用户名: 密码: 验证码:
T细胞因子4在毛囊毛乳头细胞中的表达及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景与目的
     位于毛囊基底部的特殊间质成分毛乳头细胞(dermal papilla cell,DPC)在毛囊发育和周期性再生调控中起主导作用。在胚胎期,DPC产生多种针对表皮的调节因子,促使表皮细胞增生分化形成毛囊。出生后毛囊的周期性再生过程中诱导上皮细胞增殖和分化的信号也来自DPC。诱导毛囊形成是DPC最为显著的功能特征,DPC功能的异常变化是导致毛囊周期失衡和脱发现象的主要起始因素。因此对DPC生物学功能变化的调控机制进行深入研究,对毛囊生物学和毛发疾病的研究都有重大的意义。相关研究先后鉴定出数十种与DPC相关的调控因子,这些调控因子在DPC和毛囊上皮细胞的相互作用中构成复杂的调控网络,但尚不能确定其中具有关键作用的因子或调控途径。
     研究表明,细胞在不同的生物学功能状态中表达的基因不同,基因表达的有序性、选择性是细胞功能变化的内在根据。因此,通过分析不同状态下DPC基因表达的差异,可为揭示DPC生物学功能调控规律提供重要信息。获取差异表达的基因将有助于了解DPC在生理和病理条件下功能变化的分子机制,为毛囊发育和毛囊周期性生长调控研究提供新的视野。
     在以往的研究中,本课题组使用抑制性消减杂交技术(SSH)结合SMARTTM cDNA合成技术对人活体组织中休止期毛囊DPC及生长期毛囊DPC mRNA的表达差异进行了研究。SSH方法通过两轮杂交和抑制性PCR,可对两个样本的基因表达进行有效对比。运用SMARTTM cDNA合成技术合成cDNA,使对活体组织毛乳头标本进行基因表达差异研究成为可能。最终我们成功建立了毛乳头差异表达cDNA文库,为进一步阐述DPC功能调控的分子机制奠定了基础。
     从所建立的毛乳头差异表达cDNA文库中,我们首次发现了Wnt信号通路关键信号分子T细胞因子4(T cell factor4,TCF4)作为生长期毛囊DPC的上调表达基因,并使用反向Northern实验对该结果进行了验证。TCF4在DPC中差异表达为首次发现,生物学意义尚不明了。本课题拟研究DPC在凝集性生长和非凝集性生长状态下的TCF4基因表达差异,以及对TCF4基因在DPC生物学功能调控中的作用进行实验研究。
     二、方法与结果
     1.TCF4基因在毛囊DPC中的表达
     首先应用原位杂交技术检测斑秃患者和正常人头皮组织的TCF4基因的表达;应用细胞免疫化学检测凝集性生长和非凝集性生长的人DPC的TCF4蛋白的表达;RT-PCR的方法从上述两种细胞的总RNA扩增TCF4基因。结果发现TCF4基因在正常头皮组织毛囊DPC表达,而在斑秃组织毛囊的DPC不表达;TCF4基因在凝集性生长期DPC中表达,而在非凝集性生长期DPC不表达。表明TCF4基因在生长期DPC中高水平表达。
     2.pcDNA3.0-TCF4表达载体的构建及表达
     为了研究TCF4基因对DPC增殖的影响,我们构建了pcDNA3.0-TCF4表达载体。首先从凝集性生长DPC中提取总RNA,RT-PCR获得带有酶切位点的TCF4基因克隆,亚克隆入pcDNA3.0载体中,并通过双酶切和测序进行鉴定。利用脂质体2000转染到DPC中进行稳定表达,检测转染前后TCF4表达的变化。以未转染的DPC作为对照组,分别用流式细胞仪检测DPC细胞周期的变化,Western blot检测DPC的肝细胞生长因子(hepatocyte growth factor,HGF)、干细胞生长因子(stem cell factor, SCF)的表达,MTT比色法检测细胞生长曲线,3H-TdR检测细胞增殖。结果表明,我们从DPC中获得TCF4基因克隆并且成功构建了真核表达载体。经过稳定转染,DPC中TCF4在mRNA和蛋白表达水平上调。与对照组相比,DPC的增殖能力和相关细胞因子的分泌能力得到明显提高。结果表明,TCF4基因可以促进DPC增殖和分泌细胞因子的功能。
     3.RNA干扰抑制TCF4表达对DPC生物学功能的影响
     为了进一步探讨TCF4的表达对DPC细胞生物学功能的影响,我们采用化学合成法合成3对TCF4 siRNA,并转染DPC。采用半定量RT-PCR及Western blot分别从mRNA和蛋白质水平检测DPC TCF4的表达情况。以未转染siRNA的DPC作为对照组,用流式细胞仪检测DPC细胞周期的变化,Western blot检测DPC的胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)和SCF的表达,MTT比色法检测细胞生长曲线,3H-TdR检测细胞增殖。结果表明与空白对照组相比,3组序列的mRNA和蛋白质表达均有明显降低,以序列2组下降明显。细胞增殖能力均显著下降(P<0.05),IGF-1、SCF表达明显降低,而对照组无显著性差异。结果表明TCF4 siRNA能显著下调DPC TCF4的表达,降低DPC的增殖能力,进一步提示TCF4在DPC生长调控中可能起到重要作用。
     三、结论
     1. TCF4基因在生长期DPC中高表达。
     2. TCF4基因在DPC中过表达使其细胞周期、生长曲线明显改变,细胞增殖明显增强,并促进DPC分泌细胞因子。
     3.通过RNA干扰降低TCF4基因的表达,可使DPC细胞增殖减慢,相关细胞因子的分泌受到抑制。
     通过以上实验,为深入了解TCF4基因以及Wnt信号在毛囊周期性调控中的作用和机制奠定了基础。
Backgrounds and Objectives
     Dermal papilla cells (DPC), located in basement of hair follicle, play an important role in morphology development and cycle regulation of hair follicle. During the embryo period, DPC secret various cytokines to promote proliferation of epidermal cells and formation of hair follicle. After birth, the main biological function of the DPC is to induce the hair follicle formation. The abnormality of the DPC function can cause the imbalance of follicle growth cycle and hair loss. It is meaningful for us to study the biological rule of DPC in hair follicle. Recent studies have found that DPC were related to several kinds of regulating factors, which constituted a complicated network. So far, we cannot identify the key factor in this network.
