用户名: 密码: 验证码:
瓜蒌炭疽菌的生理生态及病害防治的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对安徽省瓜蒌炭疽病标样的采集,经过室内分离、纯化培养得到8个菌株,然后采用同工酶电泳技术对分离到的8个瓜蒌炭疽菌菌株进行辅助分类与鉴定,详细研究了各种环境因子和营养物质对瓜蒌炭疽菌生长的影响及其分泌的胞外酶种类和活性,并对该病的化学和生物防治效果进行了探讨。本论文的主要研究结果包括:
    1 瓜蒌炭疽病病原菌的鉴定
    根据形态特征、培养性状、致病力及寄主范围的测定结果,按照Sutton的分类系统分种检索,将引起安徽省瓜蒌炭疽病的病原菌初步鉴定为Colletotrichum orbiculare分离到的8个菌株间在PDA培养基上的培养性状存在差异。
    分离到的8个瓜蒌炭疽菌菌株对瓜蒌的致病力表现出一定的差异。其中S5致病力最强。S9的致病力次之,其余的6个菌株通过Duncan’s新复极差测验显示致病力间无显著差异。未针刺处理组未发病,可能由于瓜蒌果实表皮较厚而无法造成有效侵染。
    瓜蒌炭疽菌在人工创伤接种条件下能够侵染包括珙桐科、木兰科、大麻科、葫芦科、悬铃木科、黄杨科、桑科、旋花科、蔷薇科、茄科等10科13种植物。
    2 瓜蒌炭疽菌生理生态的研究
    2.1瓜蒌炭疽菌越冬能力
    病原菌在0℃~15℃范围内的病菌均可安全越冬。-5℃中未能分离出瓜蒌炭疽菌。在土壤含水量为0-25%范围时,病菌均能安全越冬。瓜蒌炭疽菌在种子内部和种子表面均能安全越冬。瓜蒌病果、病叶、病种子等是引起田间发病的主要初侵染来源,且对越冬条件要求不严格。
    2.2 环境因子对瓜蒌炭疽菌的影响
    瓜蒌炭疽菌菌丝生长适温在21℃-30℃之间,其中以28℃最适菌丝生长。低温对菌丝无致死作用,只能抑制其生长,恢复常温后菌丝仍具生长能力,而高温则可丧失菌丝的生活力。孢子在10℃以下和40℃时均不能萌发,而在15℃-36℃之间均可萌发,且孢子萌发率差异不显著,均在96%以上。
    各菌株在RH50%—100%范围中,菌落速率差异不显著。在不同的RH条件下炭疽菌分生孢子萌发率均较高(>70%),差异不显著。
    在PDA中培养时,各菌株在pH4-12之间均可生长,以pH5时菌落直径最大。从各菌株液体培养的菌丝干重来看,以pH5-7菌丝干重处于高峰值,为生长的最适范围。各菌株在pH4-11之间的孢子萌发率差异不显著,从pH10开始逐渐下降,到pH12时孢子几乎不萌发。
    各菌株在不同的光照条件下的菌落直径差异不显著,说明瓜蒌炭疽菌菌丝生长对
    
    
    光照条件要求不严格。
    2.3 营养物质对瓜蒌炭疽菌的影响
    加入碳源促进各菌株的生长。但瓜蒌炭疽菌对不同碳源的利用程度不同。其中对葡萄糖、果糖和蔗糖的利用率最大,而对淀粉、甘露醇、半乳糖的利用较差,对乳糖几乎不能利用。各菌株在不同碳源和对照培养基上的孢子萌发率均较高,差异不显著。
    瓜蒌炭疽菌对有机氮中各类氨基酸(精氨酸、赖氨酸除外)、牛肉浸膏、酵母浸汁和无机氮中的硝态氮利用较好,对无机氮中的铵态和亚硝酸态氮几乎不能利用。对有机氮中的尿素的利用率还有待研究,因为同对照相比,尿素在平板中培养时的菌落直径很小,但在液体培养时菌丝干重较重,两者差异很大。
    不同生长因子(维生素)对炭疽菌菌丝生长有一定的影响,但促进作用不很明显,仅VB6作用后,菌落直径同对照组一样,其余各种维生素对菌丝生长促进作用不大。各种维生素的不同浓度之间对菌丝生长也存在着差异。以3μg/ml对炭疽菌的生长促进作用最大。维生素对瓜蒌炭疽菌的具体作用还不明确。
    2.4培养基优化的研究
    采用二次通用旋转组合设计方法对瓜蒌炭疽菌菌株S1和S9的培养基最佳组合进行了研究,建立了具有较好预测性能的培养基反应模型,并用试验数据验证了该模型的可靠性,利用该模型对培养基最优组合的各种重要单因子要素对菌丝生长量反应规律及交互作用进行了探讨,并对影响两个菌株生长的因子进行了比较,结果表明:选择的三个因子(pH、葡萄糖、组氨酸)能够较好的反映出对各菌株生长影响的情况。三个因子对S1与S9菌落直径影响大小顺序为:pH>葡萄糖>组氨酸,说明了pH对两菌株在平板上平铺生长的影响最大,组氨酸影响最小;三个因子对S1菌丝干重影响大小为:葡萄糖>组氨酸>pH,对S9菌丝干重影响大小为:葡萄糖>pH>组氨酸,说明了葡萄糖在两菌株液体培养过程中起的作用最大,而pH与组氨酸对两菌株的作用则表现出一定的差异。
    两因子交互作用对S1菌落直径的影响的大小顺序为:葡萄糖与组氨酸互作>pH 与葡萄糖互作>pH与组氨酸互作。对S9菌落直径的影响的大小顺序为:葡萄糖与组氨酸互作>pH与组氨酸互作>pH与葡萄糖互作。说明了两菌株在对各因子互作效应中的表现存在着一定的差异。
    2.5同工酶电泳分析
