用户名: 密码: 验证码:
CGRP在人骨髓间充质干细胞增殖中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降钙素基因相关肽(CGRP)是一种在骨组织中广泛分布的神经肽,已发现,CGRP与骨组织的增殖、塑形密切相关。通过组织学研究,在骨折愈合试验中观察到,骨组织中,含CGRP的神经纤维主要分布在骨生成和塑形活跃的区域,例如在长骨的干骺端分布就比骨干部位高约10倍,且神经分布及CGRP含量的变化与骨折痊愈的过程紧密相关。研究证实,CGRP能显著促进成骨细胞增殖,增强成骨活性。
     骨髓间充质干细胞(MSCs)是成骨细胞重要的来源干细胞,也是骨组织工程的主要种子细胞来源。MSCs的增值能力,直接影响骨的生长、塑形和修复,也对组织工程骨的构建效能和成骨能力起着决定性的作用。因此,对影响MSCs增殖的因素的研究,一直是骨科界和组织工程学界研究的重点。
     目前的研究已经发现,MSCs在骨组织的分布,主要集中在干骺端的红骨髓中,这与CGRP能的神经分布相符合,相关研究也发现,CGRP能促进骨髓有核细胞集落的形成。但是关于CGRP对MSCs的增殖的影响及其机制,仍有大量研究需要深入。
     第一部分人骨髓间充质干细胞表面CGRP受体存在证据
     目的:寻找人骨髓MSCs表面存在CGRP受体的确切证据(从基因及蛋白质表达水平)
     方法:原材料采自健康志愿者骨髓,应用梯度离心法及贴壁培养筛选,获得MSCs细胞。体外培养扩增后,取对数生长期细胞,采用RT-PCR技术进行细胞CGRP受体mRNA表达检测;采用杂交瘤技术,获得兔抗人CGRP受体蛋白抗体,利用该抗体,使用Westernblot技术进行MSCs表达CGRP受体蛋白检测。
     结果:采用梯度离心及贴壁培养筛选,细胞纯度较高,表面标记稳定,且与文献报道相符;经RT-PCR检测结果,证实人骨髓MSCs表达CGRP受体mRNA;采用杂交瘤技术获得的兔抗人CGRP受体抗体,结构稳定,滴度较高,能较好的满足Westernblot试验需要;采用Westernblot的DAB显色法,检测出人MSCs表达CGRP受体蛋白,且表达量较大。
     结论:采用梯度离心及贴壁培养法获得MSCs纯度较高,增殖效果稳定;经过RT-PCR检测,证实MSCs表达CGRP受体mRNA;Western-blot检测证实,MSCs表达CGRP受体蛋白。
     第二部分CGRP对人骨髓间充质干细胞增殖的作用
     目的:观察在添加外源性CGRP的情况下,MSCs增殖的改变,并证实这种改变与添加CGRP间的关联性
     方法:MSCs获取仍采自健康志愿者骨髓,应用梯度离心法及贴壁培养筛选,获得MSCs细胞。分组采用对照组、CGRP组(根据CGRP添加的终浓度分为10-7mol/ L、10-8mol/ L和10-9mol/ L三组),以MTT法检测细胞增殖曲线变化;体外培养扩增后,取相同时相点,光镜下进行细胞形态观察;将各组细胞在第三代传代后72小时的对数生长期,进行细胞周期检测,观察各组细胞处在DNA合成期及细胞分裂前期的比例。
     结果:经过对照培养,细胞增殖同时相点,对照组细胞细胞密度低于各实验组,细胞形态各组均较为典型、规则;细胞周期检测,各实验组处于细胞分裂前期及DNA合成期细胞比例明显高于对照组,各实验组间该比例为,10-8mol/ L>10-9mol/ L组>10-7mol/ L,但各实验组间差异无统计学意义;MTT组检测,在对数生长期,各实验组增殖速率高于对照组,实验组间细胞增殖速率为10-8mol/ L>10-9mol/ L组>10-7mol/ L。10-8mol/ L速率与另外两实验组间差异有统计学意义,其余两组间无显著性差异
     结论:采用MTT法,证实添加外源性CGRP能促进对数增殖期MSCs细胞增殖速度;采用流失细胞法检测,证实,外源性CGRP能提高MSCs细胞处于DNA合成和有丝分裂前期的比例。
     第三部分: CGRP对人骨髓间充质干细胞细胞信号传导的变化的影响的研究
     目的:观察在添加外源性CGRP的情况下,MSCs胞间通讯连接的改变,并验证改变与CGRP的关联性
     方法:MSCs获取仍采自健康志愿者骨髓,应用梯度离心法及贴壁培养筛选,获得MSCs细胞。分组采用对照组、CGRP组和拮抗剂组,放射免疫法检测各组胞间信号分子cAMP含量改变;使用CFDA染料,应用激光共聚焦技术观察细胞间缝隙连接和胞间信号传导能力变化;采用荧光定量PCR技术检测缝隙连接分子Cx43mRNA表达变化。
     结果:放免法检测结果显示,各组间,以CGRP组胞间cAMP含量最高,与其余两组间存在统计学差异;CGRP结合拮抗剂组的含量高于对照组,后两者间无统计学差异。采用激光共聚焦技术,结合CFDA生物活性染料,显示CGRP组荧光信号恢复幅度较对照组及拮抗剂组大,差异有显著性(P<0.05);拮抗剂组恢复幅度较对照组大,但两组间差异不具有显著性(P>0.05)。三组细胞Cx43mRNA表达,CGRP组表达量高于抑制剂组及对照组,差异有显著性(P<0.05);抑制剂组表达量高于对照组,两者间差异无显著性。
     结论:CGRP能促进MSCs胞间缝隙连接,促进缝隙连接蛋白的基因表达。
     第四部分:CGRP对人骨髓间充质干细胞细胞增殖相关因子的作用
     目的:研究在添加外源性CGRP的情况下,与MSCs增殖及分化相关的细胞因子IGF-1、BMP-2的受体mRNA表达变化;研究外源性CGRP是否造成MSCs对成骨诱导因子BMP-2的mRNA表达。
     方法:MSCs获取、分离及培养方法同前。实验分组为对照组、CGRP组和拮抗剂组,采用荧光定量PCR技术分别检测增殖相关因子IGF-1及其受体mRNA表达;以及成骨分化因子BMP-2及其受体mRNA表达。
     结果:采用相对定量技术,CGRP组MSCs表达IGF-1、IGF-1受体以及BMP-2受体mRNA量高于拮抗剂组及对照组,且差异有统计学意义。而三组在表达BMP-2 mRNA无显著差异,且Ct值≥35。
     结论:外源性CGRP能够提高MSCs表达IGF-1、IGF-1受体以及BMP-2受体mRNA,而不能诱导MSCs表达BMP-2mRNA。三组BMP-2的mRNA平均Ct值均在35左右,可以认为阴性表达。
