用户名: 密码: 验证码:
檀香精油成分组成、分布及人工促成心材形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
檀香(Santalum album)是我国华南地区近几年大力推广种植的重要珍贵经济树种之一,它的主要经济价值在于其具芳香气味的心材和从心材中提取的檀香精油。檀香心材的形成(俗称“结香”)是一个非常复杂的生理生化过程,自然生长条件下,印度地区一般需10~13年才陆续开始结香。尽管檀香已在我国成功引种,早期的生长表现也良好,但我们对檀香人工林的心材形成情况、心材精油含量、精油成分的分布规律以及精油的质量等了解得还非常有限,很有必要进行深入研究,因为檀香的经济价值主要取决于心材的数量、心材的精油含量、精油成分组成以及精油的质量等。
     本论文以海南尖峰岭21年生檀香人工林为成龄檀香,分析其心材形成、精油含量及成分分布情况,为进一步了解檀香心材形成过程中一些精油成分的变化规律提供奠定基础;同时,采用抽样调查的研究方法,分析了集约化种植的6年生檀香人工林的心材形成情况,并对我国大规模发展檀香人工林的前景作一初步评估;另外,为了缩短檀香自然结香的时间,以6年生未形成心材的幼龄檀香为研究对象,采用树干填充气体、树干注射生长调节剂和树干接种真菌等方法,开展了促成心材形成的试验。主要的研究结果如下:
     (1)海南尖峰岭21年生檀香人工林均已自然结香,平均心材比例为38.01%,平均精油含量为5.52%,从心材提取的檀香精油中α-檀香醇含量和β-檀香醇含量均达到了国际檀香木油的质量标准。
     (2)檀香树干的东、南、西、北方向和中部(髓心)之间的精油含量差异不显著(p=0.583),但髓、心材中部、心材外部和边材的精油含量之间差异极显著(p<<0.001);边材的精油含量显著的低于心材,平均含油量为1.61%,在成分组成上却显著多于心材(p<<0.001),多出的主要成分为饱和烃、饱和醛以及含十八个碳原子的酸类物质等;心材的不同位置之间精油含量和成分组成的差异均不显著。
     (3)檀香心材和边材的总檀香烯含量(p=0.992)和倍半萜烯含量(p=0.982)的差异不显著,但总檀香醇含量(p<<0.001)和倍半萜烯醇含量(p<<0.001)的差异均显著。心材的檀香醇类物质和倍半萜烯醇类物质含量远远高于边材,但檀油醇含量却显著的低于边材(p<<0.001)。
     (4)檀香人工林的集约化种植在我国南方地区早期的生长和结香表现良好,6龄就零星开始结香了,但结香的比例较低(15%~20%),心材的精油含量也较低(0.66%~1.76%);幼龄檀香心材精油的成分组成和成龄檀香精油的组成基本一致,但α-檀香醇和β-檀香醇的含量均比较低,平均相对含量为20.19%和10.14%,没有达到檀香木油的国际质量标准。
     (5)树干填充外源气体能促成幼龄檀香形成心材,促成心材的面积大小差异显著(p<<0.001),各处理促成的檀香心材在树干分布面积的统计学大小顺序为:氮气处理>二氧化碳处理>乙烯处理=机械损伤处理;乙烯处理促成的檀香心材中精油含量最高,平均含量高达17.11%,超出檀香的正常含油量范围,也显著地高于其它各处理的精油含量(p=0.001),但精油中α-檀香醇和β-檀香醇的含量却很低,平均相对含量为31.05%和12.67%;精油成分分析结果表明,精油中杂质较多,多为一些酚类等抽提物;各气体处理中,二氧化碳处理促成的檀香心材其精油中α-檀香醇和β-檀香醇的相对含量最高,平均相对含量分别为41.09%和18.91%,并且符合檀香木油的国际质量标准,这意味着二氧化碳可能在促成檀香心材的形成中具有重要作用。
     (6)树干注射生长调节剂能促成幼龄檀香形成心材,但各种不同的生长调节剂以及相应的浓度对促成的檀香心材面积的大小影响不显著(p=0.457);0.3%的乙烯利处理对幼龄檀香叶片的光系统II功能反应中心造成了较大的损害,降低了光能的利用效率,从而使叶片的净光合速率显著降低(p<<0.001);0.6%的6-苄氨基腺嘌呤处理促成的檀香心材中精油含量最多,平均含量为9.34%,显著地高于其它各处理(p<<0.001),其次是0.3%的乙烯利处理和0.3%的茉莉酸处理,平均精油含量均为5.33%,0.15%的甲基紫精处理促成的檀香心材中精油含量最低,平均含量仅为2.54%。
     (7)树干注入6-苄氨基腺嘌呤(含0.3%和0.6%两种不同的浓度)、0.3%的乙烯利、0.3%的茉莉酸和0.3%的甲基紫精促成的檀香心材中精油的α-檀香醇和β-檀香醇均达到了檀香木油的国际质量标准,意味着6-苄氨基腺嘌呤在调控檀香心材的形成中发挥着关键作用。
     (8)树干接种真菌能促成幼龄檀香形成心材,并且不同的菌种对促成的檀香心材面积的影响差异达显著水平(p<<0.001),各菌种处理促成的心材面积的统计学大小顺序为:柑橘葡萄座腔菌>镰孢菌属一种真菌>胶孢炭疽菌=Khuskia属一种真菌=对照;Khuskia属一种真菌处理促成的檀香心材精油含量最高,平均含量为7.74%,显著的高于其它各菌种处理(p=0.032),但各真菌处理促成的檀香心材精油中杂质较多,多为一些未分离或未鉴定的化合物;接种各种真菌促成的檀香心材,其精油的α-檀香醇和β-檀香醇含量均较低,都没有达到檀香木油的国际质量标准,因此,接种真菌用于促成幼龄檀香形成心材在很大程度上不理想。
     (9)各种促心材形成的处理(填充气体、注射化学物质和接种真菌等)促成的檀香心材在含水量和基本密度等属性的差异均较小,表明檀香心材的属性受外界的影响较小,基本保持在一个相对稳定的范围内。
     (10)檀香心材的形成和衰老没有直接的联系,但和内部激素的不平衡有较大的关系。
Sandal (Santalum album) or east Indian sandalwood, one of the most important economictree species promoted for large area planting in southern China in recent years, is highlyvaluable for its aromatic heartwood and the essential oil distilled from its fragrant heartwood.Heartwood formation is a very complicated physio-biochemical process in sandal, and it willtake10~13years to form heartwood generally in India. Although sandal has introduced intoChina more than40years, and early growth is pretty well, information on heartwood formation,oil content, oil composition, oil distribution, ingredient distribution as well as oil quality is veryscare, and need a further study, because the economic value of sandal will depend largely onthe volume of heartwood, essential oil content, oil composition and oil quality.
     This dissertation strives to study the heartwood presence, essential oil content, essentialoil composition as well as ingredient distribution of sandal based on a21-year old maturesandal plantation in Jianfengling, Hainan island. Meanwhile, the growth, heartwood presence,oil content as well as oil composition of6-year old young sandal trees which planted inlarge-scale in Guangdong province were also studied through a sample plot survey method. Inaddition, a series of experiments including gas filling, chemical injection as well as fungiinoculation were conducted in order to accelerate heartwood formation in young sandals.Major conclusions are summarized as follows:
     (1)21-year old sandal plantation in Jianfengling, Hainan island have formed heartwoodnaturally with an average heartwood proportion of38.01%, an average oil content of5.52%,both content of α-santalol and β-santalol extracted from heartwood have achieved the currentISO standard for sandal oil.