     Studies have proved that cells in the different biological function status express different genes. Therefore, the analysis of the different genes expressed by DPC can reveal the molecule mechanism of DPC in different biological functions status, which provide new ways to study the regulation of hair follicle growth.
     In previous work, we've identified the differential genes expressed by anagen dermal papilla and telogen dermal papilla by using suppression subtractive hybridization(SSH) and SMART~(TM) cDNA. SSH can be used to compare the different genes expressed by two samples by two rounds of hybridization and suppressive PCR. It is feasible to screen out the different expression genes in DPC through synthesizing cDNA by SMART~(TM) cDNA technology. Finally, we have constructed the cDNA library of DPC, which is the foundation for further studying the molecular mechanism of DPC in follicle growth cycle. It is the first time for us to find that T cell factor 4(TCF4) is differently expressed in DPC in different biological functions status. But its biological significance is unclear. In the cDNA library of DPC, we have found the expression of TCF4 gene was up-regulated in anagen dermal papilla, and the results have been confirmed by using reverse Northern. The aim of the study is to investigate the expression and function of TCF4 in DPC of hair follicle.
     Methods and Results
     1. The expression of TCF4 gene in DPC
     Firstly, hybridization in situ was used to examine the expression of TCF4 gene expressed in alopecia areata(AA) and normal human scalp tissue. Secondly, immunochemistry was used to examine the expression of TCF4 protein in DPC with and without aggregative behavious. Finally, RT-PCR was used to amplify TCF4 gene from the total RNA of DPC. We found that TCF4 gene expressed in DPC of normal human scalp, and it was not found in DPC of scalp from alopecia patients. These results indicated that TCF4 gene highly expressed in anagen DPC.
     2. The construction and expression of pcDNA3.0-TCF4 expression vector
     In order to study the effect of TCF4 in the proliferation of DPC, we constructed the pcDNA3.0-TCF4 expression vector. Firstly, we extracted the total RNA from the aggregative DPC. TCF4 gene was gotten by RT-PCR , and was inserted into the eukaryotic expression vector pcDNA3.0. The sequence and reading frame were confirmed by two restriction enzymes and sequencing.The recombinant vector pcDNA3.0-TCF4 was stably transfected in DPC and the expressive changes of TCF4 gene were detected. DPC without transfection was used to be as the control. The cell cycle was detected by flow cytometry.The concentrations of hepatocyte growth factor (HGF) and insulin growth factor1 (IGF-1) were detected by Western blot.We examined the growth curve by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and detected the proliferation of DPC by 3H-TdR. The results showed that TCF4 gene was cloned from DPC and its eukaryotic expression vector was constructed successfully. The mRNA and protein levels of TCF4 were up-regulated respectively after the recombinant vector being transfected into DPC. The proliferation of DPC and secretion of cytokines were increased. Those suggested that TCF4 gene might promote the proliferation and secretion of DPC.
