用户名: 密码: 验证码:
氧化淀粉改性生物多元醇聚氨酯复合胶粘剂的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油能源越来越紧缺,寻找石油的替代能源变得越来越紧迫。随着能源危机的越来越严重,玉米淀粉工业发展越来越快,工业化程度越来越高。随着生化技术的发展,玉米淀粉液化产物从单一的乙醇变得多样化。当经济附加值较高的多元醇提取以后,还有一些剩余物不能被利用。本论文研究目的就是根据这些剩余物的性能,利用这些多元醇剩余物,制备一种性能稳定的达到国家标准的复合胶粘剂。本论文意义在于:a)利用生物多元醇开发了一种对环境污染小,绿色环保的生物基胶粘剂。b)使用可再生的生物多元醇制备胶粘剂,替代了传统行业中使用的石化产品,减少了石化产品的使用。c)制备生物多元醇工业中大量剩余物被有效地利用。本研究利用这些多元醇剩余物,提高了下游产品的经济附加值,延伸了玉米工业的产业链,促进生物多元醇工业的健康发展,提高了玉米多元醇行业的总体经济效益。
     由于生物多元醇剩余物的本身分子量小,水溶性较强等性能的限制,并不能直接作为胶粘剂使用,需要在其自身基础上进行化学共混改性。论文通过高羧基含量的氧化淀粉对小分子的醇进行扩链,降低多元醇剩余物的渗透性。使用水性异氰酸酯对多元醇胶粘剂的防水性进行改进。
     在氧化淀粉制备方面,通过双氧水、次氯酸钠、高锰酸钾三种氧化剂制备高羧基含量氧化淀粉。通过对制备样品的羧基含量、粘度、热力学性能(TGA、DSC)、XRD等性能指标,分析pH、温度、酸化量、氧化剂用量等因素对氧化淀粉制备的影响。
     双氧水制备氧化淀粉,碱性环境中制备的氧化淀粉氧化程度高,最佳pH值为9。温度较高环境中双氧水活动更活跃,制备的氧化淀粉氧化程度较高,最佳温度为T=45。C。随着氧化剂用量的增多氧化程度增高,在最优制备环境中双氧水的利用率为0.57%。
     次氯酸钠制备氧化淀粉,在弱碱环境中氧化剂对淀粉的氧化程度高,最佳制备条件是pH=9。温度高或低均不利于次氯酸钠对淀粉的氧化,最佳制备温度为50℃最优。次氯酸钠的用量越大淀粉氧化程度越深,在最佳制备条件下次氯酸钠的利用率为1.57%。
     高锰酸钾制备氧化淀粉,第一阶段的活化pH值选择11时制备的氧化淀粉氧化程度高。温度过高或者过低均不利于高锰酸钾对淀粉的氧化,最佳制备温度为40-C。酸化质量对第二阶段的氧化影响很大,酸化质量为干淀粉的11%时淀粉氧化程度深。在最佳制备条件下高锰酸钾的利用率为50.28%。
     相同氧化电子数下的三种氧化剂进行比较,次氯酸钠氧化能力是最强的,双氧水最差,高锰酸钾居中。次氯酸钠对淀粉的氧化程度最深,可以打破淀粉的结晶外壳,渗透进淀粉颗粒内部进行氧化反应。高锰酸钾也可以打破淀粉的结晶结构,会对淀粉结晶外壳进行腐蚀,使得外壳凹凸不平。双氧水对淀粉游离的直链和支链淀粉进行氧化,不能破坏淀粉的结晶结构,对淀粉颗粒的结晶结构影响不大。
     对可乳化异氰酸酯方面采用两种亲水改性剂(A、B)进行改性,分别从乳液的适用期方面,分析最佳NCO/OH摩尔比、乳化剂用量、稳定剂用量。得出亲水改性剂A最佳制备乳液条件为:NCO/OH摩尔比为160:1,乳化剂用量为2%,稳定剂添加量为0.3%最佳。亲水改性剂B最佳制备乳液条件为:NCO/OH摩尔比为80:1,乳化剂用量为1%,稳定剂添加量为1%最佳。然后对两种改性剂和阴离子改性剂DMPA进行共混改性。结果表明,亲水改性剂A体系中引入DMPA量为1%能提高乳液的适用期,达到152.9min。而亲水改性剂B体系不适合引入DMPA。
     分别制备羧基含量高的氧化淀粉和适用期长的乳化异氰酸酯预聚体。把氧化淀粉,乳化异氰酸酯,生物多元醇一起制备胶粘剂,最佳生物复合胶粘剂的配比为生物多元醇剩余物占总胶粘剂的40%,乳化异氰酸酯占23%,氧化淀粉添加为9%。胶粘剂的结合强度为1.105MPa。
The increasing shortage of petroleum energy, alternative energy is becoming more and more urgent the search for oil. With the development of biochemical technology, the products prepared by corn starch from a single ethanol become diversified. Corn starch industry development faster and faster, the level of industrialization was increasingly high, which due to the increasingly serious energy crisis. After the polyol with higher economic value added was extracted, some residues cannot be used. The purpose of this paper is based on the performance of these residues, using these polyols residue for preparing a composite adhesive with stable property and meets the national standard. The significance of this paper is shown as follows,(a) Utilization of biomass polyol developed a green biological adhesive with little pollution to the environment.(b) Using renewable bio-polyols prepared adhesive, to replace petroleum products used in traditional industries, so as to get rid of the dependence on petroleum products,(c) A great amount of polyols residues form corn production of bio-polyols is effectively utilized. In this study, these polyols residues had good use, which improve the economic value added of downstream products, extend the industrial of corn industry, promote the healthy development of boil-polyol alcohol industry, and improve the comprehensive economic benefits of corn production of polyols industry.
