泌学分册,1999,19(5):196-199.
    [122]Hippen A R,et al.Glucagon as a potential therapy for ketosis and fatty liver[J].Vet Clin North Am Equine Pratt,2000,16(2):267-282.
    [123]Boer G de,Trenkle A,Young J W.Glucagon,insulin,growth hormone,and some blood metabolites during energy restriction ketonemia of lactating cows[J].Dairy Sci,1985,68(2):326-327.
    [124]Guna T.Obesity gene discovery may help solve weighty problem[J].Science,1997,(275):751-753.
    [125]Machuinal-Quelin F,Dieudonne M N,Leneveu M C,et al.Proadipogenic effect of leptin on rat preadipocytes in vitro:activation of MAPK and STAT3 signaling pathways[J].Am J Physiol,2002,282:C853-C963.
    [126]Coralia Puez,Carmen Fernedez-Galaz.Neuroendocfine regulation and actions of leptin[J].Front Neuroendocrinol,2000,20(4):317-363.
    [127]张辉.脂联素对围产期奶牛脂肪动员的相关性研究.吉林大学博士论文,2007,6.
    [128]Enoch H G,Catala A,Strittmatter P.Mechanism of rat livermicrosomal stearyl-CoA desaturase.Studies of the substratespecificity,enzyme-substrate interactions,and the function of lipid[J].Biol Chem,1976,251:5095-5103.
    [129]Ward R J, Travers M T, Vernon R G. et al. The ovine stearyl-CoA desaturase gene: cloning and determination of gene number within the ovine genome. Biochem Soc Trans, 1997.25:S673-S680.
    [130] Ideta R, Seki T, Adachi K, et al. The isolation and characterization of androgen-dependent genes in the flank organs of golden Syrian hamsters. Dermatology, 1998,196:47-50.
    [131] Zhang L, Ge L, Parimoo S. Stenn K, et al. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites[J]. Biochem, 1999,340:255-264.
    [132] Zheng Y, Prouty S M, Harmon A, et al. Scd3-a novel gene of the stearoyl-coA desaturase family with restricted expression in skin[J]. Genomics, 2001,71:182-191.
    [133] Miyazaki M, Kim Y C, Ntambi J M. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals astringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis[J]. Lipid Res, 2001, 42: 1018-1024.
    [134] Listenberger L L, Han X, Lewis S E, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity[J]. Proc Natl Acad Scil, 2003,3077-3082.
    [135] Miyazaki M, Kim Y C, Gray-Keller M P, et al. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1[J]. Biol Chem, 2000,275:30132-30138.
    [136] Cohen P, Miyazaki M, Socci N D, et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss[J]. Science, 2002,297:240-243.
    
    [137] Ntambi J M, Miyazaki M, Stoehr J P, et al. Lossof stearoyl-CoA desaturase-1 function protects mice againstadiposity[J], Proc Natl Acad Sci, 2002,(99): 11482-11486.
    [138] Dobrzyn A, Ntambi J M. The role of stearoyl-CoA desaturase in body weight regulation[J]. Trends Cardiovasc Med, 2004,14:77-81.
    [139] Dobrzyn A, Ntambi J M.. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukot Essent[J]. Fatty Acids, 2005a, 73:35-41.
    [140] Lee S H, Dobrzyn A, Dobrzyn P, et al. Lack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment[J]. Lipid Res, 2004,45:1674-1682.
    [141] Hardie DG. The AMP-activated protein kinase pathway - new players upstream and downstream[J]. Cell Sci, 2004,117:5479-5487.
    [142] Dobrzyn A, Dobrzyn P, Miyazaki M, et al. Polyunsaturated fatty acids do not activate AMP-activated protein kinase in mouse tissues [J]. Biochem Biophys Res Commun,2005b,(332): 892-896.
    [143] Miyazaki M. Dobrzyn A, Sampath H, et al. Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha[J]. Biol Chem, 2004b.279:35017-35024.
    [144]Ntambi J M.Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver[J].Biol Chem,1992,267:10925-10930
    [145]Lee K N,Pariza M W,et al.Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression[J].Biochem Biophys Res Commun,1998,248:817-821.