     3.The effects of TCF4 siRNA in the biological functions of DPC
     In order to study the role of TCF4 in the biological functions of DPC, we synthesized three pairs of TCF4 siRNA and transfected them into DPC.The mRNA and protein expression of TCF4 were analyzed by semi-quantified RT-PCR and Western blot, and DPC without transfecting was used to be as the control. Flow cytometry was used to detect the growth cycle of DPC. Western blot was used to detect the expression of the concentration of stem cell factor (SCF) and IGF-1.MTT and 3H-TdR were used to detect the proliferation capacity of DPC.The results showed that mRNA and protein expression were reduced respectively in siRNA group, but no change was found in control groups.The expressions of SCF, IGF-1 were decreased significantly and the proliferation capacities were inhibited in the RNA interference group. From our results, we can concluse that TCF4 siRNA can down-regulate the expression of TCF4 and lower the proliferation of DPC. So, TCF4 plays an important role in regulating and controlling the growth of DPC.
     Conclusions
     1. The expression of TCF4 gene is up-regulated in anagen DPC.
     2.The overexpression of TCF4 in DPC chang cell cycle and growth curve,enhance the proliferation of DPC and promote the secretion of cytokines.
     3.The expression of TCF4 gene is decreased by silencing the TCF4 gene, which step down the proliferation of DPC and inhibited the secretion of relevant cytokines.
     The present experiment lay the foundation for further study the role of TCF4 gene and Wnt signal pathway in regulating and controlling the follicle cycle.
引文
1 Peus D,Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin. Dermatol Clin[J]. 1996;14(4):559.
    2 Yang XC(杨希川), Hao F, Zhong BY, et al. Identification of differentially expressed genes in anagen dermal papilla by suppression subtractive hybridization[J]. Chin Med J (Engl). 2004;117(4):371-375.
    3 Oro AE, Higgins K. Hair cycle regulation of Hedgehog signal reception[J]. Dev Biol. 2003;255(3):238-248.
    4 Thomson M, McCarroll J, Bond J, et al. Parathyroid hormone-related peptide modulates signal pathways in skin and hair follicle cells[J]. Exp Dermatol. 2003(2);12:389-395.
    5 Kishimoto J.Burgeson RE.Morgan1 BA.et al. Wnt signaling maintains the hair-inducing activity of the dermal papilla[J]. Genes Dev. 2000;14(10):1181-1185.
    6 Cho EA, Dre GR. TCF4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs[J]. Mech Dev. 1998;77(9):218-228.
    7 Gregorieff A,Grosschedl R,Clevers H,et al. Hindgut defects and transformation of thegastro-intestinal tract in Tcf4(-/-)/Tcf1(-/-) embryos[J]. EMBO J. 2004;23(8):1825-1833.
    8 Hu MC, Rosenblum ND. Smad1. Bta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription[J]. Develop. 2005;132(1):215-225.
    9 Zhao DH,Hong JJ,Guo SY,et al. Aberrant expression and function of TCF4 in the proliferation of hepatocellular carcinoma cell line BEL-7402[J]. Cell Res. 2004;14(1):74-80.
    10 Zhou C,Liu S,Zhou X,et al. Overexpression of human pituitary tumor transforming gene (hPTTG),is regulated by beta-catenin /TCF pathway in human esopHageal squamous cell carcinoma[J]. Int J Cancer. 2005;113(6):891-898.
    11 Zhu HX,Zhang G,Wang YH,et al. Indomethacin induces apoptosis through inhibition of survivin regulated by beta-catenin/TCF4 in human colorectal cancer cells[J]. Bri J Can.2004;23(7):737-741.
    12 Pradeep A,Sharma C,Sathyanarayana P,et al. Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric[J]. cancer cells. 2004;23(20):3689-3699.
    13 Ghiselli G,Coffee N,Munnery CE,et al. The cohesin SMC3 is a target the for beta-catenin/TCF4 transactivation pathway[J]. J Biol Chem. 2003;278(22):20259-20267.
    14 Levy L,Neuveut C,Renard CA,et al. Transcriptional activation of interleukin-8 by beta-catenin -Tcf4[J]. J Biol Chem. 2002;277(44):42386-42393.
    1 Jahoda C, Oliver RF. The growth of vibrissa dermal papilla cells in vitro[J]. Br J Dermatol. 1981;105(3):623-627.
    2钟白玉,杨卫兵,杨希川,等.二步酶消化法分离人头皮DPC[J].中华皮肤科杂志. 2003;30(2):406.
    3伍津津,刘荣卿,叶庆佾,等. DPC高效培养方法探讨[J].中华皮肤科杂志. 1997;30(4):383-385.
    4程波,刘荣卿,伍津津,等.改良DPC培养法[J].中华皮肤科杂志. 2001;34(5):387-388.
    5杨希川,郝飞,杨卫兵,等.抑制性消减杂交筛选生长期DPC差异表达基因[J].中华皮肤科杂志. 2004;37(11):645-647.
    6杨希川,郝飞,程波,等.应用抑制性消减杂交方法构建斑秃毛乳头差异表达基因文库[J].中华医学美学美容杂志. 2002;8(4):196-200.