     (2)No significant differences of oil content (p=0.583) was found among different parts ofheartwood (part referred to east, south, west, north and center or pith), but their was significantdifferences (p<<0.001) between different locations (location referred to sapwood, outerheartwood, central heartwood and center or pith). Oil extracted from sapwood was lower than that extracted from heartwood, but consisted of more ingredients than those in heartwood, mostof which were saturated hydrocarbon, saturated aldehyde and eighteen-carbon skeleton acid.Average oil content of sapwood was1.61%.
     (3)No significant differences of total santalene content (p=0.992) and sesquiterpenehydrocarbon content (p=0.982) were found between sapwood and heartwood, but thedifferences on total santalol content (p<<0.001) and sesquiterpene alcohol content (p<<0.001)were great. Santalols and sesquiterpene alcohols isolated from heartwood were higher incontent than those isolated from sapwood, while teresantalol content in heartwood was lowerthan those in sapwood (p<<0.001).
     (4)Large-scale sandal plantations had good growth in southern China, about15~20%ofthe individuals started to form heartwood naturally as early as6-year old, but the oil content inthese young sandals was low, which ranged from0.66%to1.76%. Essential oil compositionwas similar with that extracted from mature sandals, but the content of α-santalol andβ-santalol were low, which account for20.19%and10.14%in average respectively, the qualityof oil did not meet with the current ISO standard for sandal oil.
     (5)Heartwood in young sandal could be induced by stem gas filling, but the amount ofheartwood induced by different gas treatments was significantly different (p<<0.001). The areaor amount of induced heartwood above/below the drill hole was as the following order:nitrogen> carbon dioxide> ethylene=wounding. Treatment with ethylene had the highest oilcontent of17.11%in average among all treatments (p=0.001), which was far beyond thenormal oil content of sandal, but α-santalol content and β-santalol content were relative low,only31.05%and12.67%in average respectively;Ingredient analysis showed that essential oilextracted from heartwood induced by ethylene contained some polyphenols, extractives andother non-santalol substances. Treatment with carbon dioxide had the highest content ofα-santalol and β-santalol, which were41.09%and18.91%in average respectively, and oilquality met with the current ISO standard for sandal oil, which means that carbon dioxide mayplay an important role in induction heartwood formation of sandal.
     (6)Heartwood in young sandal could be induced by stem injection of chemicals, and nostatistically differences were found in term of heartwood amount (p=0.457) between differentchemical treatments and the corresponding concentrations; Stem injection of0.3%ethrel hadcaused great damage on PSII of young sandals, as a result, light use efficiency was reducedsubsequently, and net photosynthesis rate was decreased significantly (p<<0.001); Steminjection of0.6%benzyladenine had the highest oil content in the induced heartwood (9.34%in average) among all treatments (p<<0.001), followed by0.3%ethrel and0.3%jasmonic acid(both were5.33%in average); treatment with0.15%paraquat had the least oil content amongall treatments, only2.54%in average.
     (7)Oil quality of heartwood induced by low concentration of ethrel (0.3%), lowconcentration of jasmonic acid (0.3%) and high concentration of paraquat (0.3%) met with theISO standard for sandal oil, but both concentrations of benzyladenine (low referred to0.3%and high referred to0.6%) caused young sandals to form qualified oils which meet with thecurrent ISO standard for sandal oil, this indicated that benzyladenine could play a key roleduring heartwood formation of sandal.
     (8)Stem inoculation of fungi could induce heartwood formation in young sandals, and thearea or amount of heartwood induced by different fungis was statistically different (p<<0.001).The area or amount of induced heartwood above/below the inoculation drill was as thefollowing order: Botryosphaeria rhodina> Fusarium spp> Colletotrichum gloeosporioides>Khuskia spp=C.K. Inoculation of Khuskia spp got the highest oil content among all treatments(p=0.032), which are7.74%in average. Many non-santalols and unidentified or unisolatedsubstances were found in essential oil which extracted from heartwood induced by fungi, as aresult, α-santalol content and β-santalol content were relative low so that oil quality could notmeet with the current ISO standard for sandal oil. Therefore, stem inoculation of fungi ininduction heartwood formation of young sandals was not so practical.
     (9)Differences on water content and basic density of sandal heartwood induced bydifferent treatments (include gas filling, chemical injection and fungi inoculation) were not significant, which indicated that some properties of sandal heartwood were unsesceptible totreatments or stresses, and maintained in a cetrain range.
     (10)It seems that sandal heartwood formation and senescence were two independentprocesses with little connection, but harmone imbalance could have great influences on forcingheartwood formation of young sandal.
引文
蔡岳文,邱蔚芬,曾庆钱,等.2008.檀香规范化栽培技术.广东林业科技,24(1):98-101
    曹树青,徐巧婷,周红军.2003.利用氧化剂甲基紫精筛选拟南芥寿限延长突变体.实验生物学报,36(3):233-237
    晁龙军,曾大鹏,孙福在,等.1998.引起杨树湿心材的一种病原真菌——Fusarium proliferatum(Matsushima) Nirenberg.林业科学,34(5):69-73
    陈建勋,王晓峰.2006.植物生理学实验指导(第二版).广州:华南理工大学出版社:21-129
    陈军文,曹坤芳.2008.三叶橡胶光合作用能力和抗氧化系统以及单萜类物质对茉莉酸的响应.植物研究,28(1):47-53
    陈晓.1997.中药外敷治疗小儿腹胀268例.实用中医药杂志,13(4):22
    陈志霞,林励.2001.不同提取方法对檀香挥发油含量及成分的影响.广州中医药大学学报,18(2):174-177
    崔永忠,杨文云,李昆,等.2011.檀香种子发芽试验研究.西南农业学报,24(5):1924-1927
    单超,陈素文,刘六军.2007.檀香型新香料檀香烯醇合成机理及其新技术研究.香精香料化妆品,6(3):10-14
    高俊凤.2006.植物生理学实验指导.北京:高等教育出版社:120-241
    葛建军,朱林,张国良,等.2007.乙烯利对花生农艺和生理性状的影响.花生学报,36(2):19-22
    广东省湛江南药试验场.1983.湛江引种檀香树结香的观察.中药材科技,5:1-2
    广东省植物研究所.1976.初步揭示沉香结香的秘密.植物学报,18(4):287-291
    国家中医药管理局《中华本草》编委会.1996.中华本草(精选本上册)(第1版).上海:上海科学技术出版社:154-159
    海秀智.1996.蒙药治疗类风湿性关节炎40例.中国民族医药杂志,2(3):18
    洪鲲,张习敏,乙引,等.2010.乙烯利对野生马缨杜鹃光合作用日变化的影响.北方园艺,(23):82-84
    黄滨,冯明开,陈舜让,等.1989.檀香林分的生长分析.中药材,12(12):7-11
    黄富远.2007.檀香的边材不作檀香药用.辽宁中医药大学学报,9(2):123