Calcitonin gene-related peptide(CGRP) is a kind of peptide that existes widely in the bone tissue.It has been proved that CGRP has affect on the proliferation and formation .In the period of bone fracture healing ,nervouses fiber containing CGRP were observed in the histological way.Nervous fiber containing CGRP distribute mainly in the area that bone grows and remodifies actively.For example ,the content of nervous containing CGRP in the metaphysis of long bone is 10 times higher than the content in the backbone.And the nervous distribut and the content of CGRP have high correlation with the period of fracture healing.There has evidence that CGRP can significantly stimulate the proliferation of osteoblast,and promote the avtivety of osteoblast.
     Mesenchymal stem cells(MSCs)is one of the sources stem cell of osteoblast.And it is also be the main seed cell in the tissue engineering bone.The ability of proliferation of MSCs will affect the growth , modify and repairation of bone directely,and it also has decisive affect on construction and osteogenic ability of tissue engineering bone.So ,study in this field ,is always be the emphersize on the orthopedic field and tissue engineering field.
     As all know,MSCs distribute mostly in the red bone marrow.which coincide the nervous distribution which contains CGRP.People has found that CGRP can promote colony of the bone marrow karyocyte.But there still has much work should do in this field. Part I The evidence of CGRP receptor on MSCs
     Objective:To get specifical evidence that CGRP receptor exist on human MSCs
     Methods:Bone marrow is come from healthy young volunteers.MSCs were colleced by gradientcentrifugation and adherent culture.After prolifed in vivo,RT-PCR was used to detect CGRP receptor in MSCs in logarithmic growth phase. Hybridoma technique was used to produce rabbit-anti-human CGRP receptor,which was used in the Westernblot test to detect CGRP receptor protein produced in human MSCs.
     Result:MSCs collected by gradientcentrifugation and cultured by adherent culture has high purity and proliferation effect.It was proved through RT-PCR that MSCs express CGRP-receptor mRNA ,and it was also be proved through Western-blot that MSCs express CGRP-receptor protein.
     Conclusion:Combined gradientcentrifugation with adherent culture,high purity MSCs could be collected.With RT-PCR test ,it was proved that MSCs express CGRP receptor mRNA. With Westernblot test ,it was proved that MSCs express CGRP receptor protein.
     Part II The effect of CGRP on proliferation of MSCs
     Objective:To observe the change of proliferation of MSCs with exogenous CGRP,and to explor the correlation. Methods:Human MSCs were aparted into 3 group decided by the concentration of
     CGRP.Cell proliferatinon was detected through MTT test.Cell form in each group was detected through optical microscope,in the same time point.Cell cycle was detected with Flowcytometry to analyze the ratio of cell in the mitotic time.