    [146]Choi Y,Kim Y C,Han Y B,et al.The trans-.10,cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1.gene expression in 3T3-L1adipocytes[J].Nutr,2000,130:1920-1924.
    [147]Repa J J,Liang G,Ou J,et al.Regulation of mouse sterol regulatory element-binding protein-1c gene(SREBP-1c)by oxysterol receptors,LXRalpha and LXRbeta[J].Genes,2000,14:2819-30.
    [148]Carolyn Miller,James M.Ntambi.Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression[J].Biochem,1996,18:9443-9448.
    [149]Cheng B.Comparing RNA PCR tests[J].PI Perspect,1995,17:15-18.
    [150]Brown T A.Essential Molecular Biology[J].Vol.2,2nd.Oxford University Press.2001.
    [151]陈守春,雷秉钧.定量PCR技术研究概述[J].国外医学流行病学传染病学分册,1998,25(5):231-32.
    [152]Ferre F.Quantitative or semi-quantitative PCR:reality versus myth[J].Genome Res,1992,(2)1-9.
    [153]Actor J K,Limor J R,Hunter R L.A flexible bioluminescent-quantitive polymerase reaction assay for analysis of competitive PCR amplicons[J].J Clin Lab Anal,1999,13(1):40-47.
    [154]Anderson K M,Cheung P H,Kell M D.Rapid generation of homologous internal standards and evaluation of data for quantitaion of messenger RNA by competitive polymerase chain reaction[J].J Pharmacol Toxicol Methods,1997,38:133-140.
    [155]马中富,黄帆,高劲松.以cDNA为内参标RT-PCR定量检测心肌细胞内p53和Bcl-2基因mRNA表达量的方法研究[J].中国危重病急救医学.2002,14(10):597-601.
    [156]程正江.用统计学方法解释和处理临床定量PCR实验结果[J].数理医药杂志.2003,(1):18-21.
    [157]连正兴,Rogel-Gaillard C,李宁.利用半定量PCR方法分析中国地方猪种内源病毒序列拷贝数的多态性[J].畜牧兽医学报,2002,33(6):521-524.
    [158]胥保华,许梓荣.肉雏鸡肝细胞谷胱甘肽过氧化物酶RT-PCR定量分析[J].中国兽医科技,2003,33(2):24-26.
    [159]Annemarie Berger,Wolfgang Preiser.Viral genome quantification as a tool for improving patient management:the example of HIV,HBV,HCV and CMV[J].J.Antimicrob Chemother,2002,49:713-721.
    [160]James C Paton,Adrienne W Paton.Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections[J].Clin Microbiol Rev,1998,(11): 450-479.
    [161]肖白,刘敬忠,王建秋.半定量PCR检测致龋性变形链球菌的技术及应用[J].中国实验诊断学,2003,7(2):109-112.
    [162]Schnell S,Mendoza C.Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction(QC-PCR)[J].J Theor Biol,1997,184(4):433-440.
    [163]刘陶文.定量PCR技术[J].国外医学:临床生物化学与检验学分册,1998,19(1):15-17.
    [164]王宁.定量PCR技术研究进展[J].国外医学:临床生物化学与检验学分册,2000,21(6):314-316.
    [165]Wuhu A,Waiztu M,Koch A.A rapid and sensitive protocol for competitive reverse transcriprase(CRT)PCR analysis of cellular genes[J].Brain Pathol,1998,(8):13-18.
    [166]Liljekvist-Larsson I,Torngren M,Abrahamson M.Growth of the postnatal rat retina in vitro:quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins[J].Mol Vis,2003,(9):657-64.
    [167]牛艾茹,陈培佳.定量DNA和IgM抗体检测CMV感染[J].中国优生与遗传杂志,2002,10(6):40-41.
    [168]张立国,张琚.实时定量PCR技术的介绍[J].生物技术,2003,13(2):39-40.
    [169]Kazutoshi Kaji,Kazuhiro Ueda,Takashi Aoyama.Development of a real-time jump-ratio imaging system equipped with a STEM[J].Journal of Electron Microscopy,2001,50:15-21.