    黄洁.1998.红花檀香茶治疗冠心病心绞痛32例观察.时珍国药研究,9(8):210
    江天然,张立新,毕玉蓉,等.2001.水分胁迫对梭梭叶片气体交换特征的影响.兰州大学学报(自然科学版),37(6):57-62
    冦毅英,李永芳,杨梅,等.2010.三叶檀香散抗心肌损伤的作用及对一氧化氮的影响.青海医学院学报,31(1):40-44
    黎建雄,马华明.2010.土沉香产香研究进展.林业实用技术,3:38-39
    李川山,陈晔.2010.植物精油提取工艺研究进展.大众科技,9:86-87
    李春花,李春香,李清,等.2007.乳香、檀香混合挥发油的提取工艺研究.中国药房,18(12):894-895
    李春丽,毛海舫,潘仙华,等.2007.以龙脑烯醛为原料合成檀香类化合物的研究.香料香精化妆品,2(1):19-25
    李春丽,毛海舫,潘仙华.2006.檀香化合物的合成研究进展.香料香精化妆品,2(1):31-35
    李奉勤,范文成,史冬霞,等.2006.正交试验探讨檀香挥发油的最佳提取条件.中药材,29(6):605-606
    李合生,孙群,赵世杰,等.2000.植物生理生化实验原理和技术.北京:高等教育出版社:207-211
    李红利,孙振元,赵梁军,等.2009.茉莉酸类物质对植物生长发育及抗性的影响.中国农学通报,25(16):167-172
    李萍,彭百承,袁慧星.2010.檀香茶提取物镇静催眠作用的实验研究.内蒙古中医药,11:142-143
    李应兰,陈福莲.1994.人工促成檀香结香的研究.热带亚热带植物学报,2(3):39-45
    李应兰,余作岳.1984.广东电白檀香栽培试验.热带亚热带森林生态系统研究,1(2):145-150
    李应兰.1997.檀香奇木落户中华.植物杂志,1:8-9
    李应兰.2003.檀香引种研究.北京:科学出版社:1-128
    梁称利,张宁南,龙友深,等.2011.不同种源檀香在广东低山区生长表现.种子,30(6):1-5
    梁和,李杨瑞,黄文尧.1994.不同浓度乙烯利处理对甘蔗光合性能的影响.广西农业大学学报,13(3):223-227
    梁和,李杨瑞,周生茂,等.1995.不同浓度乙烯利处理对甘蔗若干生理生化特性的影响.广西农业大学学报,14(1):1-8
    梁杨静,兰薇,桑柏,等.2010.三叶檀香散的药理研究进展.云南民族大学学报(自然科学版),19(2):86-89
    林桂珠,彭长连,林植芳.1999.甲基紫精抑制水稻种子活力和幼苗生长.热带亚热带植物学报,7(3):217-222
    林励,魏敏,肖省娥,等.2000.外界刺激对檀香挥发油含量及质量的影响.中药材,23(3):152-154
    林励,徐鸿华.1995.不同引种地檀香质量的研究.中药材,18(8):411-413
    林奇艺,蔡岳文,袁亮,等.2000a.外界刺激檀香“结香”试验研究.中药材,23(7):375-376
    林奇艺,钟永强,袁亮,等.2000b.激素对檀香生长的影响.中药材,23(8):437-738
    林植芳,彭长连,林桂珠.1999.光氧化作用引起几种亚热带木本植物膜损伤和PSⅡ失活.植物学报,41(8):871-876
    林植芳,彭长连,林桂珠.2005.光氧化条件下碳代谢中间产物与光合电子传递对PSⅡ光化学活性调节作用.热带亚热带植物学报,13(1):1-7
    刘会君,杨鹏,沈德隆.2004.合成檀香类化合物澳檀醇的研究进展.浙江化工,35(7):21-22
    刘君.2008.乙烯对麦冬光合作用的影响及相关基因的克隆——北京林业大学博士学位论文.北京:北京林业大学:25-29
    刘盛,李国伟.2006.基于管道模型理论的树形结构分析.东北林业大学学报,34(6):15-16
    刘小金,徐大平,张宁南,等.2010a.赤霉素对檀香种子发芽及幼苗生长的影响.种子,29(8):71-74
    刘小金,徐大平,张宁南,等.2010b.苗期寄主配置对印度檀香幼苗生长影响的研究.林业科学研究,23(6):924-927
    刘中秋,徐鸿华,刘心纯,等.1996.引种檀香不同部位的质量研究.广州中医药大学学报,13(3-4):72-75
    陆俊锟.2011.印度檀香与寄主植物间寄生关系的研究——中国林业科学研究院博士学位论文.北京:中国林业科学研究院:12-29
    罗尊宁.1997.愈胃汤治疗胃痛150例临床观察.四川中医,15(7):36
    马国华,何跃敏,张静峰,等.2005.檀香幼苗半寄生性初步研究.热带亚热带植物学报,13(3):233-238
    莫凌,唐文秀,毛世忠,等.2009.珍稀濒危植物狭叶坡垒的光合特性.福建林学院学报,29(4):357-361
    南京中医药大学.2006.中药大辞典(下册).第二版上海:上海科学技术出版社:3775-3776
    潘瑞炽,李海航.1989.茉莉酸——天然生长抑制剂.植物生理学通讯,2:78-80
    潘瑞炽,李玲.2007.植物生长调节剂:原理与应用.广州:广东高等教育出版社:6-15
    潘瑞炽.2008.植物生理学(第六版).北京:高等教育出版社:184-188
    彭长连,林植芳,林桂珠.2000.光氧化胁迫下几种植物叶片的超氧自由基产生速率和光合物性.植物生理学报,26(2):81-87
    秦建彬,余祖云,林丹青,等.2010.提高CO2浓度对大花蕙兰生长及光合生理特性的影响.福建农业学报,25(4):450-453
    秦明芳,谢金鲜,周红海,等.2010.檀香茶叶水提醇沉液对心血管的作用及抗疲劳的实验研究.基因组学与应用生物学,29(5):962-968
    沈惠娟.1996.植物激素与木材形成.林业科学,32(2):165-170
    唐健.2011.檀香210的合成.北京日化,1:38-40
    王滨.1997.“中风先兆症”的中蒙医辨治.中国中医急症,6(4):171
    王国莉,郭振飞.2008.甲基紫精对水稻不同耐冷品种叶绿素荧光参数的影响.武汉植物学研究,26(1):81-86
    王建华,任士福,史宝胜,等.2011.遮萌对连翘光合特性和叶绿素荧光参数的影响.生态学报,31(7):1811-1817
    王俊斌,李欣,王海凤,等.2009.茉莉酸对植物花器官发育和叶片衰老的分子调控研究进展.天津农学院学报,16(3):40-43
    王磊,章卫民,潘清灵,等.2009.白木香内生真菌的分离及分子鉴定.菌物研究,7(1):37-42
    王仁礼.1951.檀香树栽培初步试验(Ⅰ).台湾科学,5:61-71
    王仁礼.1952.檀香树栽培初步试验(Ⅱ).台湾森林,1:8-16
    王睿.2008.香精香料知识问答(六).国内外香化信息,11:16-17
    王彦昌,李天来,侯建平.2003.乙烯处理对番茄离体小花柄脱落的影响.园艺学报,30(5):554-558
    魏茂春.1997.活血化瘀法异病同治26例.吉林中医药,17(4):16
    魏敏,林励,邱金裕,等.2000.风害损伤对檀香药材质量的影响研究.中国中药杂志,25(12):710-713
    文海涛,赵红英,林励,等.2010a.檀香萜烯合成酶基因的克隆与序列分析.广东药学院学报,28(2):42-45
    文海涛,赵红英,闫冲,等.2010b.乙烯利刺激对檀香叶中多糖含量影响的初步研究.食品工业科技,31(5):363-365
    吴甘霖,段仁燕,王志高,等.2010.干旱和复水对草莓叶片叶绿素荧光特性的影响.生态学报,30(14):3941-3946
    吴金贤,俞炳果.1992.6BA对水稻叶片衰老过程中活性氧代谢的调节.南京农业大学学报,15(3):20-23
    吴锡冬,代金明,孙宁,等.2006.乙烯诱导衰老过程中大豆叶片快速叶绿素荧光诱导动力学和PSII光化学特征.天津师范大学学报(自然科学版),26(1):28-32
    夏纬瑛.1990.植物名释札记.北京:农业出版社:20-21
    邢永秀,杨丽涛,李杨瑞.2002.乙烯利对不同甘蔗品种气体交换的影响.热带作用学报,23(3):66-72
    徐大平,杨曾奖,梁坤南,等.2008.华南5个珍贵树种的低温寒害调查.林业科学,44(5):1-2
    徐宏慧.2009.檀香油对中波紫外线引起人体皮肤光损伤的防护作用——中国医科大学博士学位论文.沈阳:中国医科大学:1-9
    徐俊增,彭世彰,丁加丽,等.2006.控制灌嘅的水稻气孔限制值变化规律试验研究.水利学报,37(4):486-491
    徐小蓉,唐婧,牛晓娟,等.2011.乙烯利+2,4-滴及乙烯利+丁酰肼对马缨杜鹃光合作用日变化的影响.江苏农业科学,39(4):151-155
    徐雅丽,潘峰.2000.乙烯利,青霉素对香石竹玻璃苗生理生化指标的影响.塔里木农垦大学学报,12(4):27-29
    徐永荣,王鹏程,纪和,等.2011.寄主植物生长情况及配置距离对檀香幼林生长的影响.湖北农业科学,50(20):4216-4220
    许大全,张玉忠,张荣铣.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243
    许大全.1997.光合作用气孔限制分析中的一些问题.植物生理学通讯,33(4):241-244
    许明英,李跃林,任海,等.2006.檀香在华南植物园的引种栽培.经济林研究,24(3):39-41
    颜仁梁,刘志刚,林励.2008.树龄对广东引种印尼檀香挥发油化学成分影响.江西中医院学报,20(3):90-91
    杨梅,寇毅英,冯伟力,等.2008.三叶檀香散对大鼠心肌缺血损伤的保护作用及机制.中国药理学通报,24(4):485-488
    杨梅,李永芳,韵海霞,等.2006.三味檀香散对异丙肾上腺素所致心肌缺血大鼠血流动力学的影响.华西药学杂志,21(3):251-253
    叶创兴,朱念德,廖文波,等.2007.植物学.北京:科学出版社:80-87
    余竞光,丛浦珠,林级田,等.1988.国产檀香油化学成分和五个新化合物的初步结构研究.药学学报,23(11):868-872
    余竞光,丛浦珠,林级田,等.1993.国产檀香中α-反式香柠烯醇化学结构研究.药学学报,28(11):840-844
    虞珍珍.2006.诱导子对水母雪莲次生代谢的影响及雪莲查耳酮合成酶基因克隆——中国科学院硕士学位论文.北京:中国科学院研究生院:10
    曾幻添,董文忠,吴质朴.1978.沉香的人工结香.中草药通讯,12:38-42
    曾庆平,刘叔文,郭勇,等.1996.甲基紫精对植物细胞若干生理生化指标的影响.应用与环境微生物学报,2(4):405-407
    张宁南,徐大平,王卫文,等.2006.檀香栽培现状与发展前景.林业实用技术,10:14-16
    张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学通报,16(4):444-448
    张元国,王冰林,刁家连,等.2004.乙烯利处理对黄瓜叶片生理活性及品质的影响.中国蔬菜,4:34-35
    张治平,汪良驹,姚泉洪.2008.过量合成ALA转基因烟草叶片光合与叶绿素荧光特性的研究.西北植物学报,28(6):1196-1202
    赵华,张金生,李丽华.2006.植物精油提取技术的研究进展.辽宁石油化工大学学报,26(4):137-142
    郑慧敏.1997.穴位外敷治疗冠心病68例探讨.浙江中西医结合杂志,7(6):276
    中国国家标准化管理委员会.2009a.木材含水率测定方法.北京:中国标准出版社:1-6
    中国国家标准化管理委员会.2009b.木材密度测定方法.北京:中国标准出版社:1-8
    中国科学院中国植物志编辑委员会.1988.中国植物志(第24卷).北京:科学出版社:57-58
    周庆年,刘文杰,李惠敏,等.1982.檀香树在西双版纳的结香情况和栽培技术.热带农业科技,2:48-50
    诸富根,周山花,杨磊.2002.异龙脑愈创木酚合成檀香的制备.香料香精化妆品,4:1-4
    诸葛强,黄敏仁,潘惠新,等.1997.杨树湿心材的化学特性及形成机理研究.林业科学,33(3):259-266
    Abeles F B, Morgan P W, Saltveit M E J.1992. Ethylene in plant biology (2ndedition). San Diego, California,U.S.A: Academic Press:21-26
    Adams D R, Bhatnagar S P, Cookson R C.1975. Sesquiterpenes of Santalum album and Santalum spicatum.Phytochemistry,14:1459-1460
    Andrews J A, Siccama T G.1995. Retranslocation of calcium and magnesium at the heartwood-sapwoodboundary of Atlantic white cedar. Ecology,76(2):659-663
    Aono M, Saji H, Sakamoto A, et al.1995. Paraquat tolerance of transgenic nicotiana tabacum with enhancedactivities of glutathione reductase and superoxide dismutase. Plant and Cell Physiology,36(8):1687-1691
    Argall J F, Stewart K A.1984. Effects of decapitation and benzyladenine on growth and yield of cowpea[Vigna unguiculata (L.) Walp.]. Annals of Botany,54(3):439
    Arunkumar A N, Srinivasa Y B, Joshi G, et al.2011. Variability in and relation between tree growth,heartwood and oil content in sandalwood (Santalum album L.). Current Science,100(6):827-830