     Bio-polyol residues had small molecular weight and better water-soluble, it cannot be directly used as adhesive, and need for chemical blending modified. The oxidized starch with high carboxyl content was use as chain extender for small molecule alcohol, and as a role of filling, thereby reduces the permeability of the polyol residues. Emulsified isocyanate was use to improve waterproof of Polyol adhesives.
     In the oxidized starch preparation, preparation of high carboxyl content of oxidized starch with hydrogen peroxide, sodium hypochlorite, potassium permanganate three oxidation agent. Through test the carboxyl group content, viscosity thermodynamic properties (TGA, DSC), XRD and other performance index of the sample, analyze the effect of pH, temperature, acidification, amount of oxidant on oxidized starch prepared. Draw the following conclusions:
     Preparation of oxidized starch with hydrogen peroxide, oxidized starch had high degree of oxidation when prepared in alkaline environment; the optimum pH value is9. Hydrogen peroxide is more active in high temperature environment, the preparation of oxidized starch with high degree of oxidation, the optimum temperature is45℃. The degree of oxidation was increasing with oxidant dosage increased, hydrogen peroxide in rate of0.57%in the optimal preparation conditions.
     Preparation of oxidized starch with sodium hypochlorite, products had high degree of oxidation in alkalescent environment, the best preparation condition at pH9. The high or low temperature was unfavorable to the oxidation of sodium hypochlorite on starch, the best preparation temperature is50℃. The more the amount of sodium hypochlorite, the greater the degree of oxidation starch. The utilization rate of sodium hypochlorite is1.57%under the optimal preparation conditions.
     Preparation of oxidized starch with potassium permanganate, products had high degree of oxidation when activation pH value of the first phase selection11. Temperature too high or too low are not conducive to oxidation starch by potassium permanganate, the best preparation temperature is40℃.
     Acidification quality had great effect on the second stage oxidation, the deep degree of oxidation for starch when acidification quality was11%to dry starch. The utilization rate of potassium permanganate was50.28%under the optimum preparation conditions.