    [170]帅小蓉,夏庆友,朱勇.定量PCR技术的研究现状及应用概述[J].蚕学通讯,2002,22(4):20-27.
    [171]马荣群,陈红运,黄文胜.实时定量PCR方法检测转基因产品[J].植物检疫,2002,(1):61-64.
    [172]陆利民,李海雁,汪蓉.采用单碱基突变模板作为内对照对组织中mRNA水平进行PCR定量[J].生理学报,1997,49(2):235-240
    [173]Vivian Chan,Ben Yip,Lain Y H,H Y.Quantitative polmerase chain reaction for the rapid prenatal diagnosis of homozygous α-thalassaemia(Hb Barts hydrops fetalis)[J].British Journal of Haematology,2001,115(2):341-345.
    [174]黄燕萍,王宇明.荧光定量PCR与普通PCR检测HBV DNA的对照分析[J].第三军医大学学报,2001,23(8):992-993.
    [175]林江,钱军.实时定量PCR检测血液恶性肿瘤的微小残留病[J].中国实验血液学杂志,2001,9(3):277-281.
    [176]Xu Y,Brorson K.An overview of quantitative PCR assays for biologicals:quality and safety evaluation[J].Dev Biol(Basel),2003,113:89-98.
    [177]林玲综述.定量PCR技术的研究进展[J].国外医学遗传学分册,1999,22(3):116-118.
    [178]卢圣栋主编.现代分子生物学实验技术.高等教育出版社,1993.
    [179]魏汉东.PCR技术在鉴定阳性重组子中的应用[J].生物技术通讯,1994,(5):95.
    [180]欧阳红生,张玉静著.分子遗传学实验[M],1997,12.
    [181]Sambrook J,Fritsch E F,Manitatis T.分子克隆实验(第二版)[M].北京:科学出版社,1992.
    [182]F 奥斯伯,R 布伦特,R E 金斯顿,等.精编分子生物学实验指南tM].北京,中国科学出版社,1998.
    [183]黄培堂,俞炜源主编.PCR技术的原理和应用[M].北京:中国科学技术出版社,1999.
    [184]徐闯,夏成,刘国文.应用内含子法构建PC基因mRNA竞争RT-PCR内参照[J].中国农业科学,2004,37(7):1056-1059.
    [185]金东雁等译.分子克隆实验指南[M],北京科学出版社,2002:362-392.
    [186]Shamay A,Cohen N,Niwa M.Effect of insulin-like growth factor Ⅰ on deoxyribonucleic acid synthesis and galactopoiesis in bovine undifferentiated and lactating mammary tissue in vitro[J],Endocrinology,1988,123:804-809.
    [187]Sparks A L,Kirkpatrick J G,Chamberlain C S.Insulin-like Growth Factor-Ⅰ and Its Binding Proteins in Colostrum Compared to Measures in Serum of Holstein Neonates [J].Dairy Sci,2003,86(6):2022-2029.
    [188]Perry V E A.Insulin-like growth factor levels during pregnancy in the cow are affected by protein supplementation in the maternal diet[J].Animal Reproduction Science,2002,72:1-10.
    [189]Liu M L,Mars W M,Zarnegar R,et al.Coltagenase pretrentment and the mitogenic effects hepatocyte growth factor and trarsforming growth factor in alult rat liver[J].Hepatotqgy,1994,19(6):1521.
    [190]罗明志,王淑瑞,齐浩.肝细胞原代培养综述[J].陕西师范大学学报(自然科学版),2004,32:72-76.
    [191]张莉萍,康格非.原代肝细胞培养的研究现状[J].国外医学临床生物化学与检验学分册,2004,25(3):193-196.
    [192]Seglen P O.Preparation of isolated rat liver cells[J].Methods Cell Bio,1976,13:29-83.
    [193]胡聪,韩聚强,修贺明.原代培养大鼠肝细胞分离方法的比较研究[J].河南医科大学学报,2000,21(4):199-201.
    [194]陈慧梅,廖红,高静.肝细胞培养方法研究进展[J_].细胞生物学杂志,2002,24(3):163-166.