     Result:According to the contrast culture test ,cell in all the groups has regular and typical cellular morphology.In the same detect time point ,the cell density of control group was lower than density of each experimental group.In the cell cycle test ,in the logarithmic growth phase,the rates order of cells in the prophase and DNA synthesis phase in each group was 10-8mol/ LCGRP group,10-9mol/ LCGRP group,10-7mol/ LCGRP group and the control group.But between each group,there was no stastical difference.The MTT test showed similar result ,the 10-8mol/ LCGRP group had the highest proliferation speed ,and the control group had the lowest.There had stastical difference between experimental group and control group.There also had stastic differenc between the 10-8mol/ LCGRP group and the other two experimental group.
     Conclusion:With MTT test ,it had been proved that exogenous CGRP can accelerate the proliferation speed in the logarithmic growth phase.With flowcytometry,it had been proved that exogenous CGRP can raise the ratio of the cell in the DNA synthesis period and mitosis prophase.
     Part III Effect of CGRP on intracellular communication of MSCs
     Objective:To observe the intracellular communication of MSCs with exogenous CGRP and to expleor the relationship between the change of intracellular communication of MSCs and exogenous CGRP。
     Methods:MSCs collected from healthy volunteer was aparted into 3 group,the control group ,the antagon group and the experimental group. Intracellular communication medium molecule was detected through radioimmunoassay;Intracellular communication and signal conduction were dected through CFDA fluorescent dye The espression of Cx43mRNA was dected through Realtime-PCR.
     Result:The result of radioimmunoassay showed that cAMP content in the CGRP group was higher than the other two groups,with ststical difference. Confocal laser-CFDA test had shown that recovery of florescent light of the experimental group is much higher than the other two groups with stastic difference. The recovery range of antagon group was larger than that of control group ,but,without stastic difference.Expression of Cx43mRNA in experimental group was higher than the other two groups , but,without stastic difference.
     Conclusion:CGRP can promote not only intracellular communication of MSCs but also the expression of Cx43mRNA.
     Part IV effect of CGRP on proliferation related biological factor of MSCs
     Objective:To observe the change of IGF-1、BMP-2 and their receptor in the MSCs cell with exogenous CGRP.To explor whether exogenous CGRP will induce MSCs to express the osteo-induced factor and it’s receptor.
     Methods:MSCs collected from healthy volunteer was aparted into 3 group,the control group ,the antagon group and the experimental group. The mRNA expressions of proliferation related biological factor of MSCs were detected through Real-time PCR.
     Result:It was proved that the mRNA expressions of IGF-1,IGF-1receptor and BMP-2 receptor in experimental group were higher than that in control group with stastic difference.The the mRNA expressions of BMP-2 in all the groups had no stastic difference.And Ct index in all the groups were higner than 35.
     Result:MSCs collected by gradientcentrifugation and cultured by adherent culture has high purity and proliferation effect.It was proved through RT-PCR that MSCs express CGRP-receptor mRNA ,and it was also be proved through Western-blot that MSCs express CGRP-receptor protein.
     Conclusion:The exogenous CGRP can increase the mRNA expression of IGF-1,IGF-1receptor and BMP-2 receptor of MSCs.In all the grops ,the Ct indexes of BMP-2mRNA were higher than 35,which could be considered as negative expression.
引文
[1] Friedenstein AJ. Precursor Cells of Mechanocytes [J]. International Review of Cytology-A Survey of Cell Biology. 1976, 47: 327-359.
    [2]刘晓丹,郭子宽,李秀森,张双喜,毛宁.人骨髓间充质干细胞分离与培养方法的建立[J].军事医学科学院院刊. 2000, 24(2): 282 - 284.
    [3] Lodie TA, Blickarz CE, Devarakonda TJ, He CF, Dash AB, Clarke J, Gleneck K, Shihabuddin L, Tubo R. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction [J]. Tissue Engineering. 2002, 8(5): 739-751.
    [4] Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow [J]. Stem Cells. 2002, 20(3): 249-258.
    [5] Lennon DP, Haynesworth SE, Young RG, Dennis JE, Caplan AI. A Chemically-Defined Medium Supports in-Vitro Proliferation and Maintains the Osteochondral Potential of Rat Marrow-Derived Mesenchymal Stem-Cells [J]. Experimental Cell Research. 1995, 219(1): 211-222.
    [6] Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, Grassi F, Piacentini A, Facchini A. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure [J]. Connective Tissue Research. 2001, 42(1): 49-58.
    [7] Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes [J]. American Surgeon. 1999, 65(1): 22-26.
    [8] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J]. Journal of Cellular Physiology. 1999, 181(1): 67-73.