     Comparing three kinds of oxidant with equivalent oxidizing power, the oxidation ability of sodium hypochlorite was strongest; hydrogen peroxide was weakest, Potassium permanganate in the middle.
     Sodium hypochlorite had the deepest degree of oxidation on starch, can break the crystal shell of starch, and penetrate into the internal of starch granules. Potassium permanganate can also break the crystalline structure of starch, corrosion of starch crystalline shell, which make uneven for starch shell. Hydrogen peroxide was only oxidize the free amylose and amylopectin of starch, cannot damage the crystal structure of starch, it has little effect on the crystalline structure of starch granules.
     Then the emulsifiable isocyanate was modified with two hydrophilic modifiers (A, B). The optimum molar ratio of NCO/OH, the amount of emulsifier and stabilizer was analysis from the aspect of the application period of emulsion. The optimum conditions of prepare emulsion with hydrophilic modifier A was that the molar ratio of NCO/OH was160:1, emulsifier dosage was2%and addition amount of stabilizer is0.3%. For hydrophilic modifier B, the optimum conditions for the preparation of emulsion was that80:1of NCO/OH molar ratio,1%of emulsifier dosage and1%of the addition amount of stabilizer. Two kinds of modifiers were modified with DMPA, the results show that introducing an amount of1%DMPA to the system of hydrophilic modifier A can improve the application period of emulsion, reaching152.9min. The system of hydrophilic modifier B was not suitable for the introduction of DMPA.
     Finally, preparing oxidized starch with high carboxyl content and emulsifiable isocyanate prepolymer with a long period. Then mixed oxidized starch, emulsified isocyanate and bio-polyol for prepared adhesive. The best ratio of biological composite adhesive was that biological polyol residues was40%of the total, for emulsified isocyanate was23%, and9% for oxidized starch. The strength of the adhesive was1.105MPa.
引文
[1]柳荫成.可持续发展背景下中国石油资源战略研究.南京师范大学博士论文.2007:3-21
    [2]O.Ozyurt. Energy issues and renewables for sustainable development in Turkey Review Article. Renewable and Sustainable Energy Reviews.2001,12:2976-2985
    [3]Alex Ng, Han Donker. Purchasing Reserves and Commodity Market Timing as Takeover Motives in the Oil and Gas Industry. Energy Economics.2013,20:23-29
    [4]王新新.我国石油储备发展的审视与对策分析.技术经济与管理研究.2013,(2):102-106
    [5]汪萍,常毓文,唐玮等.中国石油储量现状及变化特点.特种油气藏.2011,18(1):12-15
    [6]R.W. Bentley, S.A.Mannanb, S.J. Wheelerb. Assessing the date of the global oil peak:The need to use 2P reserves. Energy Policy.2007,35(12):6365-6382
    [7]Steve Sorrell, Jamie Speirs, et al. Shaping the global oil peak:A review of the evidence on field sizes, reserve growth, decline rates and depletion rates. Energy.2012,37(1):709-724
    [8]Nick A. Owen, Oliver R. Inderwildi, David A. King. The status of conventional world oil reserves—Hype or cause for concern. Energy Policy.2010,38(8):4743-4749
    [9]莫湘筠.以玉米为原料的多元醇工业现状与发展趋势.食品与药品.2008,10(09):6-8
    [10]赵妍,刘淑霞,潘榟权.玉米多元醇生产及使用产生的环境影响研究.安徽农业科学.2009,37(35):17551-17556
    [11]王国有.高固含量鞋用水性聚氨醋胶粘剂的研究.华南理工大学硕士学位论文.2010:2-12