    7 Lee Y J, Swencki B, Shoichet S, et al. A possible role for the highmobility group box transcription factorTCF-4 in vertebrate gut epithelial cell differentiation[J]. J Biol Chem. 1999;274(3): 1566-1572.
    8 Roose J, Clevers H. TCF transcription factors: molecular switches in carcinogenesis. Biochimica et BiopHysica Acta/Reviews on Cancer[J]. Biochim Biophys Acta. 1999;14(24):23-37.
    9 SpringerK, BrownM, StulbergDL. Common hair loss disorders[J]. Am Fam Physician. 2003;68(1):93-100.
    10 Reynolds AJ,Lawrence C,Cserhalmi-Friedman PB, et al. Transgender induction of hair follicles[J]. Nature. 1999;402:33-34.
    11 Lichti U, Weinberg WC, Goodman L, et al. In vivo regulation of murine hair growth:insights from grafting defined cell populations onto nude mice[J]. J Invest Dermatol. 1993;101(6):124-129.
    12 Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction[J]. nat cell biol.1999;1(3):157-163.
    13麦跃,刘荣卿,伍津津,等。DPC凝集性生长对诱导毛囊样结构形成能力的影响[J]。第三军医大学学报.2004; 26(13):1197-1200.
    14 Song Z Q, Hao F, Yang W B, et al. Screening and analysis of differentially expressed genes of dermal papillae cells with aggregative behaviour[J]. J Med Co PLA. 2004;19(1):15-21.
    15王继文,宋志强,杨希川,等。DPC凝集性生长的基因表达及HSPC016全长克隆分析[J]。中华医学杂志。2004;84(18):1513-1517.
    16 Song Z Q ,Wang J W ,Hao F, et al. Identification of differentially expressed genes HSPC016 in dermal papilla cells with aggregative behaviour[J]. Arch Dermatol Res. 2005;297(4):114-120.
    17 Roh C, Tao Q, Lyle S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin[J]. Physiol Genomics. 2004;19(2):207-217.
    18 O'Shaughnessy RF, Christiano AM, Jahoda CA. The role of BMP signalling in the control of ID3 expression in the hair follicle[J]. Exp Dermatol. 2004;13(10):621-629.
    19 Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle[J]. Dermatol Sci. 2004;35(1):9-18.
    20 Duval A, Busson Leconiat M, Berger R, et al. Assignment of the TCF-4 gene (TCF7L2) to human chromosome band 10q25.3[J]. Cytogenet Cell Genet. 2000;88(3-4):264-265.
    21 KolligsF T, Hu G, Dang C V, et al. Neoplastic transformation ofRK3E by mutant beta-catenin requires deregulation of Tcf/Leftranscription butnot activation of c-myc expression[J]. Mol Cell Bio. 1999;19(8):5696-570.
    22 Toshihiko,Toyofuku, Zhang H. Wnt/frizzled-2 Signalin g Induces Aggregation and Adhesion among Cardiac Myocytes by Increased Cadherin–?-Catenin Complex[J]. J Cell Biol. 2000;150(10):225-242.
    1 Ishitani T, Ninomiya J,Matsumoto,et al. Regulation of lympHoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/ beta -catenin signaling[J]. Mol Cell Biol.2003;(4):1379-1389.
    2 Hayashi S, Rubinfeld B,Souza B,et al. A DrosopHila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates b-catenin but its rygotic expression is not essential for the regulation of Armadillo. Proc[J]. Natl Acad Sci.1997;94(3):242-247.
    3 Dierick H, Bejsovec A. Cellular mechanisms of wingless/Wnt signal transduction[J]. Curr Dev Biol. 1999;43(7):153-190.
    4 Poy F,Lepourcelet M,Shivdasani R,et al. Structure of a human Tcf4-beta-catenin complex[J]. Nat Struct Biol. 2001;8(2):1053-1057.
    5 C Jung,R-S Kim,Zhang H,et al. HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation[J]. Bri J Cancer.2005;92(8):2233-2239.
    6 Hurlstone A, Clevers H. T-cell factors: turn-ons and turn-offs[J]. EMBO J. 2002;21(10):2303-2311.
    7 Shulewitz M, Soloviev I,Wu T, et al. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer[J]. Oncogene. 2006;25(31):4361-4369.
    8 Sun P,Xiong H,Kim TH, et al. Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells[J]. MolPHarmaco. 2006;69(2):520-531.
    9 Liu T,Lee Y N,Craig C,et al. Activation of the -Catenin/Lef-Tcf Pathway Is Obligate for Formation of Primitive Endoderm by Mouse F9 Totipotent Teratocarcinoma Cells in Response to Retinoic Acid [J]. Biol Chem. 2002;277(34):30887-30891.