    对瓜蒌炭疽菌的8个菌株和其他4株分别分离自苹果、玉米、西瓜和山茱萸的炭疽菌进行了八种同工酶聚丙烯酰胺凝胶电泳的比较研究。这八种同工酶分别是:酯酶、多酚氧化酶、过氧化物酶、苹果酸脱氢酶、乙醇脱氢酶、谷氨酸脱氢酶、半乳糖脱氢酶和可溶性蛋白。对同工酶酶谱资料的聚类分析,在0.64的相似性水平上将12个菌株归为3组,a组包括:S1、S2、S3、S4、S5、S9、S10、XG八个菌株;b组包括:S6、PG和SZY四个菌株;c组包括:YM一个菌株;结果表明供试12个炭疽菌菌株
    
    
    内酯酶、苹果酸脱氢酶
Mongolian snakegourd (Trichosanthes kirilowii) is an important traditional Chinese medicine. Trichosanthin (TCS) can be extracted from the root of Mongolian snakegourd, which can inhibit the propagation of HIV. Along with the enlargement of culture area of Mongolian snakegourd, its anthracnose caused by Colletotrichum sp. has been a serious problem and it can bring numerous yield losses. However, so far its pathogen is unknown for us. In the dissertation, eight isolates of Colletotrichum were obtained from diseased fruit and foliage of Mongolian snakegourd, single-spore-cultured, grown on potato dextrose agar (PDA) from Qian’shan county, Anhui province, China P.R. Then, Polyacrylamicide gel electrophoretic analysis of isozymes of 8 isolates of Colletotrichum from Trichosanthes Kirilowii and 4 isolates of four other apple、watermelon、corn and dogwood were studied as an accessorial method for the taxonomy of anthracnose pathogens. The effects of diverse environmental factors and nutriments on the growth of Mongolian snakegourd anthracnose pathogens, the variety and activity of extracellular enzyme secreted by Mongolian snakegourd anthracnose pathogens were studied. Also the effects of the fungicides and biocontrol stain B-24 to control this disease were studied. The experimental results were summarized as follows:
    1. The Identification of Mongolian snakegourd Anthracnose Pathogen
     According to the experimental results of cultural and morphological characteristics, pathogencity and host range test, meanwhile, consulted the classification criteria of Colletotrichum edited by Sutton (1980), the pathogen of Mongolian snakegourd anthracnose was identified as Colletotrichum orbiculare (Berk. &Mont.) Arx primarily. The cultural characteristics were some differences among eight isolates from diverse locations on PDA medium.