    Attiwill P M.1980. Nutrient cycling in a Eucalyptus obliqua (L' hérit.) forest [in Victoria]. IV. nutrientuptake and nutrient return. Australian Journal of Botany,28(2):199-222
    Babbs C F, Pham J A, Coolbaugh R C.1989. Lethal hydroxyl radical production in paraquat-treated plants.Plant Physiology,90:1267-1270
    Bamber R K.1972. Properties of the cell walls of the resin canal tissue of the sapwood and heartwood ofPinus lambertiana and Pinus radiata. Journal of the Institute of Wood Science,6(1):32-35
    Bamber R K.1976. Heartwood, its function and formation. Wood Science and Technology,10:1-8
    Bamber R K, Fukazawa K.1985. Sapwood and heartwood: a review. Forestry Abstracts,46(9):567-580
    Baqui S A, Shah J J.1985. Histoenzymatic studies in wood of Acacia auriculiformis Cunn. duringheartwood formation. Holzforschung,39(6):311-320
    Barbros M I, Eva L, Lennart E.1991. Seasonal variation in ethylene concentration in the wood of Pinussylvestris L. Tree Physiology,8:273-279
    Beritognolo I, Magel E, Abdel-Latif A, et al.2002. Expression of genes encoding chalcone synthase,flavanone3-hydroxylase and dihydroflavonol4-reductase correlates with flavanol accumulation duringheartwood formation in Juglans nigra. Tree Physiology,22(5):291-300
    Bierthier S, Kokutse A D, Stokes A, et al.2001. Irregular heartwood formation in Maritime pine (Pinuspinaster Ait): Consequences for biomechanical and hydraulic tree functioning. Annals of Botany,87:19-25
    Bleecker A B, Schaller G E.1996. The mechanism of ethylene perception. Plant Physiology,111:653-660
    Bogatek R, C me D, Corbineau F, et al.2002. Jasmonic acid affects dormancy and sugar catabolism ingerminating apple embryos. Plant Physiology and Biochemistry,40(2):167-173
    Bornman C H, Vogelmann T C.1984. Effect of rigidity of gel medium on benzyladenine-inducedadventitious bud formation and vitrification in vitro in Picea abies. Physiologia Plantarum,61(3):505-512
    Brand J, Kimber P, Streatfield J.2006. Preliminary analysis of Indian sandalwood (Santalum album L.) oilfrom a14-year-old plantation at Kununurra, western Australia. Sandalwood Research Newsletter,21:1-3
    Burg S P.1962. The physiology of ethylene formation. Annual Review of Plant Physiology,13(1):265-302
    Burg S P.1968. Ethylene, plant senescence and abscission. Plant Physiology,43:1503-1511
    Burtin P, Jay-Allemand C, Charpentier J P, et al.1998. Natural wood colouring process in Juglans sp.(J.nigra, J. regia and hybrid J. nigra23×J. regia) depends on native phenolic compounds accumulated inthe transition zone between sapwood and heartwood. Trees-Structure and Function,12(5):258-264
    Carrodus B B.1971. Carbon dioxide and the formation of heartwood. New Phytologist,70:939-943
    Carrodus B B.1972. Variability in the proportion of heartwood formed in woody stems. New Phytologist,71:713-718
    Cassab G I, Lin J J, Lin L S, et al.1988. Ethylene effect on extensin and peroxidase distribution in thesubapical region of pea epicotyls. Plant Physiology,88(3):522-524
    Chalutz E.1973. Ethylene-induced phenylalanine ammonia-lyase activity in carrot roots. Plant Physiology,51(6):1033-1036
    Chalutz E, DeVay J E, Maxie E C.1969. Ethylene-induced isocoumarin formation in carrot root tissue. PlantPhysiology,44:235-241
    Chattaway M M.1949. The development of tyloses and secretion of gum in heartwood formation. AustralianJournal of Biological Sciences,2(3):227-240
    Chattaway M M.1952. The sapwood-heartwood transition. Australian Forestry,16(1):25-34
    Climent L G, Pardos J.1993. Heartwood and sapwood development and its relationship to growth andenvironment in Pinus canariensis Chr.Sm ex DC. Forest Ecology and Management,59:165-174
    Crombie D S, Hipkins M F, Milburn J A.1985. Gas penetration of pit membranes in the xylem ofrhododendron as the cause of acoustically detectable sap cavitation. Australian Journal of PlantPhysiology,12:445-453
    Crovadore J, Schalk M, Lefort F.2012. Selection and mass production of Santalum album L. calli forinduction of sesquiterpenes. Biotechnology&Biotechnological Equipment,26(2):2870-2874
    Csintalan Z, Tuba Z, Proctor M C F.1999. Chlorophyll fluorescence during drying and rehydration in themosses Rhytidiadelphus loreus (Hedw.) Warnst, Anomodon viticulosus (Hedw.) Hook&Tayl andGrimmia pulvinata (Hedw.) Sm. Annals of Botany,84(2):235-244
    Dadswell H E, Hillis W E.1962. Wood. In: Hillis, W E (ed). Wood extractives and their significance to thepulp and paper industries. New York: Academic:513
    Davison R M, Young H.1973. Abscisic-acid content of xylem sap. Planta,109:95-98
    Dean T J, Long J N.1986. Variation in sapwood area-leaf area relations within two stands of lodgepole pine.Forest Science,32(3):749-758
    DeBell J D, Lachenbruch B.2009. Heartwood-sapwood variation of western redcedar as influenced bycultural treatments and position in tree. Forest Ecology and Management,258(9):2026-2032
    Dehon L, Macheix J J, Durand M.2002. Involvement of peroxidases in the formation of the browncoloration of heartwood in Juglans nigra. Journal of Experimental Botany,53(367):303-311
    Dellus V, Mila I, Scalbert A, et al.1997. Douglas-fir polyphenols and heartwood formation. Phytochemistry,45(8):1573-1578
    Dellus V, Scalbert A, Janin G.2009. Polyphenols and colour of Douglas fir heartwood.Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,51(4):291-295
    Demole E, Demole C, Enggist P.1976. A chemical investigation of the volatile constituents of east Indiansandalwood oil (Santalum album L.). Helvetica Chimica Acta,59(3):737-747
    Dhanushka S H.2008. Volatile oil content determination in the Australian sandalwood industry: Towards astandardised method. Sandalwood Research Newsletter,23:1-4
    Dhanya B, Viswanath S, Purushothman S.2010. Sandal (Santalum album L.) conservation in southern India:A review of policies and their impacts. Journal of Tropical Agriculture,48(1-2):1-10
    Eades H W, Alexander J B.1934. Western red cedar: significance of its heartwood colorations. ForestryCircular (41):15-17