    10伍津津,刘荣卿,唐书谦,等.人DPC体外培养生长曲线观察[J].中华皮肤科杂志. 2001;34(1):50-52.
    11夏汝山,郝飞,尹锐,等. HSPCO16重组蛋白对DPC增殖的影响.中国皮肤性病学杂志, 2007;21(1):13.
    12 Carine K, Antony Z, Christian S,et al. Keratinocyte transcriptional regulation of the human c-Myc promoter occurs via a novel Lef/Tcf binding element distinct from neoplastic cells[J]. FEBS Letters. 2007;581(10):1969-1976.
    13 A. Lampen, M. Leifheit, J. Voss,et al. Molecular and cellular effects of cis-9, trans-11-conjugatedlinoleic acid in enterocytes: Effects on proliferation, differentiation, and gene expression[J]. Mol Cell Bio Hum Dis Ser. 2005;1735(1):30-40.
    14 Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cel . Nature[J]. 1999,398(6726):422-424.
    15 Liu D X,Nath N,Chellappan SP,et al. Regulation of neuron survival and death by p130 and associated chromatin modifiers[J]. Genes Dev. 2005;19(6):719-732.
    16 Chiarugi V,Magnelli L, Cinelli M, et al. Apoptosis and the cell cycle[J]. Cell Mol Biol Re. 1994;40:603.
    17 Koff A,C ross F,FisherA,et al. Human cyclin E an new cyclin that interacts with two memember of the CDK2 gene family[J]. Cell. 1991;66(9):1217.
    18 Koff A,Giordano A, Desai D,et al. Formation and active tion of a cyclin E cdk2 complex during the G1pHase of the human cell cycle[J]. Science. 1992;257(4):1689.
    19 Lida H, Towatari M, Tanimo M, et al. Overexpression of cy-clinE in acute myelogenous leukemia[J]. Blood, 1997;90(7):3707.
    20 Sherr C J.Mammalian G. Cyclins[J]. Cell. 1993;73(2):105.
    1 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double stranded in Caenorhabditis elegans[J]. Narure. 1998;391(2):6669.
    2 Elbashir, S M, Lendeckel, W, and Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs[J]. Genes Dev. 2001;15(5):188.
    3 Micura, R. Small interfering RNAs and their chemical synthesis[J]. Chem Int Ed Engl. 2002; 41(7):2265.
    4 Zhou H, Xia X G, Xu Z. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi[J]. Nucleic Acids. 2005;33(6):62.
    5 Sharp PA. RNA interference[J]. Ge dev. 2001;15(5):485-490.
    6 Reynolds A, Leake D,Boese Q,et al. Rational siRNA design for RNA interference[J]. Nat Biotechnol. 2004;22(8):326-330.
    7 Amarzguioui M,Prydz H. An algorithm for selection of functional siRNA sequences[J]. Biochem Biop H Res Co. 2004;3(16):1050—1058.
    8 Chalk A M,Wahlestedt C,Sonnhammer E. Improved andautomated prediction of effective siRNA[J]. Biochera BiopH Res Co. 2004;319(3):264-274.
    9 Overhof M,Alken M,Far R K K,et al. Local RNA target structure influences siRNA efficacy:a systematic global an alysis[J]. J M ol Biol. 2005;348(9):87l-881.
    10 Luo K Q, Chang D C. The gene silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region[J]. Biochera BiopH Res Co. 2004;318(5):303-310.
    11 Schubert S, Grunweller A,Erdmann V A. Local RNA target structure influences siRNA efficacy: systematic an alysis of intentionally designed binding regions[J]. J M ol Biol. 2005; 348 (4):883-893.
    12 Patzel Rutz S,Dietrich I,Koberle C,et al. Design of siRNAs producing unstructured guide -RNAs results in improved RNA interference eficiency[J]. Nat Biotechno1. 2005;23(11):1440-1444.
    13 FUJ IE T, KA TOH S,OURA H, et al. The chemotactic effect of a dermal papilla cell derived factor on outer root sheath cells[J]. J Dermatol Sc i. 2001;(4):206-212.
    14 BOTCHKAREV V A , K ISH IMOTO J. Molecular contro l of epithelial mesenchymal interactions during hair fo llicle cycling[J]. J Investig Dermatol Symp Proc. 2003;8(1):46-55.
    15 H IBBERTS N A ,M ESSEN GER A G, RANDALL V A. Dermal papilla cells derived from beard hair follicles secrete more stem cell factor(SCF) in culture than scalp cells or dermal fibroblasts[J]. Biochem BiopHys Res Commun. 1996;222(2):401-405.
    16 PEU S D,P ITTEL,KOW M R. Growth factors in hair organ development and the hair growth cycle[J]. Dermatol Cl in. 1996;14(4):559-572.