    The results of pathogenicity test to Mongolian snakegourd showed some difference among eight isolates. Isolate S5 had the strongest pathogenicity to Mongolian snakegourd, while isolate S9 showed the weakest pathogenictiy among eight isolates. The pathogenicity of other six isolates showed no apparent differences by means of Duncan’s test. Mongolian snakegourd didn’t be infected by unwounded inoculation.
    The host range of C.orbiculare was investigated by inoculating several dozens of plants with the methods of conidial suspension wounded and unwounded inoculation. The results indicated that Mongolian snakegourd anthracnose pathogen could infect 13 kinds of plants from 10 families by means of wounded inoculation. These plants included Camptotheca acuminata, Magnolia grandiflora, Humulus scandens, Citrullus lanatus, Platanus hispanica, Broussonetia popyrifera, Euonymus japonica, Ipomoea batatas, Cucurbita pepo, Luffa cylindrical, Malus pumila, Cucumis sativa, Lycopericon
    
    
    esculentum,etc.
    2. Study on the physiological and ecological characteristics
    2.1 The Overwinter Survival Ability of Mongolian snakegourd Anthracnose Pathogen
    Mongolian snakegourd anthracnose pathogen could overwinter safely at the range from 0℃ to 15℃. Due to the low temperature, C. orbiculare could not be isolated from diseased organism. When the water content in soil was at the range from 0% to 25%, C.orbiculare could overwinter safely indoor, too. C.orbiculare was isolated from the outer and inner of the overwinter seeds. So, the diseased fruits, diseased leaves and diseased seeds were proved to be the major initial effective sources of anthracnose. C.orbiculare on Mongolian snakegourd was not strict with the overwinter conditions.
    2.2 The Effect of Diverse Environmental Factors on the Growth of Colletotrichum orbiculare
    The results showed as follows: the growth optimum temperature ranged from 21℃ to 30℃.The mycelia grew best at 28℃. Low temperature such as 0℃,inhibited hyphal growth and conidia germination only, but was not the deadly line. C.orbiculare could not survive at high temperature such as 40℃. Conidia couldn’t germinate under 10℃ or above 40℃. The percentage of conidia germination of diverse isol
引文
1. 刘秀娟. 中国热带、亚热带地区炭疽菌主要寄主植物名录. 热带作物学报,1987,8(2):123-134
    2. Sutton B C. The genus Glomerella and its ananmorph Colletotrichum. In Colletotrichum-Biology, Pathology and Control. CAB International: Wallingford. 1992,pp.1-26
    3 王晓鸣. 炭疽菌属(Colletotrichum Cda.)的现代分类学和陕西省炭疽菌属的种.硕士学位论文. 西北农业大学. 1985
    4. Agostini J P, Timmer L W, Mitchell D J et al. Morphological and pathological characteristic of strains of Colletotrichum gloeosporiodies from citrus. Phytopathology, 1992,82:1377-1382
    5.Duke M M. The genera Vermicularia Fr. and Colletotrichum Cda. Trans. Br, Mycol.Soc, 1928,13:147-167
    6. Hemmi T, Nojima T. Contributions to the three new or litter know anthracnose of the cultivated plants in Japan. Memoirs of the College of Agricul tures, Kyoto Imperial University. 1927,No.3,Art.2,p:25-39
    7. Saccardo P A. Sylloge Funorum. Vol,3,4,10,11,14,16,18,22,25,26.:1880-1972
    8. Von Arx J A. Die arten der guttung Colletotrichum. Phytopathol Z, 1957,29:413-468
    9. Von Arx J A. The fungi sporulating in pure culture. J Cramer Lehre, 1970:288