    [9] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult humanmesenchymal stem cells [J]. Science. 1999, 284(5411): 143-147.
    [10] Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing [J]. Nature. 1983, 304(5922): 129-135.
    [11] VanRossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors [J]. Neuroscience and Biobehavioral Reviews. 1997, 21(5): 649-678.
    [12] Kawase T, Okuda K, Burns DM. Immature human osteoblastic MG63 cells predominantly express a subtype I-like CGRP receptor that inactivates extracellular signal response kinase by a cAMP-dependent mechanism (vol 470, pg 125, 2003) [J]. European Journal of Pharmacology. 2004, 485(1-3): 345-345.
    [13] Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, Messlinger K. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactlivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution [J]. Journal of Comparative Neurology. 2008, 507(3): 1277-1299.
    [14] Uzan B, Villemin A, Garel JM, Cressent M. Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway [J]. Journal of Cellular Physiology. 2008, 215(1): 122-128.
    [15] Drissi H, Lieberherr M, Hott M, Marie PJ, Lasmoles F. Calcitonin gene-related peptide (CGRP) increases intracellular free Ca2+ concentrations but not cyclic AMP formation in CGRP receptor-positive osteosarcoma cells (OHS-4) [J]. Cytokine. 1999, 11(3): 200-207.
    [16] Villa I, Dal Fiume C, Maestroni A, Rubinacci A, Ravasi F, Guidobono F. Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity [J]. American Journal of Physiology-Endocrinology and Metabolism. 2003, 284(3): E627-E633.
    [17] Nissim A, Chernajovsky Y. Historical development of monoclonal antibody therapeutics [J]. Handb Exp Pharmacol. 2008, (181): 3-18.
    [18] Zafir-Lavie I, Michaeli Y, Reiter Y. Novel antibodies as anticancer agents [J]. Oncogene. 2007, 26(25): 3714-3733.
    [19] Tagliani E, Guermonprez P, Sepulveda J, Lopez-Bravo M, Ardavin C, Amigorena S, Benvenuti F, Burrone OR. Selection of an Antibody Library Identifies a Pathway to Induce Immunity by Targeting CD36 on Steady-State CD8{alpha}+ Dendritic Cells [J]. J Immunol. 2008, 180(5): 3201-3209.
    [1] Liese S, Schinke T, Catala-Lehnen P, Priemel M, Rueger JM, Emeson RB, Amling M. Decreased bone formation and osteopenia in mice lacking aCGRP [J]. Journal of Bone and Mineral Research. 2003, 18: S14-S14.
    [2] Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications forthe generation and maintenance of bone fracture pain [J]. Neuroscience Letters. 2007, 427(3): 148-152.
    [3] Uzan B, Villemin A, Garel JM, Cressent M. Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway [J]. Journal of Cellular Physiology. 2008, 215(1): 122-128.
    [4] Deng W, Bivalacqua TJ, Chattergoon NN, Jeter JR, Jr., Kadowitz PJ. Engineering ex vivo-expanded marrow stromal cells to secrete calcitonin gene-related peptide using adenoviral vector [J]. Stem Cells. 2004, 22(7): 1279-1291.
    [5] Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone [J]. Journal of Musculoskeletal and Neuronal Interactions. 2006, 6(1): 87-95.
    [6] Villa I, Dal Fiume C, Maestroni A, Rubinacci A, Ravasi F, Guidobono F. Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity [J]. American Journal of Physiology-Endocrinology and Metabolism. 2003, 284(3): E627-E633.
    [7] Yamazaki H, Tsuneto M, Yoshino M, Yamamura KI, Hayashi SI. Potential of dental mesenchymal cells in developing teeth [J]. Stem Cells. 2007, 25(1): 78-87.
    [8] Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R. Age-associated aortic stenosis in apolipoprotein E-deficient mice [J]. Journal of the American College of Cardiology. 2005, 46(1): 134-141.
    [1] Jiang JX, Siller-Jackson AJ, Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress [J]. Frontiers in Bioscience. 2007, 12: 1450-1462.
    [2] Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes [J]. Journal of Cellular Physiology. 2007, 212(1): 207-214.
    [3] Sharif S, Nakagawa T, Ohno T, Matsumoto M, Kita T, Riazuddin S, Ito J. The potential use of bone marrow stromal cells for cochlear cell therapy [J]. Neuroreport. 2007, 18(4): 351-354.
    [4] Kanaani J, Patterson G, Schaufele F, Lippincott-Schwartz J, Baekkeskov S. A palmitoylation cycle dynamically regulates partitioning of the GABA-synthesizing enzyme GAD65 between ER-Golgi and post-Golgi membranes [J]. Journal of Cell Science. 2008, 121(4): 437-449.