    [12]董祥亭.水性聚氨醋的制备及其对复合薄膜的粘接作用.南京工业大学硕士学位论文.2003:5-9
    [13]伍胜利.水性聚氨酯的合成与改性研究.合肥工业大学硕士学位论文.2005:4-12
    [14]孙艳美.水性聚氨酯胶粘剂的合成、改性及性能研究.湖南师范大学硕士学位论文.2010:3-13
    [15]高晓燕.聚氨酯/纳米无机复合材料的制备与性能研究.吉林大学博士学位论文.2011:6-16
    [16]鲍丽红.马来酸酐改性蓖麻油制备水性聚氨酯的研究.大连理工大学博士学位论文.2006:5-12
    [17]张彦华.改性异氰酸酯与脲醛树脂复合固化机理研究.东北林业大学博士学位论文.2011:4-18
    [18]韩博.可乳化异氰酸酯的制备及应用研究.东北林业大学硕士学位论文.2011:4-11
    [19]谭鸿.新型生物医用聚氨酯的合成、结构与性能研究.四川大学博士位论文.2004:7-13
    [20]赵姝.异氰酸酯与纤维素反应产物结构及聚氨酯对木材胶接机理.东北林业大学博士学位论文.2010:4-14
    [21]Sharif Ahmad, S M A sharmin, sharmin E. studies on Ambient cured Polyurethane modified Epoxy Coatings Synthesized from a Sustainable Resource. Progress in Crystal Growth and Characterization of Materials.2002:83-88
    [22]Oertel G. Polyurethane Handbook. Munich:Carl Hanser.1985.31
    [23]Hepburn G. Polyurethane Elastomers. New York:Elsevier,1992,281
    [24]Laas, Halpaap, Wamprecht. Polyether-modified polyisocyanate mixtures having improving dispersibility in water. US:6426414.2002
    [25]Alex He Z. A selective catalyst for two-component water borne polyurethane coating. Technical Articles,2002,74(930):31-36
    [26]Zhang yanhua, Gu Jiyou Tanhaiyan, Zhu Libin, Straw based particleboard bonded with composite adhesives," BioRes,2011, Vol.6. No.l, p.464-476.
    [27]韩豫东,顾继友.刨花板用异氰酸酯乳液胶粘剂的研究.林产工业,2001,28(3):22-25
    [28]顾继友,韩豫东.异氰酸酯乳液胶粘剂制备方法.CN:1345906,2002-04-24
    [29]陈丽娟,顾继友.水性高分子一异氰酸酯胶粘剂的改性研究.粘接,2001,22(3):9-10
    [30]李坚,戴文杰.水分散性异氰酸酯交联剂的合成与性能初探.江苏石油化工学院学报,2002,14(4):21-24
    [31]Jozef Rychly, Agnes Lattuati-Derieux, Bertrand Lavedrine, et al. Assessing the progress of degradation in polyurethanes by chemiluminescence and thermal analysis. Ⅱ. Flexible polyether-and polyester-type polyurethane foams. Polymer Degradation and Stability.2011,96(4):462-469
    [32]Werner J. Blank, Valentino J. Tramontano. Properties of crosslinked polyurethane dispersions. Progress in Organic Coatings.1996,27(4):1-15
    [33]Vilas D. Athawale, Mona A. Kulkarni. Polyester polyols for waterborne polyurethanes and hybrid dispersions. Progress in Organic Coatings.2010,67(1):44-54
    [34]R.Jayakumar,S.Nanjundanb,M.Prabaharan.Metal-containing polyurethanes, poly(urethane-urea)s and poly(urethane—ether)s:A review. Reactive and Functional Polymers.2006,60(3):199-314
    [35]Vanesa Garcia-Paciosa, Victor Costab, Manuel Colera. Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings.2011,71(2):136-146
    [36]Zhenyang Luo, Yijun Shi, Dong Zhao, Ming He. Synthesis of Epoxidatied Castor Oil and Its Effect on the Properties of Waterborne Polyurethane. Procedia Engineering.2011,18:37-42
    [37]Karl-Ludwig Noble. Waterborne polyurethanes. Progress in Organic Coatings.1997,32(4):131-136
    [38]Su Jin Lee, Byung Kyu Kim. Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability. Carbohydrate Polymers.2012,87(2):1803-1809
    [39]Hisakazu Tanaka, Yasuyuki Suzuki, Fumio Yoshino. Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1999,153(1-3):597-601
    [40]Jingwei Zoua, Fang Zhangb, Jin Huang. Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites. Carbohydrate Polymers.2011,85(4):824-831