    17 Christle D, Axelle C, Marie B E. Insulin and IGF-1 stimulate theβ-catenin pathway through two signalling cascades involving GSK-3 inhibition and Ras activation[J]. oncogene. 2001;20 (4):252-259.
    18 Isabelle C B, Danielle P, Marjorie B. Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8[J]. Experi Hematol. 2005;33(11): 1299-1308.
    19 Uma N M, Susanne M, Stacie B. Comparative genomic hybridization of hepatocellular carcinoma: Correlation with fluorescence in situ hybridization in paraffin-embedded tissue[J]. Molecular Diagnosis. 2001;6(1):27-37.
    20 Hiroko O,Nancy D.S,PHuongnga T. Molecular analyses of liver tumors in c-myc transgenic mice and c-myc and TGF-αdouble transgenic mice[J]. Cancer Letters. 1996;106(1):43-49.
    [1] Chong ZZ, Li F,Maiese K. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways[J]. Cell Signal. 2007;19(6):1150-1162.
    [2] Chong ZZ, Shang Y C, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling[J]. Curr Neurovasc Res. 2007;4(3):194-204.
    [3] Li F, Chong ZZ., Maiese K. Winding through the WNT pathway during cellular development and demise[J]. Histol Histopathol. 2006;21(1):103-124.
    [4] Speese SD,Budnik V. Wnts: up-and-coming at the synapse[J]. Trends Neurosci. 2007;30(6):268-275.
    [5] Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance[J]. Curr Opin Neurobiol. 2000;10(3): 392-399.
    [6] Wodarz A., Nusse R. Mechanisms of Wnt signaling in development[J]. Annu Rev Cell. 1998;11(14): 59-88.
    [7] Chong ZZ, Kang JQ, Maiese K. Akt1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-x(L) and caspase 1, 3, and 9[J]. Exp Cell Res. 2004;296(2): 196-207.
    [8] Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell. 1982, 31(1): 99-109.
    [9] Palpant NJ, Yasuda S, MacDougald O, et al. Non-canonical Wnt signaling enhances differentiation of Sca1+/c-kit+ adipose-derived murine stromal vascular cells into spontaneously beating cardiac myocytes[J]. J Mol Cell Cardiol. 2007;43(3):362-370.
    [10] Ikeya M, Lee SM, Johnson J E, et al. Wnt signalling required for expansion of neural crest and CNS progenitors[J]. Nature. 1997;389(6654): 966-970.
    [11] Niemann S, Zhao C, Pascu F,et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family[J]. Am J Hum Genet. 2004;74(3): 558-563.
    [12] Bakre MM, Hoi A, Mong JC, et al. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation[J]. J Biol Chem. 2007;282(43):31703-31712.
    [13] Liu H., Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging[J]. Science. 2007;317(5839): 803-806.
    [14] Li F, Chong ZZ, Maiese K. Vital elements of the Wnt-frizzled signaling pathway in the nervous system[J]. Curr Neurovasc Res. 2005;2(4):331-340.
    [15] Axelrod JD, Miller JR, Shulman JM,et al. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways[J]. Genes Dev. 1998,12(16): 2610-2622.
    [16] Itoh K, Brott BK, Bae GU,et al. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling[J]. J Biol. 2005;4(1): 3.
    [17] Foord SM, Bonner TI, Neubig RR, et al. International Union of PHarmacology. XLVI. G protein-coupled receptor list[J]. PHarmacol Rev. 2005;57(2): 279-288.
    [18] Melkonyan HS, Chang WC, Shapiro, et al. SARPs: a family of secreted apoptosis related proteins[J]. Proc Natl Acad Sci U S A. 1997;94(25): 13636-13641.
    [19] Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance[J]. Curr Opin Neurobiol. 2000;10(3): 392-399.
    [20] Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility[J]. Nat Rev Genet. 2007; 8(2): 126-138.
    [21] Ma L, Wang HY. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway[J]. J Biol Chem. 2006; 281(41): 30990-31001.
    [22] Wehrli M, Dougan ST, Caldwell K, et al. arrow encodes an LDL receptor-related protein essential for Wingless signalling[J]. Nature. 2000; 407(6803): 527-530.
    [23] Bejsovec A. Wnt pathway activation: new relations and locations[J]. Cell. 2005;120(1):11-14.
    [24] Hirabayashi Y, Itoh Y, Tabata H, et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells[J]. Development, 2004;131(12): 2791-2801.
    [25] Adachi K, Mirzadeh Z, Sakaguchi M, et al. beta-Catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone[J]. Stem Cells. 2007; 25(11): 2827-2836.
    [26] Bakre MM, Hoi A, Mong J C,et al. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation[J]. JBiol Chem, 2007; 282(43): 31703-31712.