    [195]Alpini G,Phillips J O,Vroman B,et al.Recent advances in the isolation of liver cells[J].Hepatology,1994,20(2):495-514.
    [196]Iacovacci S,Manzis A,Barca S,et al.Molecular characterization and dynamics of hepat it is C virus replication in human fetal hepatocytes infected in vitro[J]. Hepatology,1997,26:1328.
    [197]Granner D K,Andreone T,Sasaki K.Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin[J].Nature,1983,305:549-551.
    [198]O'Brien R M,Granner D K.PEPCK gene as model of inhibitory effects of insulin on gene transcription[J].Diabetes Care,1990,13(3):327-339.
    [199]Christ B,Nath A,Bastian H.Regulation of the expression of the phosphoenolpyruvate carboxykinase gene in cultured rat hepatocytes by glucagon and insulin[J].European Journal of Biochemistry,1988,178:373-379.
    [200]She P,Hippen A R,Young J W.et al.Metabolic Responses of Lactating Dairy Cows to 14-Day Intravenous Infusions of Glucagonl[J].J Dairy Sci,1999,82:1118-1127.
    [201]Donkin S S.Effects of Short-Term Glucagon Administration on Gluconeogenic Enzymes in the Liver of Midlactation Dairy Cows[J].Dairy Sci,2006.89:693-703.
    [202]Shingu H,Hodate K,Kushibiki S.Hormonal and Lactational Responses to Growth Hormone Releasing Hormone Treatment in Lactating Japanese Black Cows[J].Dairy Biol Chem,1998,273:17771-17779.
    [203]Breier B H,Gluckman P D,Bass J J.Plasma concentrations of insulin-like growth factor-Ⅰ and insulin in the infant calf:ontogeny and influence of altered nutrition[J].Journal of Endocrinology,1988,119(1):43-50.
    [204]Feng B,Li J,Kliegman R M.Differential effects of insulin-like growth factor-1 on neonatal canine gene expression[J].Biochem Mol Med,1996,59(2):154-60.
    [205]Van Schravendi J K,Foriers C F H,Van den Brande A.Evidence for the presence of type Ⅰ insulin-like growth factor receptors on rat pancreatic A and B cells[J].Endocrinology,1987,(121):1784-1788.
    [206]Hugl M,White S R,Rhodes M F.Insulin-like growth factor Ⅰ(IGF-Ⅰ)-stimulated pancreatic β-cell growth is glucose-dependent:synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-Ⅰ in Ins-1 cells[J]
    [207]Wang A M,Doyle M V,Mark D F.Quantitation of mRNA by the polymerase chain reaction[J].Proc Natl Acad Sci USA,1989,86(24):9717-9721.
    [208]Morrison C,Gannon F.The impact of the PCR plateau phase on quantitative PCR[J].Biochim Biophys Acta,1994,(1219):493-498.
    [209]Niesters H G M.Quantitation of viral load using real-time amplification techniques[J].Methods,2001,(25):419-429.
    [210]Kenneth J Livak,Thomas D Schmittgen.Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2_T~(-△△C)Method.Methods,2001,(25):402-408.
    [211]陈英剑,涂晓文,胡成进.应用SYBR Green Ⅰ荧光定量RT-PCR测定糖尿病大鼠肾皮质TGF-β1表达水平[J].中国糖尿病杂志,2006,(2):148-149.
    [212]夏成,王哲,张才,等.INS、GLN和LP对体外培养牛脂肪细胞内HSL、LP的 mRNA丰度的影响[J].畜牧兽医学报,2006,37(12):1312-131.
    [213]Daniel Z C T R,Richards S E,Salter A M.Insulin and dexamethasone regulate stearoyl-CoA desaturase mRNA levelsand fatty acid synthesis in ovine adipose tissue explants[J].J Anim Sci,2004,82:231-237.
    [214]Cohen P,Miyazaki M,Socci N D,et al.Role for stearoyl-CoA desturase-1 in leptin-mediated weight-loss[J].Science,2002,297:240-243.