    [41]Qing Bo Menga, Sung-Il Leeb, Changwoon Nahc, Youn-Sik Lee. Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Progress in Organic Coatings.2009,66(4):382-386
    [42]Hsu-Chiang Kuana, Chen-Chi M. Ma. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology.2005,65(11-12):1703-1710
    [43]Huafeng Tiana, Yixiang Wanga, Lina Zhang. Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Industrial Crops and Products. 2010,32(1):13-20
    [44]Xiaoyan Gao, Yanchao Zhu, Shi Zhou. Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2011,377(1-3):312-317
    [45]Xiaodong Caoa, Peter R. Chang. Preparation and properties of plasticized starch modified with poly(ε-caprolactone) based waterborne polyurethane. Carbohydrate Polymers.2008,71(1):119-125
    [46]Yixiang Wang, Huafeng Tian, Lina Zhang. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydrate Polymers.2010,80(3):665-671
    [47]S.S. Pathak, A. Sharma, A.S. Khanna. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Progress in Organic Coatings.2009,65(2):206-216
    [48]Erica Scrinzi, Stefano Rossi. Flavio Deflorian, Caterina Zanella. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications. Progress in Organic Coatings.2011,72(1):81-87
    [49]Aysun Sayintia, Kerim Cobana, Hilkat Erkalfa. Preparation of dendritic waterborne polyurethane-urea/Ni-Zn ferrite composite coatings and investigation of their microwave absorption properties. Progress in Organic Coatings.2012,12:23-25
    [50]Tong Zhang, Xiaojie Wanga, Yuping Mub. Effect of average functionality on properties of UV-curable waterborne polyurethane-acrylate. Progress in Organic Coatings.2010,68(3):201-207
    [51]Dong Hee Junga, Eun Young Kimb, Young Soo Kangc, Byung Kyu Kim. High solid and high performance UV cured waterborne polyurethanes. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010,370(1-3):58-63
    [52]Chen Yan Bai, Xing Yuan Zhang, Jia Bing Dai. A new UV curable waterborne polyurethane: Effect of Cdouble bond; length as m-dashC content on the film properties. Progress in Organic Coatings.2006,55(3):291-295
    [53]Chien-Hsin Yanga, Huey-Jia Yanga, Ten-Chin Wen. Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes. Polymer.1999,44(4):871-885
    [54]Woo-Ram Leea, Sang-Wong Myounga, Jeong-Pyo Kim. Characterization of waterborne polyurethane for ecofriendly functional floor plate. Progress in Organic Coatings.2010,67(2):102-106
    [55]Woo-Ram Leea, Sang-Wong Myounga, Jeong-Pyo Kim. Characterization of waterborne polyurethane for ecofriendly functional floor plate. Progress in Organic Coatings.2010,68(1-2):130-134
    [56]Xinhua ZHOU, Weiping TU. Preparation and Characterization of Two-component Waterborne Polyurethane Comprised of Water-soluble Acrylic Resin and HDI Biuret. Chinese Journal of Chemical Engineering.2006,14(1):99-104
    [57]Daniel B. Otts, Kevin J. Pereira, William L. Jarret, Marek W. Urban. Dynamic colloidal processes in waterborne two-component polyurethanes and their effects on solution and film morphology. Polymer.2005,46(13):4776-4788
    [58]J. Huybrechts, P. Bruylants, A. Vaes, A. De Marre. Surfactant-free emulsions for waterborne, two-component polyurethane coatings. Progress in Organic Coatings.2000,38(2):67-77