    Erdtman H, Rennerfelt E.1944. Der Gehalt des Kiefernkernholzes an Pinosylvin-Phenolen: Ihre quantitativeBestimmung und ihre hemmende Wirkung gegen Angriff verschiedener F ulepilze. Svensk Papperstid,47:45-56(In French)
    Farage P K, Long S P.1991. The occurrence of photoinhibition in an over-wintering crop of oil-seed rape(Brassica napus L.) and its correlation with changes in crop growth. Planta,185(2):279-286
    Farquhar G D, Sharkey T D.1982. Stomatal conductance and photosynthesis. Annual Review of PlantPhysiology,33(1):317-345
    Farris M E, Keever G J, Kessler J R, et al.2009. Benzyladenine and cyclanilide promote shoot developmentand flowering of ‘Moonbeam’ coreopsis. Journal of Environmental Horticulture,27(3):176-182
    Findlay W P K, Pettifor C B.1941. Dark coloration in western red cedar in relation to certain mechanicalproperties. Empire Forest Journal,20(1):64-72
    Fletcher R A, McCullagh D.1971. Benzyladenine as a regulator of chlorophyll synthesis in cucumbercotyledons. Canadian Journal of Botany,49(12):2197-2201
    Fuerst E P, Vaughn K C.1990. Mechanisms of paraquat resistance. Weed Technology:150-156
    Fukazawa K, Yamamoto K, Ishida S.1980. The season of heartwood formation in genus pinus. Naturalvariations of wood properties. Mitt Bundesforschungsanst Forst-Holzwirtsch,131:113-130
    Gartner.1995. Plant stems: physiology and functional morphology. San Diego, California: Academic PressInc.:440
    Gartner B L.1991. Stem hydraulic properties of vines vs. shrubs of western poison oak, Taxicodendrondiversilobum. Oecologia,87:180-189
    Gerry E.1914. Tyloses: their occurrence and practical significance in some American woods. Journal ofAgricultural Research,1(6):445-469
    Good H M, Murray P M, Dale H M.1955. Studies on heartwood formation and staining in sugar maple Acersaccharum Marsh. Canadian Journal of Botany,33(1):31-41
    Good H M, Nelson J I.1962. Fungi associated with Fomes igniarius var. populinus in living poplar trees andtheir probable significance in decay. Canadian Journal of Botany,40:615-624
    Gupta R, Arora S.1994. Contact dermatitis to sandalwood. Indian Journal of Dermatology Venereology andLeprology,60(5):292-293
    Haffner D.1993. Determining heartwood formation within Santalum album and S. spicatum. SandalwoodResearch Newsletter,(1):4-5
    Haffner D.1994. Determining heartwood oil content within Santalum album and S. spicatum. SandalwoodResearch Newsletter,(2):6-8
    Halliwell B.1984. Oxygen-derived species and herbicide action. Plant Physiology,15:21-24
    Harbaugh D T, Baldwin B G.2007. Phylogeny and biogeography of the sandalwoods (Santalum,santalaceae): repeated dispersals throughout the pacific. American Journal of Botany,94(6):1028-1040
    Harris J M.1954. Heartwood formation in Pinus radiata (D.Don.). New Phytologist,53(3):517-524
    Hasegawa T, Toriyama T, Ohshima N, et al.2011. Isolation of new constituents with a formyl group from theheartwood of Santalum album L. Flavour and Fragrance Journal,26:98-100
    Hauch S, Magel E.1998. Extractable activities and protein content of sucrose-phosphate synthase, sucrosesynthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial woodproduction and heartwood formation. Planta,207(2):266-274
    Hillinger C, Holl W, Ziegler H.1996. Lipids and lipolytic enzymes in the trunkwood of Robiniapseudoacacia L. during heartwood formation. Trees-Structure and Function,10(6):366-375
    Hillis W E.1968. Chemical aspects of heartwood formation. Wood Science and Technology,2(4):241-259
    Hillis W E.1987. Heartwood and tree exudates. Springer-Verlag, Berlin, Germany:268
    Horgan R, Hewett E W, Horgan J M, et al.1975. A new cytokinin from Populus×robusta. Phytochemistry,14(4):1005-1008
    Huang Z, Meilan R, Woeste K.2009. A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like,highly expressed during heartwood formation. Plant Cell Reports,28(11):1717-1724
    Huang Z, Tsai C J, Harding S A, et al.2010. A Cross-species transcriptional profile analysis of heartwoodformation in black walnut. Plant Molecular Biology Reporter,28:222-230
    Huber B.1956. Die Gef bleitung. In: Ruhlad W(ed.), Encyclopedia of plant physiology. Springer-Verlag,Berlin, Germany:541
    Hyodo H, Yang S F.1971. Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings.Plant Physiology,47(6):765-770
    IAWA.1964. International Association of Wood Anatomists. Multilingual glossary of terms used in woodanatomy. Verlagsanstalt Buchdruckerei Konkordia, Winterthur, Switzerland:186
    ISO.2002. Oil of sandalwood (Santalum album L.) Ⅱedition.3518:2002(E),2002-03-01, Geneva,Switzwerland:1-5
    Iyengar A V V.1968. The east Indian sandalwood oil. Indian Forester,94:57-68
    Jayappa V, Nataraj B M, Shanbang P K, et al.1981. Regional variation in the yield and quality ofsandalwood oil-a case study by GlC. Pafai Journal, October-December:27-31
    Jeong C S, Chakrabarty D, Hahn E J, et al.2006. Effects of oxygen, carbon dioxide and ethylene on growthand bioactive compound production in bioreactor culture of ginseng adventitious roots. BiochemicalEngineering Journal,27(3):252-263
    Johannes S, Peer H.2008. Is oxygen involved in beech (Fagus sylvatica) red heartwood formation? Trees,22:175-185
    Jones C G, Ghisalberti E L, Plummer J A, et al.2006. Quantitative co-occurrence of sesquiterpenes; a toolfor elucidating their biosynthesis in Indian sandalwood, Santalum album. Phytochemistry,67:2463-2468
    Jones C G, Keeling C I, Ghisalberti E L, et al.2008. Isolation of cDNAs and functional characterisation oftwo multi-product terpene synthase enzymes from sandalwood, Santalum album L. Archives ofBiochemistry and Biophysics,477:121-130
    Jones C G, Plummer J A.2007. Non-destructive sampling of Indian sandalwood (Santalum album L.) for oilcontent and composition. Journal of Essential Oil Research,19:157-164
    Jones D H.1984. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development.Phytochemistry,23(7):1349-1359
    Jorgensen E.1962. Observations on the formation of protection wood. The Forestry Chronicle,38(3):292-294
    Jorgensen E, Balsillie D.1969. Formation of heartwood phenols in callus tissue cultures of red pine (Pinusresinosa). Canadian Journal of Botany,47(6):1015-1016
    Kadambi K.1954. Inducing heartwood formation in the Indian sandalwood tree, Santalum album Linn.Indian Forester,80:659-662