    [215]Heinemann F S,Ozols J.Stearoyl-CoA desaturase,a shortlived protein of endoplasmic reticulum with multiple control mechanisms[J].Prostaglandins Leukot Essent Fatty Acids,2003,68:123-133.
    [216]Miyazaki M,Ntambi J M.Role of stearoyl-coenzyme A desaturase in lipid metabolism[J].Prostaglandins Leukot Essent Fatty Acids,2003,68:113-121.
    [217]李艳飞,李红梅.干奶期不同能量摄入对围产期乳牛血液葡萄糖胰高血糖素和胰岛素浓度的影响[J].中国兽医科学,2006,(5):389-392.
    [218]左明雪,王玢.人体及动物生理学[M].北京:高等教育出版社,2001.
    [219]Joshi V C,Aranda L P.Hormonal regulation of the terminal enzyme of microsomal stearoyl coenzyme A desaturase in cultured avian liver explants[J].J Biol.Chem.1979,254:11779-11782.
    [220]Pascal Lefevre,Christian Diot,Philippe Legrand.Hormonal Regulation of Stearoyl Coenzyme-A Desaturase 1 Activity and Gene Expression in Primary Cultures of Chicken Hepatocytes.Arch[J].Biochem Biophys,1999,368:329-337.
    [221]Schulman J L,Carleton J L,Whitney G,et al.Effect of glucagon on food intake and bodyweight in man[J].J Appl.Physiol,1957,(11):419-421.
    [222]Inokuchi A.,Oomura Y,Nishimura H.Effect of Intracerebroventricularly infused glucagon on feeding behavior.Physiol.Behav.1984,33:397-400.
    [223]Deetz L E,Wangsness P J.Influence of intrajugular administration of insulin,glucagon and propionate on voluntary feed intake of sheep[J].Anim Sci,1981,53:427-433.
    [224]刘倩琦,陈荣华,郭锡熔,等.神经肽Y Y5受体反义基因对肥胖大鼠减肥降脂作用的研究.中华儿科杂志,2001,39:235-239.
    [225]范建高,丁晓东,曾悦.非酒精性脂肪性肝炎.美国肝脏病学会专题研讨会纪要.肝脏,2003,(8):59.
    [226]Moiler S,Bendtsen F,Henriksen J H.Vasoactive substancesin the circulatory dysfunction of cirrhosis.Scand J Clin Lab Invest.2001,6I(6):421-430.
    [227]李晓云,陈民生.神经肽Y和高血压心肌肥厚.广州医学院学报[J],2002,30:77-80.
    [228]陈敏生,刘健康,黄步华.神经肽Y对培养的血管平滑肌细胞增殖的影响[J].中山医科大学学报,1999,(20):207-209.
    [229]田志华,杨公社.猪脂肪细胞分化的研究进展[J].黑龙江畜牧兽医.2001,(6):36-39.
    [230]Tilton S L,Miller P S,Lewis A J,et al.Addition of Fat to the Diets of Lactating Sows:Ⅱ.Effects on Hormone-sensitive Lipase Activity,Energy Mobilization in Response to Epinephrine,and plasma Insulin and Glucose Concentrations[J].J.Anim.Sci.1999,77:2501.
    [231]Kirkland J L,Hollenberg C H,Gillon W S.Age,anatomic site,and the replication and differentiation of adipocyte precursors[J].Am J Physiol,1990,258(27):206-210.
    [232]Wu P.Sato K,Suzuta F,Hikasa Y,et al.Effects of lipid-related factors on adipocyte differentiatio n of bovine stromal-vascular cells in primary culture[J].J Vet Med Sci.2000,62(9):933-9.
    [233]Zhang H H,Kumar S,Barnett A H.Ceiling culture of mature human adipocytes:use in studies of adipocyte functions[J].Journal of Endocrinology,2000,164:119-128.
    [234]Liefers S C,et al.Leptin concentrations in relation to energy balance,milk yield,intske,live weight,and estrus in dairy cows[J].J.Dairy Sci,2003,86(3):799-807.
    [235]Delavaud C,Bocquier F,Chilliard Y,et al.Plasma leptin determination in ruminants:effect of nutritional status and bodv fatness on plasma leptin concentration assessed by a specific RIA in sheep[J].Endocrinol,2000,165:519-526.