    10. Von Arx J A. A review of the fungi classified as Gloeosporium. J Cramer Lehre, 1970:302
    11. Sutton B C. The Coelomycetes—fungi imperfecti with pycinidia, acervuli and stromata. C.M.I.Kew,surrey,1980
    12. Sutton B C. Development of fructions in Colletotrichum graminicla(Ces.) Will. and related species. Canadian Journal of Botany, 1966,44:887-897
    13. 魏景超. 真菌鉴定手册. 上海: 上海科技出版社, 1979
    14. 邵力平, 沈瑞祥. 真菌分类学. 北京: 中国林业出版社.1984
    15. Bernstein B. Characteristics of Colletotrichum from peach apple, pecan and other hosts. Plant disease, 1995,79:478-482
    16. Cox M L. Conidium and appressorium variation in Australian isolates of Colletotrichum .gloeosporioides group and related species. Systematic Botany, 1988,1:139-149
    17. Maziah Z, Bailey J A. Morphology and cultural variation among Colletotrichum isolates obtained from tropical forest nurseries. Journal of tropical forest science, 2000,12(1):1-20
    18. Peterson P D, Campbell C L. Prevalence and ecological association of foliar pathogens of cucumber in North Carolina. Plant disease, 2002,86(10):1094-1100
    19. Agrios G N. Plant pathology(3rd) New York. Academic press, 1988
    20. 中国农科院植保所. 中国农作物病虫害(第二版). 北京:中国农业出版社, 1995
    21. 张中义, 冷怀琼, 张志铭,等. 植物病原真菌学. 成都: 四川科学技术出版社,1988
    22. 徐劲峰. 瓜蒌主要病害发生特点及综合防治. 华东植物病理学术研讨会会刊, 2003
    23. 石鸿文, 潘晟. 温室黄瓜主要病害防治. 植物医生, 2001,14(1):18
    24. 支月娥, 顾振芳. 金瓜贮藏期炭疽病和湿腐病的生物学特性研究. 上海农学院学报, 1997,15(3):199-203
    25. 姜贞旺. 西瓜炭疽病的发生与防治. 福建果树, 1997,4:68
    26. Moriwaki J. Anthracnose of netted melon(Cucumis melo var. reticulates Naud.) caused by Colletotrichum orbiculare(Berkeley&Montagne) Arx. Japanese journal of crop science, 2000,66(2):85-90
    27. 王汉荣, 茹水江, 郭仁裕,等. 浙江省长瓜炭疽病病原菌鉴定及其病原生物学特性研究. 浙江农业学报, 2000,12(2):84-88
    28. Ishida N, Akai S. Relation of temperature to germination of conidia and appressorium formation in
    
    
    Colletotrichum lagenarium. Mycologia, 1969,61:382-286.
    29. 韩翔, 檀根甲, 丁克坚,等. 瓜篓炭疽菌越冬能力的初步研究. 安徽农业科学, 2003,31(2):268-269
    30. Lu W H, Edelson J V, Duthie J A et al. A comparison of yield between high- and low-intensity management for three watermelon cultivars. Hortscience, 2003,38(3):351-356
    31. 高振江, 吕佩珂. 黄瓜炭疽病发病条件与防治研究. 内蒙古农业科技, 1992,5:10-13
    32. 李品汉. 西瓜炭疽病的发生与防治. 农村实用技术, 2002,(3):26-27
    33. Russo U M, Russo B M, Cartwright B et al. Culture conditions affect colonization of watermelon by Colletotrichum orbiculare. Biologia plantarum, 2001,44(2):305-307
    34. Suzuki K et al. Chemical dissolution of cellulose membrane as a prerequisite for penetration from appressoria of C.lagenarium. J. Gene.Microbiol, 1982,128:1035-1039
    35. Suzuki K et al. Role of chemical dissolution of cellulose membrane in the appressorial by C.lagenarium. Ann.Phytopathol.Soc.Japan, 1983,49:481-483
    36. Kubo Y, Nakamura H, Kobayashi K et al. Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium. Molecular plant-microbe interaction, 1991,4:440-445
    37. Howard R J et al Role of melanin in appressorium function. Experimental mycology, 1989,13:403-418
    38. Gento T, Seiji T, Tomonori S et al. Expression pattern of melanin biosynthesis enzymes during infectious morphgenesis of Colletotrichum lagenarium. Journal of general plant pathology, 2003,69:169-175
    39. Takano Y, Kubo Y, Shimizu K et al. Structural analysis of PKS, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol. Gen. Genet, 1995 249:162-167.