    Kaufmann M R, Troendle C A.1981. The relationship of leaf area and foliage biomass to sapwoodconducting area in four subalpine forest tree species. Forest Science,27(3):477-482
    Kaur M, Agarwal C, Singh R P, et al.2005. Skin cancer chemopreventive agent, α-santalol, inducesapoptotic death of human epidermoid carcinoma A431cells via caspase activation together withdissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis,26(2):369-380
    Kim T H, Ito H, Hatano T, et al.2005a. Bisabolane-and santalane-type sesquiterpenoids from Santalumalbum of Indian origin. Journal of Natural Products,68:1805-1808
    Kim T H, Ito H, Hatano T, et al.2006. New antitumor sesquiterpenoids from Santalum album of Indianorigin. Tetrahedron,62(29):6981-6989
    Kim T H, Ito H, Hayashi K, et al.2005b. Aromatic Constituents from the Heartwood of Santalum album L.Chemical&Pharmaceutical Bulletin,53(6):641-644
    Kokutse A D, Bailleres H, Stokes A, et al.2004. Proportion and quality of heartwood in Togolese teak(Tectona grandis L.f.). Forest Ecology and Management,189(1-3):37-48
    Krause G H, Weis E.1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of PlantPhysiology and Molecular Biology,42:313-349
    Langstrom B, Hellqvist C.1991. Effects of different pruning regimes on growth and sapwood area of scotspine. Forest Ecology and Management,44:239-254
    Little C H A, Savidge R A.1987. The role of plant growth regulators in forest tree cambial growth. PlantGrowth Regulation,6(1-2):137-169
    Liu X J, Xu D P, Xie Z S, et al.2009. Effects of different culture media on the growth of Indian sandalwood(Santalum album L.) seedlings in Zhanjiang, Guangdong, southern China. Forestry Studies in China,11(2):132-138
    Magel E, Jay-Allemand C, Ziegler H.1994a. Formation of heartwood substances in the stemwood ofRobinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across thetrunk. Trees-Structure and Function,8(4):165-171
    Magel E, Monties B, Drouet A, et al.1994b. Heartwood fommation: Biosynthesis of heartwood extractivesand secondary lignification. In: Sandermann H J, Bonnet-Masimbert M(eds.), Eurosilva-Contribution toforest tree physiology. Nov,7-20,1994. Dorudan, France. Institut National de la RechercheAgronomique, Paris, France:368
    Magel E A.2000. Biochemistry and physiology of heartwood formation. In: Savidge R A, Barnett J R,Napier R (eds). Cell and molecular biology of wood formation. Experimental Biology Reviews. BIOSScientific Publishers Ltd.: Oxford, UK:363-376
    Magel E A, Drouet A, Claudot A C, et al.1991. Formation of heartwood substances in the stem of Robiniapseudoacacia L. Trees-Structure and Function,5(4):203-207
    Magel E A, Hillinger C, Wagner T, et al.2001. Oxidative pentose phosphate pathway and pyridinenucleotides in relation to heartwood formation in Robinia pseudoacacia L. Phytochemistry,57(7):1061-1068
    Margolis H A, Gagnon R R, Pothier D, et al.1988. The adjustment of growth, sapwood area, heartwood area,and sapwood saturated permeablity of balsam fir after different intensities of pruning. Canadian Journalof Forestry Research,18(6):723-727
    Matsuo Y, Mimaki Y.2010. Lignans from Santalum album and their cytotoxic activities. Chemical andPharmaceutical Bulletin,58(4):587-590
    Matsuo Y, Mimaki Y.2012. α-santalol derivatives from Santalum album and their cytotoxic activities.Phytochemistry (in Press)
    Maurel B, Pareilleux A.1985. Effect of carbon dioxide on the growth of cell suspensions of Cathakanthusroseus. Biotechnology Letters,7(5):313-318
    Miyamoto K, Oka M, Ueda J.1997. Update on the possible mode of action of the jasmonates: Focus on themetabolism of cell wall polysaccharides in relation to growth and development. Physiologia Plantarum,100:631-638
    Moatshe O G, Emongor V E, Oagile O.2011. Effect of benzyladenine (BA) on fruit set and mineral nutritionof morula (Sclerocarya birrea subspecies caffra). African Journal of Plant Science,5(4):268-272
    Morgan P W, Fowler J L.1972. Ethylene: Modification of peroxidase activity and isozyme complement incotton (Gossypium hirsutum L.). Plant and Cell Physiology,13(4):727-736
    Morling T, Valinger E.1999. Effects of fertilization and thinning on heartwood area, sapwood area andgrowth in scots pine. Scandinavian Journal of Forest Research,14(5):462-469
    Mujib A.2005. In vitro regeneration of sandal (Santalum album L.) from leaves. Turkish Journal of Botany,29:63-67
    Murmanis L.1975. Formation of tyloses in felled Quercus rubra L. Wood Science and Technology,9(1):3-14
    Myre R, Camire C.1994. The establishment of stem nutrient distribution zones of European larch andtamarack using principal component analysis. Trees-Structure and Function,9(1):26-34
    Nadkarn K M.1954. India Materia Medica (3rdedition). Bombay: Popular Press:1098-1102
    Nair M N B.1988. Wood anatomy and heartwood formation in Neem (Azadirachta indica A. Juss.).Botanical Journal of the Linnean Society,97:79-90
    Nair M N B, Shah J J.1983. Histochemistry of paraquat treated wood in Azadirachta indica A. Juss.International Anatomy of Wood Association Bulletin (ns),4(4):249-254
    Nelson N D.1978. Xylem ethylene, phenol-oxidizing enzymes, and nitrogen and heartwood formation inwalnut and cherry. Canadian Journal of Botany,56(6):626-634
    Nelson N D, Rietveld W J, Isebrands J G.1981. Xylem ethylene production in five black walnut families inthe early stages of heartwood formation. Forest Science,27(3):537-543
    Nilsson M, Wikman S, Eklund L.2002. Induction of discolored wood in scots pine (Pinus sylvestris). TreePhysiology,22:331-338
    Nobuchi T, Harada H.1983. Physiological features of the 'white zone' of sugi (Cryptomeria japonica D.Don)-cytological structure and moisture content. Journal of Japanese Wood Research Society,29(12):824-832
    Nobuchi T, Kuroda K, Iwata R, et al.1982. Cytological study of the seasonal features of heartwoodformation of Sugi (Cryptomeria japonica D. Don). Mokuzai Gakkaishi,28(11):669-676
    Nobuchi T, Takahara S, Harada H.1979. Studies on the survival rate of ray parenchyma cells with ageingprocess in coniferous secondary xylem. Bulletin of the Kyoto University Forests,51:239-246