    [59]Daniel B. Otts, Marek W. Urban. Heterogeneous crosslinking of waterborne two-component polyurethanes (WB 2K-PUR); stratification processes and the role of water. Polymer. 2005,46(8):2699-2709
    [60]Zeno W. Wicks Jr, Douglas A. Wicks. Two package waterborne urethane systems. Progress in Organic Coatings.2002,44(2):161-183
    [61]Jui-Ming Yeh, Chia-Tseng Yaoa, Chi-Fa Hsieh. Preparation and properties of amino-terminated anionic waterborne-polyurethane-silica hybrid materials through a sol-gel process in the absence of an external catalyst. European Polymer Journal.2008,44(9):2777-2783
    [62]Xin Liua, Kai Xu. Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Progress in Organic Coatings.2011,72(4):612-616
    [63]Anjie Dong, Guoling Hou, Duoxian Sun. Properties of amphoteric polyurethane waterborne dispersions:Ⅱ. Macromolecular self-assembly behavior. Journal of Colloid and Interface Science. 2003,266(2):276-281
    [64]Yiding Shen, Guiqiang Fei, Xiaorui Li, Yong Liang. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane. Journal of Colloid and Interface Science.2008,324(1-2):36-41
    [65]Meng-Shung Yen, Ping-Yuan Tsai, Po-Da Hong. The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,279(1-3):1-9
    [66]S.K. Lee, B.K. Kim. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science.2009,336(1):208-214
    [67]K. Stokes, K. Cobian. Polyether polyurethanes for implantable pacemaker leads. Biomaterials. 1982,3(4):225-231
    [68]Eliane Ayres, Rodrigo L. Orefice. Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. European Polymer Journal.2007,43(8):3510-3521
    [69]Vanesa Garcia-Pacios, Yoshiro Iwata, Manuel Colera. Influence of the solids content on the properties of waterborne polyurethane dispersions obtained with polycarbonate of hexanediol. International Journal of Adhesion and Adhesives.2011,31(8):787-794
    [70]Mei Zhang, Fei Song. Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids and Surfaces B:Biointerfaces.2012,100:16-21
    [71]Masakazu Hirose, Jianhui Zhou, Katsutoshi Nagai. The structure and properties of acrylic-polyurethane hybrid emulsions. Progress in Organic Coatings.2000,38(1):27-34
    [72]M. Hirose, F. Kadowaki, Jianhui Zhou. The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsions. Progress in Organic Coatings.1997,31(1-2):175-169
    [73]Shu Ling Chai, Martin Ming Jin, Hui Min Tan. Comparative study between core—shell and interpenetrating network structure polyurethane/polyacrylate composite emulsions. European Polymer Journal.2008,44(10):3306-3313
    [74]Xia Jiang, Jiehua Li, Mingming Ding, Hong Tan. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal.2007,43(5):1838-1846
    [75]Jasmin Bullermann, Stefan Friebel. Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralization. Progress in Organic Coatings.2013,76(4):609-615
    [76]Yeong-Jyh Wang, Tsung-Tien Cheng, Chien-Hsin Yang. The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes. Polymer. 1999,40(14):3979-3988
    [77]王志玲,王正,解竹柏,张萍.异氰酸酯水乳液胶粘剂在木质复合材料中的应用.林产工业.2004,31(2):3-6
    [78]Can Liu, Jiyou Gu, Yanhua Zhang. The research of Oxidation starch conversion and crystallinity. Advanced Materials Research.2012,39:1220-1224