    [5] Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R. Role of connexin43 in osteoblast response to physical load [J]. Skeletal Development and Remodeling in Health, Disease, and Aging. 2006, 1068: 214-224.
    [6] Hoptak-Solga AD, Klein KA, DeRosa AM, White TW, Iovine MK. Zebrafish short fin mutations in connexin43 lead to aberrant gap junctional intercellular communication [J]. FEBS Letters. 2007, 581(17): 3297-3302.
    [7] Rojas Gomez DM, Schulte JS, Mohr FW, Dhein S. Alpha-1-adrenoceptor subtypeselective regulation of connexin 43 expression in rat cardiomyocytes [J]. Naunyn-Schmiedeberg's Archives of Pharmacology. 2008, 377(1): 77-85.
    [8] Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription [J]. Molecular Biology of the Cell. 2005, 16(1): 64-72.
    [9] Gao Q, Katakowski M, Chen XG, Li Y, Chopp M. Human marrow stromal cells enhance connexin43 gap junction intercellular communication in cultured astrocytes [J]. Cell Transplantation. 2005, 14(2-3): 109-117.
    [10] Shin MK, Kim MK, Bae YS, Jo I, Lee SJ, Chung CP, Park YJ, Min DS. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells [J]. Cellular Signalling. 2008, 20(4): 613-624.
    [11] Sharrow AC, Li Y, Micsenyi A, Griswold RD, Wells A, Monga SSP, Blair HC. Modulation of osteoblast gap junction connectivity by serum, TNF alpha, and TRAIL [J]. Experimental Cell Research. 2008, 314(2): 297-308.
    [1] Ma HZ, Zeng BF, Li XL, Chai YM. Temporal and spatial expression of BMP-2 in sub-chondral bone of necrotic femoral heads in rabbits by use of extracorporeal shock waves. Acta Orthopaedica, 2008; 79 (1):98-105.
    [2] Henson FM, Vincent T. Chondrocyte outgrowth into a gelatin scaffold in a single impact load model of damage/repair - effect of BMP-2. BMC Musculoskelet Disord, 2007; 8:120.
    [3] Jung RE, Weber FE, Thoma DS, Ehrbar M, Cochran DL, Hammerle CHF. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clinical Oral Implants Research, 2008; 19 (2):188-195.
    [4] Kochanowska I, Chaberek S, Wojtowicz A, Marczynski B, Wlodarski K, Dytko M, Ostrowski K. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton. BMC Musculoskelet Disord, 2007; 8:128.
    [5] Wildemann B, Burkhardt N, Luebberstedt M, Vordemvenne T, Schmidmaier G. Proliferating and differentiating effects of three different growth factors on pluripotent mesenchymal cells and osteoblast like cells. The Journal of Orthopaedic Surgery, 2007; 2:27.
    [6] Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnology and Bioengineering, 2008; 99 (4):996-1006.
    [7] Lin YF, Tang W, Wu L, Jing W, Li XY, Wu Y, Liu L, Long J, Tian WD. Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel. Histochemistry and Cell Biology, 2008; 129 (2):203-210.
    [8] Wu MJ, Gu ZY, Sun W. Effects of hydrostatic pressure on cytoskeleton and BMP-2, TGF-beta, SOX-9 production in rat temporomandibular synovial fibroblasts. Osteoarthritis and Cartilage, 2008; 16 (1):41-47.
    [9] Igai H, Chang SS, Gotoh M, Yamamoto Y, Yamamoto M, Tabata Y, Yokomise H. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2. ASAIO Journal, 2008; 54 (1):104-108.
    [10] Pufe T, Petersen W, Fandrich F, Varoga D, Wruck CJ, Mentlein R, Helfenstein A, Hoseas D, Dressel S, Tillmann B, Ruhnke M. Programmable cells of monocytic origin (PCMO): A source of peripheral blood stem cells that generate collagen type II-producing chondrocytes. Journal of Orthopaedic Research, 2008; 26 (3):304-313.
    [11] Matsouka P, Mylonas P, Papandoniou E, Dimitropoulou I, Floratou K, Alexandridis T, Kardamakis D. Abdominal radiation initiates apoptotic mechanism in rat femur bone marrow cells in vivo that is reversed by IGF-1 administration. Journal of Radiation Research, 2008; 49 (1):41-47.
    [12] Goldspink G. Loss of muscle strength during aging studied at the gene level. Rejuvenation Research, 2007; 10 (3):397-405.
    [13] Pietschmann P, Skalicky M, Kneissel M, Rauner M, Hofbauer G, Stupphann D, Viidik A. Bone structure and metabolism in a rodent model of male senile osteoporosis. Experimental Gerontology, 2007; 42 (11):1099-1108.
    [14] Ali O, Shim M, Fowler E, Cohen P, Oppenheim W. Spinal bone mineral density, IGF-1 and IGFBP-3 in children with cerebral palsy. Hormone Research, 2007; 68 (6):316-320.