    40. Perpetua N S, Kubo Y, Yasuda N et al. Cloning and characterization of a melanin biosynthesis THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol. Plant-Microbe. Interact, 1996, 9:323-329.
    41. Kubo Y, Takano Y, Endo N et al. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Appl. Environ. Microbiol, 1996,62:4340-4344
    42. Tsuji G, Kenmochi Y, Takano Y et al. Novel fugal transcriptional activators, Cmr Ip of Colletotrichum lagenarium and Pig lp of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(11)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol. Microbiol, 2000, 38:940-954.
    43. Tsuji G, Fujii I , Tsuge S et al. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Molecular plant-microbe interaction, 2003,16(4):315-325
    44. Tsuji G, Sugahra T, Fujii I et al. Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium. Mycological research, 2003,107(7):854-860
    45. Takano Y, Komeda K, Kojima K et al. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Molecular plant-microbe interaction, 2001,14(10):1149-1157
    46. Okamato S, Sakurada M, Kubo Y et al. Inhibitory effect of aflastatin A on melanin biosynthesis by Colletotrichum lagenarium. Microbiology (Reading), 2001,147(9):2623-2628
    47. Kimura A, Takano Y, Furusava I et al. Peroxisomal metabolic function is required for
    
    
    appressorium-mediated plant infection by Colletotrichum lagenarium. Plant cell, 2001,13(8):1945-1957
    48. Kojima K, Kikuchi T, Takano Y et al. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Molecular plant-microbe interaction, 2002,15(12):1268-1276
    49. Takano Y, Kubo Y, Kawamura C et al. The Alternaria alternate melanin biosynthesis gene restores appressorial melanization and penetration of cellulose membranes in the melanin-deficient albino mutant of Colletotrichum lagenarium. Fungal genetics and biology, 1997,21(1):131-140
    50. Takano Y, Oshiro E, Okuno T et al. Microtubule dynamics during infection-related morphogenesis of Colletotrichum lagenarium. Fungal genetics and biology, 2001,34(2):107-121
    51. Perpetua N S, Kubo Y, Okuno T et al. Restoration of pathogenicity of a penetration-deficient mutant of Colletotrichum lagenarium by DNA complementation. Current genetics, 1994,25(1):41-46
    52. Monroe J G. Physiological specialization in Colletotrichum. Phytopathology, 1958,48:79-83
    53. Dutta S K et al. Observation on the physiological races of Colletotrichum lagenarium. Botanical genetics, 1960,121(8):163-166
    54. 刘莉, 王鸣. 西瓜种质资源苗期对炭疽病抗性的研究. 中国西瓜甜瓜, 1990,1:9-13
    55. 文生仓, 王鸣. 西瓜炭疽病人工接种鉴定的新方法----离体叶接种和AD评价法. 西北农业大学学报, 1994,22(1):17-21
    56. 刘海清. 黄瓜炭疽病研究初报(I). 邯郸农业高等专科学校学报, 1996,3:9-11,13