    [79]Hongsheng Liu, Fengwei Xie, Long Yu. Thermal processing of starch-based polymers. Progress in Polymer Science.2009,34(12):1348-1368
    [80]Elessandra da Rosa Zavareze, Alvaro Renato Guerra Dias. Impact of heat-moisture treatment and annealing in starches:A review. Carbohydrate Polymers.2011,83(2):317-328
    [81]M.G. Sajilata, Rekha S. Singhal. Specialty starches for snack foods. Carbohydrate Polymers. 2005,59(2):131-151
    [82]I.J. Tetlow, M.J. Ernes.4.05-Starch Biosynthesis in Higher Plants:The Enzymes of Starch Synthesis. Comprehensive Biotechnology (Second Edition).2011,4:47-65
    [83]Anthony C. Dona, Guilhem Pages, Robert G. Gilber. Digestion of starch:In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers. 2010.80(3):599-617
    [84]Fengwci Xie, Peter J. Halley. Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science.2012,37(4):595-623
    [85]Michael C. Sweedman, Morgan J. Tizzotti, Christian Schafer. Structure and physicochemical properties of octenyl succinic anhydride modified starches:A review. Carbohydrate Polymers. 2013,92(1):905-920
    [86]Can Liu, Jiyou Gu, Yanhua Zhang. Comparison Sodium Hypochlorite Oxidation Starch in Different Acid Base Conditions, Journal of Biobased Materials and Bioenergy.2012,4:11-14
    [87]刘灿,张彦华,顾继友.氧化剂次氯酸钠利用率及氧化淀粉结晶度的研究,中南林业科技大学学报.2012,32(4):177-180
    [88]刘灿,张彦华,顾继友.不同催化剂双氧水氧化淀粉的转化及结晶度的研究,东北林业大学学报.2012,40(7):145-147
    [89]Olivia V. Lopez, Noemi E. Zaritzky, Maria A. Garcia. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering.2010,100(1):160-168
    [90]S.H.D Hulleman, M.G Kalisvaart, F.H.P Janssen. Origins of B-type crystallinity in glycerol-plasticised, compression-moulded potato starches. Carbohydrate Polymers.1999,39(4):351-360
    [91]C. Primo-Martin, N.H. van Nieuwenhuijzen, R.J. Hamer, T. van Vliet. Crystallinity changes in wheat starch during the bread-making process:Starch crystallinity in the bread crust. Journal of Cereal Science.2007,45(2):219-226
    [92]G.E. Vandeputte,R. Vermeylen, J. Geeroms, J.A. Delcour. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. Journal of Cereal Science.2003,38(1):43-52
    [93]陈晓威,王坤余,苏德强,周李岚.羧甲基酸解淀粉的制备及特性表征.皮革科学与工程.2010,2:12-14
    [94]王莘,阂伟红,李秀婷,王丹,张建峰,汪树生.高取代度羧甲基淀粉制备研究[J].粮油加工与食品机械.2002,11:
    [95]Rana Sagnak, Ilgi K. Kapdan, Fikret Kargi. Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal. International Journal of Hydrogen Energy.2010,35(18):9630-9636
    [96]Takafumi Futamura, Hironori Ishihara. Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. Journal of Bioscience and Bioengineering.2001,92(4):360-365
    [97]Ilgi K. Kapdan, Rukiye Oztekin, Hidayet Argun. Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy.2009,34(5):2201-2207
    [98]Hee-Young Kima, Jung-Ah Hanb, Dong-Keon Kweon. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydrate Polymers. 2013,93(2):582-588
    [99]M.N. Abdorreza, M. Robal, L.H. Cheng. Physicochemical, thermal, and rheological properties of acid-hydrolyzed sago (Metroxylon sagu) starch. LWT-Food Science and Technology. 2012,46(1):135-141