    [15] MacRae VE, Wong SC, Smith W, Gracie A, McInnes I, Galea P, Gardner-Medwin J, Farquharson C, Ahmed SF. Cytokine profiling and in vitro studies of murine bone growth using biological fluids from children with juvenile idiopathic arthritis. Clinical Endocrinology, 2007; 67 (3):442-448.
    [1] Franco-Penteado CF, De Souza IA, Lima CSP, Teixeira SA, Muscara MN, De Nucci G, Antunes E. Effects of neonatal capsaicin treatment in the neutrophil production, and expression of preprotachykinin-I and tachykinin receptors in the rat bone marrow. Neuroscience Letters, 2006; 407 (1):70-73.
    [2] Lee M-G, Dong X, Liu Q, Patel KN, Choi OH, Vonakis B, Undem BJ. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell-sensory nerve interactions. Journal of Immunology, 2008; 180 (4):2251-2255.
    [3] Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cellular and Molecular Life Sciences, 2005; 62 (19-20):2339-2349.
    [4] Gunjigake KK, Goto T, Nakao K, Konoo T, Kobayashi S, Yamaguchi K. Correlation between the appearance of neuropeptides in the rat trigeminal ganglion and reinnervation of the healing root socket after tooth extraction. Acta Histochemica et Cytochemica, 2006; 39 (3):69-77.
    [5] Pavelock KA, Girard BM, Schutz KC, Braas KM, May V. Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. Journal of Neurochemistry, 2007; 100 (3):603-616.
    [6] Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. Journal of Musculoskeletal and Neuronal Interactions, 2006; 6 (1):87-95.
    [7] Li J, Kreicbergs A, Bergstrom J, Stark A, Ahmed M. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia. Journal of Orthopaedic Research, 2007; 25 (9):1204-1212.
    [8] Tsujikawa K, Yayama K, Hayashi T, Matsushita H, Yamaguchi T, Shigeno T, Ogitani Y, Hirayama M, Kato T, Fukada S, Takatori S, Kawasaki H, Okamoto H, Ikawa M, Okabe M, Yamamoto H. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2007; 104(42):16702-16707.
    [9] Ahmad T, Ugarph-Morawski A, Li J, Bileviciute-Ljungar I, Finn A, Ostenson CG, Kreicbergs A. Bone and joint neuropathy in rats with type-2 diabetes. Regulatory Peptides, 2004; 119 (1-2):61-67.
    [10] Liu D, Jiang L-S, Dai L-Y. Substance P and its receptors in bone metabolism. Neuropeptides, 2007; 41 (5):271-283.
    [11] Verdrengh M, Tarkowski A. The impact of substance P signalling on the development of experimental staphylococcal sepsis and arthritis. Scandinavian Journal of Immunology, 2008; 67 (3):253-259.
    [12] Goto T, Nakao K, Gunjigake KK, Kido MA, Kobayashi S, Tanaka T. Substance P stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides, 2007; 41 (1):25-31.
    [13] Gao YJ, Qian W, Wang BH, Lin R, Hou XH. Differentiation potential of bone marrow stromal cells to enteric neurons in vitro. Chinese Journal of Digestive Diseases, 2006; 7 (3):156-163.
    [14] Vittitow J, Borras T. Genes expressed in the human trabecular meshwork during pressure-induced homeostatic response. Journal of Cellular Physiology, 2004; 201 (1):126-137.
    [15] Suri S, Gill SE, Massena dCS, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2007; 66 (11):1423-1428.
    [16] Amano S, Arai M, Goto S, Togari A. Inhibitory effect of NPY on isoprenaline-induced osteoclastogenesis in mouse bone marrow cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 2007; 1770 (6):966-973.
    [17] El Karim IA, Lamey PJ, Linden GJ, Awawdeh LA, Lundy FT. Caries-induced changes in the expression of pulpal neuropeptide Y. European Journal of Oral Sciences, 2006; 114 (2):133-137.
    [18] Mizuno S, Takebayashi T, Kirita T, Tanimoto K, Tohse N, Yamashita T. The effects of the sympathetic nerves on lumbar radicular pain: a behavioural and immunohistochemical study. Journal of Bone and Joint Surgery British Volume, 2007; 89 (12):1666-1672.
    [19] Jin GZ, Yin XJ, Yu XF, Cho SJ, Lee HS, Lee HJ, Kong IK. Enhanced tyrosine hydroxylase expression in PC12 cells co-cultured with feline mesenchymal stem cells. The Journal of Veterinary Science, 2007; 8 (4):377-382.
    [20] Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neuroscience Letters, 2007; 427 (3):148-152.