    57. 杨荣金, 彭新湘, 姜子德,等. 草酸诱导黄瓜抗炭疽病的机理研究. 植物病理学报, 2000,30(2):153-157
    58. 赵建芳, 陈洪美, 范广华,等. 草酸钾与硫酸亚铁对西瓜炭疽病抗性诱导的研究. 山东农业科学, 2003,13:15-17
    59. 赵建芳, 陈洪美, 张乃琴,等. 利用弱致病株系灭活物诱导黄瓜对炭疽病的抗病性. 莱阳农学院学报, 2003,20(1):13-15
    60. Doubrava N S et al. Induction of systemic resistance to anthracnose by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiological molecular plant pathology, 1988,33:69-79
    61. 孙万春, 梁永超, 杨艳芳,等. 硅和接种黄瓜炭疽菌对黄瓜过氧化物酶活性的影响及其与抗病性的关系. 中国农业科学, 2002,35(12):1560-1564
    62. Orober M, Siegrist J, Buchenauer H et al. Mechanisms of phosphate-induced disease resistance in cucumber. European journal of plant pathology, 2002,108(4):345-353
    63. Hammerschimidt R et al. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological plant pathology, 1982,20:73-82
    64. Ji C, Kuc J et al. Purification and characterization of an acidic beta-1,3-glucanase from cucumber and its relationship to systemic disease resistance induced by Colletotrichum lagenarium and tobacco necrosis virus. Molecular plant-microbe interaction, 1995,8(6):899-905
    65. Wei G, Kloepper J W., Tu Z et al. Introduction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacter. Phytopathology, 1991,81:1508-1512
    66. Cools H J, Ishii H. Pre-treatment of cucumber plants with acienzolar-S-methyl systemically primes a phenylalanine ammonialyase gene(PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiological and molecular plant pathology, 2002,61(5):273-280
    
    67. Smith B J, Keen N T, Becker J O et al. Acibenzolar-S-methyl induces resistance to Colletotrichum lagenarium and cucumber mosaic virus in cantaloup. Crop protection, 2003,22(5):769-774
    68. Press C M, Loper J E, Kloepper J W et al. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology, 2001,91(6):593-598
    69. 卢颖, 董繁生. 世高防治西瓜炭疽病药效试验. 农药, 2001,40(4):35
    70. 田梅, 肖彤斌, 谢圣华,等. 50%施保功对不同品种西瓜炭疽病的防效及安全性试验. 广东农业科学, 2003(5):49-50
    71. Rugro P A, Mandokhot A M. Fungicidal management of anthracnose of bitter gourd and its comparative economics. Pest management and economic zoology, 2000,8(2):197-199
    72. 王明祖, 周华众. 36—1菌对植物病原真菌的拮抗性. 中国生物防治, 1996,12(1):20-23
    73. 何红, 蔡学清, 关雄,等. 辣椒内生枯草芽孢杆菌(Bacillus subtilis)BS—2和BS—1防治辣椒炭疽病研究. 植物病理学报, 2003,33(2):170-173
    74. Chuang T Y, Yang H R. Biological control of banana anthracnose. Plant pathology bulletin, 1993,2:71-77
    75. 孔建, 王同贵. 枯草芽孢杆菌B—903菌株抗菌物质对植物病原真菌的抑制作用. 植物病理学报., 1995,25(1).-69-72
    76. 邢来君, 李春明. 普通真菌学. 北京: 高等教育出版社
    77. 胡能书, 万贤国. 同工酶技术及其应用. 长沙: 湖南科学技术出版社
    78. Chang L O, Srb A M, Steward F C et al. Electrophoresis separation of the soluble proteins of Neurospora. Nature, 1962,193:756-759
    79. 何忠效, 张树帧. 电泳. 北京 科学出版社