    [100]Rana Sagnak, Fikret Kargi. Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation. International Journal of Hydrogen Energy.2011,36(20):803-809
    [101]Serpil Ozmihci, Fikret Kargi. Thermophilic dark fermentation of acid hydrolyzed waste ground wheat for hydrogen gas production. International Journal of Hydrogen Energy.2011,36(3):2111-2117
    [102]Ayse Cakir, Serpil Ozmihci, Fikret Kargi. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. International Journal of Hydrogen Energy.2010,35(24):214-218
    [103]Daris Kuakpetoon,Ya-Jane Wang. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate Research.2006,341(11):96-99
    [104]Hui-Tin Chan, Chiu Peng Leh, Rajeev Bhat. Molecular structure, rheological and thermal characteristics of ozone-oxidized starch. Food Chemistry.2011,126(3):1019-1024
    [105]Kawaljit Singh Sandhu, Maninder Kaur, Narpinder Singh. A comparison of native and oxidized normal and waxy corn starches:Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology.2008,41(60:1000-1010
    [106]Yu-Rong Zhang, Xiu-Li Wang. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers.2012,87(4):2554-2560
    [107]Guifang Hua. Jingyuan Chen. Jianping Gao. Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers.2009,76(12):291-298
    [108]Pang Jiping, Wang Shujun. Comparative studies on morphological and crystalline properties of B-type and C-type starches by acid hydrolysis. Food Chemistry.2007,105(3):989-995
    [109]Sindhu Mathew, Patrick Adlercreutz. Mediator facilitated, laccase catalysed oxidation of granular potato starch and the physico-chemical characterisation of the oxidized products. Bioresource Technology.2009,100(14):3576-3584
    [110]杜建功,赵雅琴,张占柱.双氧水对淀粉的氧化性能研究.化工科技.2001,9(6):16-18
    [111]韩立鹏,刘国琴,李琳等.双氧水氧化马铃薯淀粉最佳工艺条件及其特性研究.河南工业大学报自然科学版.2008,29(1):27-31
    [112]冯国涛,陈慧,单志华.双氧水对淀粉氧化程度影响的研究.皮革科学与工程.2005,15(2):46-50
    [113]J. Newton. G. Peckham. in" Chemistry and Indust of Starch", R. W. Kerr, ed [M].2nd ed. New York:Acadeic Press,1968:325-343
    [114]谭义秋.淀粉氧化反应机理的探究[J].农产品加工.2007(4):46-49
    [115]Nathan Levien Vanier, Elessandra da Rosa Zavareze, Vania Zanella Pinto. Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry.2012,131(4):1255-1262
    [116]Hassan Firoozmand, Brent S. Murray, Eric Dickinson. Microstructure and elastic modulus of mixed gels of gelatin+oxidized starch:Effect of pH. Food Hydrocolloids.2012,26(l):286-292
    [117]顾继友,韩豫东.异氰酸酯乳液胶粘剂的研制.中国胶粘剂.2001,10(6):11-15
    [118]高振华.异氛酸酯室温下与醇、水反应及较高温度下与纤维素反应的研究.东北林业大学博士研究生论文.2003:108-118
    [119]王金玲.淀粉酯化及酯化淀粉/PCL共混物性能研究.华中农业大学硕士学位论文,2006
    [120]赵凯.淀粉非化学改性技术[M].北京:化学工业出版社,2008:29-33
    [121]陈福泉,张本山,黄强,卢海凤.X射线衍射测定淀粉结晶度的研究进展.食品工业科技.2010,01:432-436
    [122]裴光文,钟维烈,岳书彬.单晶、多晶和非晶物质的x射线衍射[M].济南:山东大学出版社,1985:478-500
    [123]Y. Zhou et al, Relationship between a-amylase degradation and the structure and physicochemical properties of legume, Carbohydrate Polymers,2004,57:299-317
    [124]李丽娜.氧化淀粉的合成及其在可食用膜中的应用.天津大学硕士.2007:9-19
    [125]徐颖慧.高锰酸钾氧化法制备氧化淀粉.化学造纸.1995,7(2):22-25
    [126]吴自强,吴易,李冰梅KMnO4氧化淀粉的制备与应用.建筑人造板.1996,2:25-28
    [127]顾继友.水性高分子复合型胶粘剂.粘接.2010,10:75-78
    [128]张心亚,涂伟萍等.乳液聚合中乳化剂对聚合物乳液稳定性的影响.粘接,2002,23(3):16-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700