    [21] Triaca V, Aloe L. Neuronal markers expression of NGF-primed bone marrow cells (BMCs) transplanted in the brain of 6-hydroxydopamine and ibotenic acid lesioned littermate mice. Neuroscience Letters, 2005; 384 (1-2):82-86.
    [22] Saxler G, Loer F, Skumavc M, Pfortner J, Hanesch U. Localization of SP- and CGRP-immunopositive nerve fibers in the hip joint of patients with painful osteoarthritis and of patients with painless failed total hip arthroplasties. European Journal of Pain, 2007; 11 (1):67-74.
    [23] Boyd-Clark LC, Briggs CA, Galea MP. Segmental degeneration in the cervical spine and associated changes in dorsal root ganglia. Clinical Anatomy, 2004; 17 (6):468-477.
    [1] Hukkanen M, Konttinen YT, Rees RG, Gibson SJ, Santavirta S, Polak JM. Innervation of Bone from Healthy and Arthritic Rats by Substance-P and Calcitonin Gene Related Peptide Containing Sensory Fibers. Journal of Rheumatology, 2002; 19 (8):1252-1259.
    [2] Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM. Distribution of Nerve-Endings and Sensory Neuropeptides in Rat Synovium, Meniscus and Bone. International Journal of Tissue Reactions-Experimental and Clinical Aspects,2002; 14 (1):1-10.
    [3] Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 2003; 304 (5922):129-135.
    [4] Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I. Isolation and characterization of human calcitonin gene-related peptide. Nature, 2004; 308 (5961):746-748.
    [5] Poyner D, Marshall I, Brain SD. The CRGP Family. 1st eds ed. Texas: Landes Bioscence USA; 1999.
    [6] Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. Expression Brain of A Messenger-RNA Encoding A Novel Neuropeptide Homologous to Calcitonin Gene-Related Peptide. Science, 2005; 229 (4718):1094-1097.
    [7] Bennett MM, Amara SG. Molecular Mechanisms of Cell-Specific and Regulated Expression of the Calcitonin Alpha-Cgrp and Beta-Cgrp Genes. Annals of the New York Academy of Sciences, 1992; 657:36-49.
    [8] Nozaki K, Okamoto S, Uemura Y, Kikuchi H, Mizuno N. Vascular relaxation properties of calcitonin gene-related peptide and vasoactive intestinal polypeptide in subarachnoid hemorrhage. Journal of Neurosurgery, 2000; 72 (5):792-797.
    [9] VanRossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neuroscience and Biobehavioral Reviews, 2007; 21 (5):649-678.
    [10] Bidegain M, Roos BA, Hill EL, Howard GA, Balkan W. Calcitonin-Gene-Related Peptide (Cgrp) in the Developing Mouse Limb. Endocrine Research, 2005; 21 (4):743-755.
    [11] Hara-Irie F, Amizuka N, Ozawa H. Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone, 2006; 18 (1):29-39.
    [12] Villa I, Melzi R, Pagani F, Ravasi F, Rubinacci A, Guidobono F. Effects of calcitonin gene-related peptide and amylin on human osteoblast-like cells proliferation. European Journal of Pharmacology, 2004; 409 (3):273-278.
    [13] Cornish J, Callon KE, Lin CQ, Xiao CL, Gamble GD, Cooper GJS, Reid IR. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. Journal of Bone and Mineral Research, 1999; 14 (8):1302-1309.
    [14] Valentijn K, Gutow AP, Troiano N, Gundberg C, Gilligan JP, Vignery A. Effects of calcitonin gene-related peptide on bone turnover in ovariectomized rats. Bone, 1997; 21 (3):269-274.
    [15] Ballica R, Valentijn K, Khachatryan A, Guerder S, Kapadia S, Gundberg C, Gilligan J, Flavell RA, Vignery A. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. Journal of Bone and Mineral Research, 1999; 14 (7):1067-1074.
    [16] Schinke T, Liese S, Priemel M, Haberland M, Schilling AF, Catala-Lehnen P, Blicharski D, Rueger JM, Gagel RF, Emeson RB, Amling M. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. Journal of Bone and Mineral Research, 2004; 19 (12):2049-2056.
    [17] Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. MICROSC RES TECHNIQ, 2002; 58 (2):85-90.
    [18] Imai S, Matsusue Y. Neuronal regulation of bone metabolism and anabolism: Calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and the bone. MICROSC RES TECHNIQ, 2002; 58 (2):61-69.
    [19] Takeda S, Elefteriou F, Levasseur R, Liu XY, Zhao LP, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell, 2002; 111 (3):305-317.
    [20] Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong osteoporosis study. Journal of Bone and Mineral Research, 2004; 19 (1):19-24.