    [27] Hasegawa S, Sato T, Akazawa H. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene[J]. Proc Natl Acad Sci U S A. 2002;99(1): 297-302.
    [28] Huelsken J, Vogel R, Erdmann B, et al.β-catenin controls hair folli-cle morpHo genesis and stem cell differentiation in the skin[J]. Cell. 2001;4(105):533
    [29] Gandarillas A, Watt FM. C-Myc promotes differentiation of human epidermal stem cell[J]. Genes Dev.1997;11(21):2869
    [30] Liu D X,Nath N,Chellappan SP,et al. Regulation of neuron survival and death by p130 and associated chromatin modifiers[J]. Genes Dev. 2005;19(6):719- 732.
    [31] Smith K, Bui TD, Poulsom R,et al. Up-regulation of macropHage Wnt gene expression in adenoma-carcinoma progression of human colorectal cancer[J]. Br Cancer. 1999;81:496-502
    [32] Aguilera O, Fraga MF, Ballestar E,et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer[J]. Oncogene.2006;25:4116-4121
    [33] Roman-Gomez J, Jimenez-VelascoA, Agirre X, et al Transcriptional silencing of theDickkopfs-3 (DKK-3) gene byCpG hyperm ethylation in acute lympHoblastic leukaemia[J]. Br J Cancer. 2004;91(4): 707-713
    [34] Maier T,Janssen A, Schmidt R, et al. Targeting theβcatenin/APC pachway:a novel mechanism to explain the rydooxy-genase-2-independent anticarcinogenic effeca of celecoxib in human colon carcinoma cells[J]. FASEB J. 2005;19: 1353-1355
    [35] Terstappen GC, Gaviraghi G, Caricasole A. The WNT signaling pathway as a target for the treatment of neurode-generative disorders[J]. IDrugs. 2006;9(1): 35-38.
    [36] Tulac S, Nayak NR, Kao LC,et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium[J]. J Clin Endocrinol Metab. 2003;88(8):38606.
    [37] Dihlmann S, von KnebelDoeberitz M. WNT/beta-catenin pathway as amolecular target for future anti-cancer therapeutics[J]. Int J Cancer. 2005; 113(4): 515-524.
    [38] Nagayama S,Fukukawa C,Katagiri T,et al.Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas[J]. Oncogene. 2005;24(41):6201-6212
    [39] Wu Y, Renard CA, Apiou F, et al.Recurrent allelie deletions at mouse chromosomes 4 and 14 in myc-inducced liver tumors[J]. Oncogene. 2002; 21(10): 1518-1526.
    [40]王宏,黎卫平,高云荷.子宫内膜癌中β-连环素表达及预后的关系[J].临床与实验病理学杂志. 2003;19(2):156-159.
    [1] D.R. Nyholt, NA Gillespie, A.C. Heath, et al. Martin, Genetic basis of male pattern baldness[J]. J Invest Dermatol. 2003;121(6):1561–1564.
    [2] B.L. Devine, R Fife , P.M. Trust, Minoxidil for severe hypertension after failure of other hypotensive drugs[J]. Br Med J. 1977;2:667–669.
    [3] V.E. Prive. Drug Therapy: Treatment of Hair Loss[J]. Ne J M. 1999;341: 964–973.
    [4] J.T. Headington, E. Novak. Clinical and histologic studies of male pattern baldness treated with topical minoxidil[J]. Curr Ther Res.1984;36: 1098–1106.
    [5] Li M, A. Marubayashi, Y. Nakaya, et al. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: Possilbe involvement of sulfonylurea receptor 2B as a target of minoxidil[J]. J Invest Dermatol.2001;117:1594–1600
    [6] H.I. Kats, N.T. Hien, S.E. Prawer. Long-term efficacy of topical minoxidil in male pattern baldness[J]. J Am Acad Dermatol. 1987;16: 648–652.
    [7] R.L. Rietschel, S.H. Duncan, Safety and efficacy of topical minoxidil in the management of androgenetic alopecia[J]. J Am Acad Dermatol. 1987;16: 677–685.
    [8] E.A. Olsen, M.S. Weiner, I.A. Amara ,et al. Five-year follow-up of men with androgenetic alopecia treated with topical minoxidil[J]. J Am Acad Dermatol. 1990;22: 643–646.
    [9] V.H. Price, E. Menefee, P.C. Strauss. Changes in hair weight and hair count in men with androgenetic alopecia, after application of 5% and 2% topical minoxidil, placebo, or no treatment[J]. J Am Acad Dermatol. 1999;41: 717–721.
    [10] J. Shapiro, V.H. Price. Hair regrowth: Therapeutic agents[J]. Dermatol Ther. 1998;16: 341–356.
    [11] C. Wilson, V. Walkden, S. Powell, et al. Contact dermatitis in reaction to 2% topical minoxidil solution[J]. J Am Acad Dermatol. 1991;24:643–646.