    80. Micales J A, Bonde M R, Peterson G.J et al. The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon, 1986,27:405-409
    81. 陈伟群, 张天宇. 十字花科上的链格孢属真菌同工酶凝胶电泳分析. 真菌学报, 1994,13(4):295-302
    82. 曹丽华, 叶华智. 麦类穗腐镰刀菌的同工酶电泳分析. 西北农业学报, 2001,10(2):45-48
    83. Geifer J P. Colletotrichum spp. causing anthracnose in the Irorh Coast (II) Enzymatic polymorphism in a collection of isolate of C.gloeosporioides. Annales de phytopatholgie, 1980,12(3):177--191
    84. Bonde M R., Peterson, G L ,Maas J L et al. Isozyme comparisons for identification of Colletotrichum species. Phytopathology, 1991,81:1523—1528
    85. Yamazaki M, Komagata K. Taxonomic significance of electrophoretic comparison of enzymes in the genera Rhodotorula and Rhodosporidium. Int J Sys Bacteriology, 1981,31(3):361-381
    86. 王守正, 王海燕, 李洪连,等. 用酯酶同工酶酶谱鉴定病原菌专化型研究. 河南农业科学, 2000,(10):15-17
    87. 袁凤杰, 徐金星, 杨庆凯,等. 大豆灰斑病菌生理小种的同工酶鉴定. 大豆科学, 1998,17(3):219-224
    88. 刘曙照, 李清铣. 稻瘟病菌生理小种菌体可溶性蛋白特性初探. 植物病理学报, 1994,24(3):203-206
    89. Meyer J A. Genetics of phytopathogenic fungi Vii. Detection of esterases and phosphatases in culture filtes of Fusarium oxysporum and F. xylaroides by starch gel electrophoresis. Bat Gaz, 1964,125:298-300
    90. Park W M. Differentiation of Colletotrichum. spp. causing anthracnose on Capsicum annuml by electrophoretic method. Korean J.plant pathology, 1987,3(2):85-92
    91. 曾大兴, 戚佩坤, 姜子德,等. 胶孢炭疽菌的种内遗传多样性研究. 菌物系统,
    
    
    2003,22(1):50-55
    92. Urena-Padilla A R, MacKenzie B W, Bowen B W et al. ?Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology, 2002,92(11):1245-1253
    93. Talhinhas P, Screenivasaprasad S, Oliveira H et al. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology, 2002,92:986-996
    94. 黄璐琦, 乐崇熙, 杨滨,等. 栝楼属(Trichosanthes L.)的系统学研究. 江西中医学院学报, 1999,11(2):75-76
    95. 雷和田, 宋经元, 祁建军,等. 根癌农杆菌转化栝楼及植株再生. 植物学通报, 2001,18(3):363-366
    96. 方中达. 植病研究方法(第二版). 北京. 中国农业出版社, 1998
    97. 陶勤南. 回归分析与回归设计----在肥料与栽培试验中的应用. 北京农业科学, 1984,增刊
    98. 唐启义, 冯明光. 实用统计分析及其计算机处理平台. 北京. 中国农业出版社, 1997
    99. Sneath P H, Sokal P R. Numerical taxonomy:The principle and practice of numerical classification. W H Freaman and Co. San Francisco. U.S.A. 1973
    100. 蒋传葵, 金承德, 吴仁龙,等. 工具酶的活力测定. 上海. 上海科学技术出版社, 1982
    101. 宋爱荣, 郭立忠, 刘作亭,等. 七个白色金针菇菌株发酵液中四种胞外酶活性的测定与分析. 中国实用菌, 1999,18(4):31-33
    102. 王宜磊. 侧耳液体培养特性及胞外酶活性研究. 中国食用菌, 2000,19(4):33-34
    103. 李如亮. 生物化学实验. 武汉. 武汉大学出版社, 1998
    104. 吴芳芳, 檀根甲, 韩翔,等. 苹果采后炭疽病的化学防治技术. 植物保护学报, 2003,30(3):319-324
    105. 陈春年. 农药生物测定技术. 北京. 北京农业大学出版社, 1991
    106. 马国胜. 烟草黑胫病菌生理生态及对甲霜灵抗性监测与遗传研究. 硕士学位论文. 安徽农业大学, 2001
    107. 季立才. 浓缩胶固定化漆酶及性能. 武汉大学学报(自然版),1988,(4):63-66
    108. 曾荣鉴. 碳源和氮源对平菇菌丝胞外酶诱导作用. 食用菌,1992,14(1):17-18
    109. 吴建勤, 张思禄. 锥栗炭疽病的研究——I.病原的确定及其生物学特性. 福建林学院学报, 2003, 23(2):132-135