    [236]赵红霞,詹勇,许梓荣.胰岛素样生长因子-Ⅰ研究与应用[J].畜牧与兽医,2002,34(6):36.
    [237]周红文,陈家伟.胰岛素、地塞米松、胰岛素样生长因子-Ⅰ(IGF-Ⅰ)对3T3-L1脂肪细胞脂肪水孔蛋白表达的调节作用[J].南京医科大学学报,2004.24(5):498.
    [238]Eric bertin,Peter arner,Jan bolinder,et al.Action of Glucagon and Glucagon-Like Peptide-1-(7-36)Amide on Lipolysis in Human Subcutaneous Adipose Tissue and Skeletal Muscle in Vivo[J].The journal of clinical endocrinology & metabolism,2006,86(3):1229-1234.
    [239]Van R L R,Bayliss C E,Roncari D A K.Cytological and enzymological characterization of adult human adipocyte precursors in culture[J].J Clin Invest,1976,(58):699.
    [240]Ramirez Z J L,Castro M F,Kuri H W.Quantitation of adipose conversion and triglycerides by staining in intracyctoplasmiclipids with oil red[J].Histochemistry,1992,97:493-497.
    [241]Gerfault V,et al.Proliferation and differentiation of stromal-vascular cells in primary culture differ between neonatal pigs consuming maternal or formula milk[J].Nutr,2000,130:1179.
    [242]朱晓海,何清濂,林子豪.人前脂肪细胞培养及增殖与分化模型的建立[J].中华整型烧伤外科杂志,1999,15(3):199-202.
    [243]Prins J B,O'Rahilly S.The regulation of adipose cell number in man[J].Clinical Science,1997,(92):3-11.
    [244]郑春田.胰岛素样生长因子的生物学效应[J].国外畜牧科技,1997.24(5):42.
    [245]Botion L M,Green A.Long-term regulation of lipolysis and hormone-sensitive lipase by insulin and glucose[J].Diabetes,1999,48:1691-1697.
    [246]Kristina Wallenius,Jun-Li Liu,et al.Liver-Derived IGF-Ⅰ is of Importance for Normal Carbohydrate and Lipid Metabolism[J].Diabetes,2001,50:1540.
    [247]姚艳丽,冯凭.胰高血糖素样肽-1与Ⅰ型糖尿病治疗[J].生命的化学,2005,25(4):316-317.
    [248]陈杖榴.兽医药理学[M].北京,中国农业出版社,2001:145-149.
    [249]刘慧霞,何碧秀.糖皮质激素诱导胰岛素抵抗的分子机理[J].Journal of Chinese physician,2001,3(9):658-658.
    [250]杨桂枝,等.地塞米松和胰岛素诱导3T3-L1脂肪细胞胰岛素抵抗的分子机理[J].西南师范大学学报(自然科学版),2003,28(3):460-464.
    [251]郭启煜.游离脂肪酸导致胰岛素抵抗的机制[J].国外医学、病理、生理科学与临床分册,2002,22(1):80-83.
    [252]Bjorntorp P.The effect of lactic acid on adipose tissue metabolism in vitro[J].Acta Med Scand,1965,178:253-255.
    [253]邹晓庭,王友明,卢建军.二氢吡啶(diludin)抗蛋鸡脂肪肝的机理[J].中国兽医学报,2002,22(6):620.
    [254]陈安国,洪奇华,吴林友.半胱胺酸对生长育肥猪胴体品质的影响及其机理探讨[J].中国畜牧杂志,2004,40(2):11-12.
    [255]Stich V.[J].Journal of Clinical Endocrinology and Metabolism,1997,82(3):739-744.
    [256]Tanaka K,Ohtani S.[J].Japanese Journal of Zootechnical Science,1986,57(9):747-757.
    [257]Montrose-Rafizadeh C,Yang H,Wang Y,etal.Novel signal transduction and peptide Specifecity of glucagons-like peptide receptor in 3T3-L1 adipocytes.[J].Cell Physiol,1997,172:275-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700