    [12] D Van Neste, V. Fuh, P. Snachez-Pedreno, et al. Finasteride increases anagen hair in men with androgenetic alopecia[J]. Br J Dermatol. 2000;143:804–810.
    [13] D Whiting, J Waldstreicher, M Sanchex, et al. Measuring reversal of hair miniaturisation in androgenetic alopecia by follicular counts in horizontal sections of serial scalp biopsies: Results of finasteride 1 mg treatment of men and post menopausal women[J]. J Invest Dermatol. 1999;4:282–284.
    [14] V.H. Price, E. Menefee, M. Sanchex, et al. Changes in hair weisth and ahir count in men with androgenetic alopecia after treatment with finasteride 1 mg daily[J]. J Am Acad Dermatol. 2002;46:517–523.
    [15] L Drake, M Hordinsky, V Fiedler, et al. The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia[J]. J Am Acad Dermatol. 1999;41:550–554.
    [16] J.N. Roberts, V. Fiedler, J Imperato-McGinley, et al. Clinical dose ranging studies with finasteride, a type 2 5αreductase inhibitor, in men with male pattern hair loss[J]. J Am Acad Dematol. 1999;41:555–563.
    [17] K.D. Kaufman, E.A. Olsen, D. Whiting, et al. Finasteride in the treatment of men with androgenetic alopecia[J]. J Am Acad Dermatol. 1998;39:578–579.
    [18] J. Leyden, F. Dunlap, B. Miller, et al. Finasteride in the treatment of men with frontal male pattern hair loss[J]. J Am Acad Dermatol. 1999;40:930–937.
    [19] The Finasteride Male Pattern Hair Loss Study G. Long-term (5year) multinational experience with finasteride 1 mg in the treatment of men with androgenetic alopecia[J]. Eur J Dermatol. 2002;12:38-49
    [20] D.B. Stough, N.A. Rao, K.D. Kaufman and C. Mitchell, Finasteride improves male pattern hair loss in a randomized study in identical twins[J]. Eur J Dermatol. 2002;12: 32–37
    [21] K.E. Thai and R.D. Sinclair, Finasteride for female androgenetic alopecia[J]. Br J Der- matol. 2002;147 (4):812–813.
    [22] A. Tosti, B.M. Piraccini , M. Soli. Evaluation of sexual function in subjects taking finasteride for the treatment of androgenetic alopecia[J]. J Eur Acad Dermatol Venereol. 2001; 15:418–421
    [23] PHysicians circular for Propecia. In. West Point: Merck. 1997.
    [24] R.D. Sinclair , R.P.R. Dawber, Androgenetic alopecia in men and women[J]. Clin Der- matol .2001;19:167–178.
    [25] R.M. Trueb , P. Itin. Oral finasteride in treatment of androgenetic alopecia in the man in routine general practice in Switzerland[J]. Schweiz Rundsch Med Prax .2001;29(90):2087- 2093.
    [26] S.R. Tollin, H.N. Rosen, K. Zurowski, et al., Finasteride therapy does not alter bone turnover in men with benign prostatic hyperplasia– a Clinical Research Center study[J]. JClin Endocrinol Metab.1996,81:1031–1034.
    [27] A.M. Matsumoto, L. Tenover, M. McClung, et al. The long-term effect of specific type II 5α-reductase inhibition with finasteride on bone mineral density in men: Results of a 4-year placebo controlled trial[J]. J Urol. 2002;176:2105–2108.
    [28] M.S. Wade , RD Sinclair. Reversible painful gynaecomastia induced by low dose finasteride (1 mg/day)[J]. Austral J Dermatol .2000;41:5.
    [29] J. Ferrando, R. Grimalt, M. Alsina, et al. Unilateral gynaec- omastia induced by treatment with 1 mg of oral finasteride[J]. Arch Dermatol.2002;138:543–544.
    [30] A. Chong, P. Foley, R Sinclair, et al. Viewpoints in Dermatology: Second Cite. A review of recent journal highlights[J]. Clin Exp Dermatol. 2004; 29:107–109.
    [31] M. Sovak, AL Seligson , R. Kucerova, et al. Fluridi, a rationally designed topical agent for androgenetic alopecia: First clinical experience[J]. Dermatol surg.2002;28:678–685.
    [32] M.E. Sawaya. Novel agents for the treatment of androgenetic alopecia[J] Semin Cutan Med Surg.1998,17:276–283.
    [33] Andriol GL, Kirby R,RC Shiell. Dutasteride (Avodart) for Benign Prostatic Hyperplasia [J]. Med Lett Drugs Ther. 2002; 44:109–110.
    [34] R.C. Shiell. Modern hair restoration surgery[J]. Clin Dermatol .2001;19:179–187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700