    Nobuchi T, Tokuchi N, Harada H.1987. Variability of heartwood formation and cytological features inbroad-leaved trees. Journal of the Japan Wood Research Society,33(7):596-604
    Okada N, Katayama Y, Nobuchi T, et al.1993a. Trace elements in the stems of trees V. comparisons of radialdistributions among softwood stems. Mokuzai Gakkaishi,39(10):1111-1118
    Okada N, Katayama Y, Nobuchi T, et al.1993b. Trace elements in the stems of trees VI. comparisons ofradial distributions among hardwood stems. Mokuzai Gakkaishi,39(10):1119-1127
    Pallas Jr J E, Kays S J.1982. Inhibition of photosynthesis by ethylene——a stomatal effect. PlantPhysiology,70:598-601
    Pan B Z, Xu Z F.2011. Benzyladenine treatment significantly increases the seed yield of the biofuel plantJatropha curcas. Journal of Plant Growth Regulation,30:166-174
    Pardé J, Bouchon J.1987. Déndrometrie,2ndedition. Nancy: Engref:423-424
    Parthier B.1990. Jasmonates: hormonal regulators or stress factors in leaf senescence? Journal of PlantGrowth Regulation,9(1):57-63
    Patel J D, Bhat K V.1984. Induction of discoloured wood in Samanea saman. International Anatomy ofWood Association Bulletin (ns),5:152-154
    Peters W J..1977. Ethrel-bipyridilium synergism in slash pine. Proceedings of the fourth lightwood researchcoordinating council. Energy Research and Development Program:78-83
    Peters W J, Roberts D R, Munson J Q.1978. Ethrel, diquat, paraquat interaction in lightwood formation.Proceedlings of the lightwood research. Atlantic Beach. Coordinating Council:31-39
    Pierik R, Tholen D, Poorter H, et al.2006. The Janus face of ethylene: growth inhibition and stimulation.Trends in Plant Science,11(4):176-183
    Piotrowska A, Bajguz A, Czerpak R, et al.2010. Changes in the growth, chemical composition, andantioxidant activity in the aquatic plant Wolffia arrhiza (L.) Wimm.(Lemnaceae) exposed to jasmonicacid. Journal of Plant Growth Regulation,29:53-62
    Pogroszewska E, Sadkowska P.2008. The influence of benzyladenine on the flowering of liatrisspicatal.‘alba’cultivated for cut flowers in an unheated plastic tunnel and in the field. ActaAgrobotanica,61(1):153-158
    Pratt H K, Goeschl J D.1969. Physiological roles of ethylene in plants. Annual Review of Plant Physiology,20(1):541-584
    Priestley J H.1932. The growing tree. Forestry,6(2):105-112
    Radomiljac A M.1998a. The influence of pot host species, seedling age and supplementary nursery nutritionon Santalum album Linn.(Indian sandalwood) plantation establishment within the Ord River IrrigationArea, Western Australia. Forest Ecology and Management,102(2-3):193-201
    Radomiljac A M.1998b. Santalum album L. plantations: a complex interaction between parasite andhost——Ph D thesis of Murdoch University. Perth, Western Australia: Murdoch University:154-181
    Radomiljac A M, Borough C J.1995. Sandalwood. Australian Forest Grower,19(4, Special liftout sectionNo.34):1-4
    Radomiljac A M, McComb J A, McGrath J F.1999. Intermediate host influences on the root hemi-parasiteSantalum album L. biomass partitioning. Forest Ecology and Management,113(2-3):143-153
    Rai S N.1990. Status and cultivation of sandalwood in India. In: Hamilton L, Conrad C E(eds). Proceedingsof the Symposium on Sandalwood in the Pacific.9-11,April. Honolulu, Hawaii. US Forestry ServiceGeneral Technical Paper PSW-122:66-71
    Ridge I, Osborne D J.1970. Regulation of peroxidase activity by ethylene in Pisum sativum: requirementsfor protein and RNA synthesis. Journal of Experimental Botany,21(3):720-734
    Roff J W.1964. Hyphal characteristics of certain fungi in wood. Mycologia,56(6):799-804
    Rudman P.1966. Heartwood formation in trees. Nature,210:608-610
    Ryan M G.1989. Sapwood volume for three subalpine conifers: prediction equations and ecologicalimplications. Canadian Journal of Forestry Research,19:1397-1401
    Ryan M G, Gower S T, Hubbard R M, et al.1995. Wood tissue maintenance respiration of four conifers incontrasting climates. Oecologia,101:133-140
    Savidge R A.1988. Auxin and ethylene regulation of diameter growth in trees. Tree Physiology,4(4):401-414
    Schink B, Ward J C, Zeikus J G.1981. Microbiology of wetwood: role of anaerobic bacterial populations inliving trees. Journal of General Microbiology,123:313-322
    Sciarrone D, Costa R, Ragonese C, et al.2011. Application of a multidemensional gas chromatographysystem with simultaneous mass spectrometric and flame ionization detection to the analysis ofsandalwood oil. Journal of Chromatography A,1218:137-142
    Sergiev I, Todorova D, Somleva M, et al.2007. Influence of cytokinins and novel cytokinin antagonists onthe senescence of detached leaves of Arabidopsis thaliana. Biologia Plantarum,51(2):377-380
    Shain L, Hills W E.1973. Ethylene production in xylem of Pinus radiata in relation to heartwood formation.Canadian Journal of Botany,51(7):1331-1335
    Shain L, Mackay J F G.1973. Seasonal fluctuation in respiration of aging xylem in relation to heartwoodformation in Pinus radiata. Canadian Journal of Botany,51(4):737-741
    Shankaranarayana K H, Parthasarathi K.1984. Compositional differences in sandal oils from young andmature trees and in the sandal oils undergoing colour change on standing. Indian Perfumer,28(3&4):138-141
    Shankaranarayana K H, Parthasarathi K.1987. On the content and composition of oil from heartwood atdifferent levels in sandal. Indian Perfumer,31:211-214
    Shankaranarayana K H, Ravikumar G, Rajeevalochan A N, et al.1998. Content and composition of oil fromthe central and transition zones of the sandalwood disc. In: Radomiljac A M, Ananthapadmanabho H S,M W R, Rao K S(eds.), Sandal and its products. Bangalore, India. Australian Centre for InternationalAgricultural Research:86-88
    Shankaranarayana K H, Ravikumar G, Rangaswamy C R, et al.1997. Oil in depot-based sapwood of sandal.My Forest,33(3):581-582
    Shellie R, Marriott P, Morrison P.2004. Comprehensive two-dimensional gas chromatography with flameionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of WestAustralian sandalwood oil. Journal of Chromatographic Science,42(8):417-422
    Shigo A L.1965. The pattern of decays and discolorations in northern hardwoods. Phytopathology,55:648-652