    110. 章桂明, 戚佩坤. 广东省栽培药用植物上弯孢类型炭疽菌的鉴定. 植物病理学报, 1993,23(2):121-129
    111. 杨叶, 唐广缘, 黄意毅,等. 海南省香蕉果实潜伏炭疽菌生物学特性研究. 植物病理学报, 2000,30(4):337-342
    112. 黄思良, 霍秀娟, 韦刚,等. 芒果炭疽病菌Colletotrichum gloeosporioides 的生物学特性. 西南农业学报, 1999,12(2):83-89
    113. 吴翠萍, 安榆林. 截获番木瓜炭疽病病原菌的分离鉴定. 植物检疫, 2002,16(1):13-14
    114. 王明勇, 陈真, 包文新,等. 农业有害生物可持续发展治理及其应用技术开发利用. 有害生物综合治理策略与展望. 安徽省植物病理学会编, 北京. 中国农业出版社, 2002
    115. 刘爱媛, 陈维信, 李欣允,等. 荔枝炭疽病菌生物学特性的研究. 植物病理学报, 2003, 33(4):313-316
    116. 周而勋, 杨媚, 张华,等. 菜心炭疽病菌菌丝生长、产孢和孢子萌发的影响因素. 南京农业大学学报, 2002,25(2):47-51
    117. 王芳, 曾华英, 杨福祥,等. 芦荟炭疽病菌生物学特性及防治的研究. 中国农学通报, 2001,17(2):24-26
    118. 吴芳芳, 檀根甲, 何德友,等. 苹果采后炭疽病菌生物学特性的研究. 菌物系统,
    
    
    2002,21(3):440-443
    119. 郑晓冬, 何国庆, 王友永,等. 谷氨酸产生菌融合子ZAUF7发酵培养基优化. 浙江农业大学学报, 1995,21(1):93-96
    120. 李信, 许雷, 裴鑫德,等. 蛹虫草(Cordyceps militaris)菌丝体液体培养基的优化和发酵条件的研究. 核农学报, 1998,12(1):35-40
    121. Linne J M, Burdon J J. Preliminary study of virulence and isozymic variation in natural populations of Colletotrichum gloeosporioides from Stylosanthes guianensis . Phytopathology, 1990,80:728—731
    122. Arntzen C J, Haugh M F, Bobick S et al Induction of stomatal closure by Helminthosporium maydis pathotoxin. Plant Physiology, 1973,(52):569-574
    123. Scheffer R P, Pringle R B. A selective toxin produced by Periconia circinaia. Nature, 1961, (191):912-913
    124. Comstock J C, Martinson C A, Gengenback B G et al. Host specificity of a toxin from Phyllosticta maydis for Texas cytoplasmically male-sterile maize. Phytopathology, 1973,(63):1357-1361
    125. Bailiss K W. The relationship of gibberellin content to cucumber mosaic virus infection of cucumber. Physiol. Plant Pathol. 1974,(4):73-80
    126. 陈捷, 高洪敏, 纪明山,等. 玉米茎腐病菌产生的细胞壁降解酶的致病作用. 植物病理学报,1998,28(3):221-226
    127. Hancock J G. Hemicellucose degradation in sunflower hypocotyls infected with Sclerotinia sclerotiorum. Phytopathology, 1967,(57):203-206
    128. 周叶方, 胡方平, 叶谊,等. 水稻细菌性条斑病菌胞外产物的性状. 福建农业大学学报, 1998,27(2):185-190
    129. 周而勋, 王克荣, 陆家云,等. 栗疫病菌不同毒力菌株胞外酶活性和草酸产量的比较. 真菌学报, 1996,15(3):182-187
    130. Shamala T R, Screekantian K R. Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme Microb, 1986,8(3):178-182
    131. Steller S, Vollenbroich D, Leenders F et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem boil, 1999,6:31-41
    132. Stover A G, Driks A. Secretion, localization and antibacterial activity of Tas A, a Bacillus subtilis spore-associated protein. Journal of bacteriology, 1999,181:1664-1674
    133. 范青, 田世平, 李永兴,等. 枯草芽孢杆菌(Bacillus subtilis )B-912对采后柑桔果实青、绿霉病的抑制效果. 植物病理学报, 2000,30(4):343-348
    134. 孔建, 王文夕, 赵白鸽,等. 枯草芽孢杆菌B-903菌株的研究II. 抗菌物质的理化性质. 中国生物防治, 2000,16(1):12-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700