    [21] Oh-hashi Y, Shindo T, Kurihara Y, Imai T, Wang YH, Morita H, Imai Y, Kayaba Y, Nishimatsu H, Suematsu Y, Hirata Y, Yazaki Y, Nagai R, Kuwaki T, Kurihara H. Elevated sympathetic nervous activity in mice deficient in alpha CGRP. Circulation Research, 2001; 89 (11):983-990.
    [22] Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience, 2003; 54 (4):969-979.
    [23] Aoki M, Tamai K, Saotome K. Substance P-Related and Calcitonin-Gene-Related Peptide-Immunofluorescent Nerves in the Repair of Experimental Bone Defects. International Orthopaedics, 2004; 18 (5):317-324.
    [24] Onuoha GN. Circulating sensory peptide levels within 24 h of human bone fracture. Peptides, 2001; 22 (7):1107-1110.
    [25] Aro H, Eerola E, Aho AJ. Development of Nonunions in the Rat Fibula after Removal of Periosteal Neural Mechanoreceptors. Clinical Orthopaedics and Related Research, 2005; (199):292-299.
    [26] Nordsletten L, Madsen JE, Almaas R, Rootwelt T, Halse J, Konttinen YT, Hukkanen M, Santavirta S. The Neuronal Regulation of Fracture-Healing - Effects of Sciatic-Nerve Resection in Rat Tibia. Acta Orthopaedica Scandinavica, 2004; 65 (3):299-304.
    [27] Ekelund A, Ahmed M, Bjurholm A, Nilsson O. Neuropeptides in heterotopic bone induced by bone matrix in immunosuppressed rats. Clin Orthop Relat Res, 1997;(345):229-238.
    [28] Imai S, Tokunaga Y, Maeda T, Kikkawa M, Hukuda S. Calcitonin gene-related peptide, substance P, and tyrosine hydroxylase-immunoreactive innervation of rat bone marrows: An immunohistochemical and ultrastructural investigation on possible efferent and afferent mechanisms. Journal of Orthopaedic Research, 2007; 15 (1):133-140.
    [29] Lindblad BE, Nielsen LB, Jespersen SM, Bjurholm A, Bunger C, Hansen ES. Vasoconstrictive action of neuropeptide Y in bone. The porcine tibia perfused in vivo. Acta Orthopaedica Scandinavica, 2004; 65 (6):629-634.
    [30] Cherruau M, Facchinetti P, Baroukh B, Saffar JL. Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone, 1999; 25 (5):545-551.
    [31] Du ZW, Lian YQ, Wang XG, Zhou QX, Liu DS. Studies on sequence distribution of copolyureas and relationship of diamines reactivity ratio. Chemical Journal of Chinese Universities-Chinese, 2001; 22 (9):1587-1591.
    [32] Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJS, Reid IR. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone, 2001; 29 (2):162-168.
    [33] Adam C, Llorens A, Baroukh B, Cherruau M, Saffar JL. Effects of capsaicin-induced sensory denervation on osteoclastic resorption in adult rats. Experimental Physiology, 2000; 85 (1):61-66.
    [34] Kawase T, Burns DM. Calcitonin gene-related peptide stimulates potassium efflux through adenosine triphosphate-sensitive potassium channels and produces membrane hyperpolarization in osteoblastic UMR106 cells. Endocrinology, 1998; 139 (8):3492-3502.
    [35] Villa I, Dal Fiume C, Maestroni A, Rubinacci A, Ravasi F, Guidobono F. Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity. American Journal of Physiology-Endocrinology and Metabolism, 2003; 284 (3):627-633.
    [36] Shih C, Bernard GW. Calcitonin gene related peptide enhances bone colony development in vitro. Clinical Orthopaedics and Related Research, 2007; (334): 335-344.
    [37] Michelangeli VP, Fletcher AE, Allan EH, Nicholson GC, Martin TJ. Effects of Calcitonin Gene-Related Peptide on Cyclic-AMP Formation in Chicken, Rat, and Mouse Bone-Cells. Journal of Bone and Mineral Research, 2001; 4 (2):269-272.
    [38] Millet I, Vignery A. THE NEUROPEPTIDE CALCITONIN GENE-RELATED PEPTIDE INHIBITS TNF-[alpha] BUT POORLY INDUCES IL-6 PRODUCTION BY FETAL RAT OSTEOBLASTS. Cytokine, 2005; 9 (12):999-1007.
    [39] Scott BL, Glimcher MJ. Distribution of glycogen in osteoblasts of the fetal rat. Journal of Ultrastructure Research, 1999; 36 (5):565-586.
    [40] Irie K, Orikasa M, Sakakura Y, Tsuruga E, Iwanaga T, Yajima T. Immunoreactivity to a monoclonal antibody (OS-3) is shared by osteoclasts and bicarbonate-secreting cells. Archives of Histology and Cytology, 2000; 63 (3):255-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700