    Shigo A L.1972. Successions of microorganisms and patterns of discoloration and decay after wounding inred oak and white oak. Phytopathology,62:256-259
    Shigo A L, Hillis W E.1973. Heartwood, discolored wood, and microorganisms in living trees. AnnualReview of Phytopathology,11(1):197-222
    Shigo A L, Sharon E M.1968. Discoloration and decay in hardwoods following inoculations withhymenomycetes. Phytopathology,58:1493-1498
    Shigo A L, Sharon E M.1970. Mapping columns of discolored and decayed tissues in Sugar Maple, Acersaccharum. Phytopathology,60:232-237
    Shinozaki K, Yoda K, Hozumi K, et al.1964. A quantitative analysis of plant form-the pipe model theory: I.Basic Analyses. Japanese Journal of Ecology,14(3):97-105
    Shri B, Sastri M.1972. The wealth of India. New delhi: CSIR publication,9:208-224
    Sperry J S, Perry A H, Sullivan J E M.1991. Pit membrane degradation and air-embolism formation inageing xylem vessels of Populus tremuloides Michx. Journal of Experimental Botany,42(11):1399-1406
    Spicer R, Holbrook N M.2007. Effects of carbon dioxide and oxygen on sapwood respiration in fivetemperate tree species. Journal of Experimental Botany,58(6):1313-1320
    Srinivasan V V, Sivaramakrishnan V R, Rangaswamy C R, et al.1992. Sandal (Santalum album L.).Bangalore, India: Institute of Wood Science and Technology:1-60
    Srivastava G C, Goswami B K.1988. Influence of benzyladenine on leaf senescence and photosynthesis insunflower (Helianthus annuus L.). Journal of Agronomy and Crop Science,161(1):23-29
    Stewart C M.1966. Excretion and heartwood formation in living trees. Science,153(3740):1068-1074
    Stubbs J, Roberts D R, Outcalt K W.1987. Chemical stimulation of lightwood in southern pines.Southeastern forest experiment station, Asheville, North Carolina:15-30
    Subehan, Ueda J Y, Fujino H, et al.2005. A field survey of agarwood in Indonesia. Journal of TraditionalMedicines,22(4):244-251
    Tabata Y, Widjaja E, Mulyaningsih T, et al.2003. Structural survey and artificial induction of aloeswood.Wood research, Bulletin of the Wood Research Institute, Kyoto University,90:11-12
    Taylor A M, Cooper P A.2002. The effects of pre-harvest girding on selected properties of red pine, redmaple and eastern larch. Wood and Fiber Science,34(2):212-220
    Taylor A M, Gartner B L, Morrell J J.2002. Heartwood formation and natural durability-a review. Wood andFiber Science,34(4):587-611
    TFS.2012. About sandalwood, http://www.tfsltd.com.au/sandalwood-products/about-sandalwood/. Visitedon2012-04-05:
    Toshimasa O, Hirofumi S, Tomihiko H, et al.2005. Anti-helicobacter pylori compounds from Santalumalbum. Journal of Natural Products,68(6):819-824
    Trueman S J.2010. Benzyladenine delays immature fruit abscission but does not affect final fruit set orkernel size of Macadamia. African Journal of Agricultural Research,5(12):1523-1530
    Ueda J, Kato J.1980. Isolation and identification of a senescence-promoting substance from wormwood(Artemisia absinthium L.). Plant Physiology,66:246-249
    Van K O, Snel J F H.1990. The use of chlorophyll nomenclature in plant stress physiology. PhotosynthesisResearch,25(3):147-150
    Verghese J, Sunny T P, Balakrishnan K V.1990.(+)-α-Santalol and (-)-β-Santalol(z) concentration, a newquality determinant of east Indian sandalwood oil. Flavour and Fragrance Journal,5:223-226
    Waring R H, Schroeder P E, Oren R.1982. Application of the pipe model theory to predict canopy leaf area.Canadian Journal of Forest Research,12(3):556-560
    Wasternack C.2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stressresponse, growth and development. Annals of Botany,100(4):681-697
    Weidhase R A, Lehmann J, Kramell H, et al.1987. Degradation of ribulose-1,5-bisphosphate carboxylaseand chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, andcounteraction by cytokinin. Physiologia Plantarum,69(1):161-166
    Wellburn A R.1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, usingvarious solvent with spectrophotometers of different resoultion. Journal of Plant Physiology,144:307-313
    Widiarti A.1991. Site and heartwood formation of sandalwood. Forest Research Bulletin,534:1-13(InIndonesian with English abstract)
    Wilkes J.1991. Heartwood development and its relationship to growth in Pinus radiata. Wood Science andTechnology,25(2):85-90
    Wilson B F, Gartner B L.2002. Effects of phloem girdling in conifers on apical control of branches, growthallocation and air in wood. Tree Physiology,22(5):347-353
    Wolter K E, Zinkel D F.1984. Observiations on the physiological mechanisms and chemical constituents ofinduced oleoresin synthesis in Pinus resinosa. Canadian Journal of Forestry Research,14:452-458
    Yamamoto K.1982. Yearly and seasonal process of maturation of ray parenchyma cells in pinus species.Research Bulletins of the College Experiment Forests-Hokkaido University,39:245-296
    Yang T F, Gonzalez-carranza Z H, Maunders M J, et al.2008. Ethylene and the regulation of senescenceprocesses in transgenic nicotiana sylvestris plants. Annals of Botany,101:301-310
    Yazawa K, Ishida S.1965. On the wet-heartwood of some broad-leaved trees grown in Japan. Ⅱ seasonalmoisture content of yachi-damo and haru-nire by months. Journal of the Faculty of Agriculture,Hokkaido University,54(2):123-136
    Yemm E W, Willis A J.1954. The estimation of carbohydrates in plant extracts by anthrone. BiochemicalJournal,57:508-514
    Yoshida S.1969. Biosynthesis and conversion of aromatic amino acids in plants. Annual Review of PlantPhysiology,20(1):41-62
    Zhang X H, da Silva J A, Jia Y X, et al.2012. Chemical composition of volatile oils from the pericarps ofIndian sandalwood (Santalum album) by different extraction methods. Natural Product Communications,7(1):93-96
    Ziegler H.1967. Biological aspects of heartwood formation.14thIUFRO World Congress, Munich,9:93-116
    Ziegler H.1968. Biological aspects of heartwood formation. Holz als Roh-und Werkstoff,26:61-68
    Zimmermann M H.1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Germany:143
    Zwieniecki M A, Holbrook N M.1998. Diurnal variation in xylem hydraulic conductivity in white ash(Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant, Cell&Environment,21(11):1173-1180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700